
Polynomial functors and categorifications
of Fock space

Jiuzu Hong, Antoine Touzé, and Oded Yacobi

Dedicated, with gratitude and admiration, to Nolan Wallach
on the occasion of his 70th birthday

Abstract Fix an infinite field k of characteristic p, and let g be the Kac–Moody
algebra sl1 if p D 0 and bslp otherwise. Let P denote the category of strict
polynomial functors defined over k. We describe a categorical g-action on P (in the
sense of Chuang and Rouquier) categorifying the Fock space representation of g.
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1 Introduction

Fix an infinite field k of characteristic p. In this work we elaborate on a study, begun
in [HY], of the relationship between the symmetric groups Sd , the general linear
groups GLn.k/, and the Kac–Moody algebra g, where

g D
8

<

:

sl1.C/ if p D 0

bslp.C/ if p ¤ 0:
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In [HY] Hong and Yacobi defined a category M constructed as an inverse limit of
polynomial representations of the general linear groups. The main result of [HY] is
that g acts on M (in the sense of Chuang and Rouquier), and categorifies the Fock
space representation of g.

The result in [HY] is motivated by a well-known relationship between the basic
representation of g and the symmetric groups. Let Rd denote the category of repre-
sentations of Sd over k, and let R denote the direct sum of categories Rd . By work
of Lascoux, Leclerc, and Thibon [LLT], it is known that R is a categorification of
the basic representation of g (in a weaker sense than the Chuang–Rouquier theory).
This means that there are exact endo-functors Ei ; Fi W R ! R (i 2 Z=pZ)
whose induced operators on the Grothedieck group give rise to a representation
of g isomorphic to its basic representation.

Since R consists of all representations of all symmetric groups, and the represen-
tations of symmetric groups and general linear groups are related via Schur–Weyl
duality, it is natural to seek a category which canonically considers all polynomial
representations of all general linear groups. This is precisely the limit category of
polynomial representations alluded to above.

The limit category M is naturally equivalent (Lemma B.2, [HY]) to the category
P of “strict polynomial functors of finite degree” introduced by Friedlander and
Suslin in [FS] (in characteristic zero the category P appears in [Mac]). The objects
of P are endo-functors on V (the category of finite-dimensional vector spaces
over k) satisfying natural polynomial conditions, and the morphisms are natural
transformations of functors.

Friedlander and Suslin’s original motivation was to study the finite generation of
affine group schemes. This is related to the study of extensions of representations
of general linear groups over fields of positive characteristic (cf. Section A.27, [J]).
Since their landmark work, the theory of polynomial functors has developed in many
directions. In algebraic topology, the category P is connected to the category of
unstable modules over the Steenrod algebra, to the cohomology of the finite linear
groups [FFSS,Ku], and also to derived functors in the sense of Dold and Puppe [T2].
Polynomial functors are also applied to the cohomology of group schemes. For
example, the category P is used in the study of support varieties for finite group
schemes [SFB], to compute the cohomology of classical groups [T1], and in the
proof of cohomological finite generation for reductive groups [TvdK].

The goal of this paper is to develop an explicit connection relating the category
of strict polynomial functors to the affine Kac–Moody algebra g. We describe a
categorical action of g on P (in the sense of [CR, R, KL, KL2, KL3]), which is
completely independent of the results or arguments in [HY]. The main advantage
of this approach is that the category P affords a more canonical setting for
categorical g-actions. Indeed, many of the results obtained in [HY] have a simple
and natural formulation in this setting. Further, we hope that the ideas presented here
will provide new insight to the category of polynomial functors. As an example of
this, in the last section of the paper we describe how the categorification theory
implies that certain blocks of the category P are derived equivalent. These kinds of
applications are typical in this framework; the main result in [CR] was to establish
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derived equivalences between blocks of representations of the symmetric groups.
Categorical g-actions have since been used in Lie theory to establish equivalences
of abelian categories (see e.g., Theorems 1.1 in [BS1, BS2]).

The category of strict polynomial functors is actually defined over arbitrary
fields, but the general definition given in [FS] is more involved than the one we use
(the problem comes from the fact that different polynomials might induce the same
function over finite fields). All our results remain valid in this general context, but
we have opted to work over an infinite field to simplify the exposition. In addition,
we assume in our main theorem that p ¤ 2. The theorem is valid also for p D 2,
but including this case would complicate our exposition.

In the sequel to this work we continue the study of P from the point of view of
higher representation theory [HY2]. We show that Khovanov’s category H naturally
acts on P , and this gives a categorification of the Fock space representation of the
Heisenberg algebra when char.k/ D 0. When char.k/ > 0 the commuting actions
of g0 (the derived algebra of g) and the Heisenberg algebra are also categorified.
Moreover, we formulate Schur–Weyl duality as a functor from P to the category of
linear species. The category of linear species is known to carry actions of g and the
Heisenberg algebra. We prove that Schur–Weyl duality is a tensor functor which is
a morphism of both the categorical g-action and the categorical Heisenberg action.

Finally, we mention the work by Ariki [A] on qraded q-Schur algebras, and
the recent work by Stroppel–Webster on quiver Schur algebras [SW]. These works
suggest the existence of a graded version of the polynomial functor, which would
gives rise to a natural categorification of the Fock space of the quantum affine
algebra Uq.bsln/. It would be interesting to pursue this generalization of our present
work. We also mention ongoing work of the second author with L. Rigal, where
they define a notion of quantum strict polynomial functors, which should also fit
well within the categorification scheme.

Acknowledgments. We thank the referee for many helpful comments which
greatly improved the exposition of the paper.

2 Type A Kac–Moody algebras

Let g denote the following Kac–Moody algebra (over C):

g D
(

sl1 if p D 0
bslp if p > 0

By definition, the Kac–Moody algebra sl1 is associated to the Dynkin diagram:

· · · • • • • · · ·
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while the Kac–Moody algebra bslp is associated to the diagram with p nodes:

• • · · · • •

The Lie algebra g has standard Chevalley generators fei ; figi2Z=pZ. Here and
throughout, we identify Z=pZ with the prime subfield of k. For the precise relations
defining g, see e.g., [Kac].

We let Q denote the root lattice and P the weight lattice of g. Let
f˛i W i 2 Z=pZg denote the set of simple roots, and fhi W i 2 Z=pZg the simple
coroots. The cone of dominant weights is denoted PC and denote the fundamental
weights f�i W i 2 Z=pZg, i.e.,

˝

hi ; �j

˛ D ıij . When p > 0 the Cartan subalgebra of
g is spanned by the hi along with an element d . In this case we also let ı DP

i ˛i ;
then �0; : : : ; �p�1; ı form a Z-basis for P . When p D 0 the fundamental weights
are a Z basis for the weight lattice.

Let Sn denote the symmetric group on n letters. Sn acts on the polyno-
mial algebra ZŒx1; : : : ; xn� by permuting variables, and we denote by Bn D
ZŒx1; : : : ; xn�Sn the polynomials invariant under this action. There is a natural
projection Bn � Bn�1 given by setting the last variable to zero. Consequently,
the rings Bn form a inverse system; let BZ denote the subspace of finite degree
elements in the inverse limit lim �Bn. This is the algebra of symmetric functions in
infinitely many variables fx1; x2; : : :g. Let B D BZ˝Z C denote the (bosonic) Fock
space.

The algebra BZ has many well-known bases. Perhaps the nicest is the basis of
Schur functions (see e.g., [Mac]). Let } denote the set of all partitions, and for
� 2 } let s� 2 BZ denote the corresponding Schur function. Let us review some
combinatorial notions related to Young diagrams. Firstly, we identify partitions with
their Young diagram (using English notation). For example, the partition .4; 4; 2; 1/

corresponds to the diagram

The content of a box in position .k; l/ is the integer l �k 2 Z=pZ. Given �; � 2 },
we write μ λ if � can be obtained from � by adding some box. If the arrow
is labelled i , then � is obtained from � by adding a box of content i (an i -box, for

short). For instance, if m D 3, � D .2/ and � D .2; 1/ then μ
2

λ . An i -box of
� is addable (resp. removable) if it can be added to (resp. removed from) � to obtain
another partition.
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Of central importance to us is the Fock space representation of g on B (or BZ).
The Schur functions form a Z-basis of the algebra of symmetric functions:

BZ D
M

�2}

Zs�:

The action of g on B is given on this basis by the following formulas: ei :s� DP

s�,

where the sum is over all � such that μ
i

λ, and fi :s� D P

s�, where the sum

is over all � such that λ
i

μ. Moreover, d acts on s� by m0.�/, where m0.�/

is the number of boxes of content zero in �. These equations define an integral
representation of g (see e.g., [LLT]).

Note that s; is a highest weight vector of highest weight �0. We note also that
the standard basis of B is a weight basis. Let mi .�/ denote the number of i -boxes
of �. Then s� is of weight wt .�/, where

wt .�/ D �0 �
X

i

mi .�/˛i : (1)

For a k-linear abelian category C, let K0.C/ denote the Grothendieck group of C,
and let K.C/ denote the complexification of K0.C/. If A 2 C we let ŒA� denote its
image in K0.C/. Similarly, for an exact functor F W C ! C0 we let ŒF � W K0.C/ !
K0.C0/ denote the induced operator on the Grothendieck groups. Slightly abusing
notation, the complexification of ŒF � is also denoted by ŒF �.

We will also need the following combinatorial definition: for a partition � of d ,
the permutation �� 2 Sd is defined as follows. Let t� be the Young tableaux with
standard filling: 1; : : : ; �1 in the first row, �1 C 1; : : : ; �2 in the second row, and so
forth. Then ��, in one-line notation, is the row-reading of the conjugate tableaux tı

� .
For example, if � D .3; 1/, then, �� D 1423, the permutation mapping 1 7! 1; 2 7!
4; 3 7! 2, and 4 7! 3.

3 Categorical g-actions

Higher representation theory concerns the action of g on categories rather than
on vector spaces. The pioneering work on higher representation theory concerned
constructing actions on Grothendieck groups of representation theoretic categories
of algebraic or geometric origin; this is known as “weak” categorification. We are
concerned with “strong” categorical g-actions, in a sense to be made precise below.
The foundational papers which define this notion are [CR,KL,KL2,KL3,R]. There
are great overviews of the theory appearing in [L, Ma].

At the very least, an action of g on a k-linear additive category C consists of the
data of exact endo-functors Ei and Fi on C (for i 2 Z=pZ), such that g acts on
K.C/ via the assignment ei 7! ŒEi � and fi 7! ŒFi �. For instance, if i and j are
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not connected in the Dynkin diagram of g (i.e., Œei ; fj � D 0), then we require that
ŒŒEi �; ŒFj �� D 0 in End.K.C//. This is known as a “weak categorification”.

This notion is qualified as “weak” because the relations defining g, such as
Œei ; fj � D 0, are not lifted to the level of categories. A stronger notion of
categorification would require isomorphisms of functors lifting the relations of g,
e.g., functorial isomorphisms Ei ı Fj ' Fj ı Ei . Moreover, these isomorphisms
need to be compatible in a suitable sense. Making these ideas precise leads to an
enriched theory, which introduces new symmetries coming from an affine Hecke
algebra.

To give the definition of categorical g-action we use here, due to Chuang and
Rouquier (a related formulation appears in the works of Khovanov and Lauda [KL]),
we first introduce the relevant Hecke algebra.

Definition 1. Let DHn be the degenerate affine Hecke algebra of GLn. As an
abelian group

DHn D ZŒy1; : : : ; yn�˝ ZSn:

The algebra structure is defined as follows: ZŒy1; : : : ; yn� and ZSn are subalgebras,
and the following relations hold between the generators of these subalgebras:

�i yj D yj �i if ji � j j � 1

and

�i yiC1 � yi �i D 1 (2)

(here �1; : : : ; �n�1 are the simple generators of ZSn).

Remark 1. One can replace Relation (2) by

�i yi � yiC1�i D 1: (3)

These two presentations are equivalent; the isomorphism is given by

�i 7! �n�i ; yi 7! ynC1�i :

Definition 2. [Definition 5.29 in [R]] Let C be an abelian k-linear category.
A categorical g-action on C is the data of:

1. an adjoint pair .E; F / of exact functors C ! C;

2. morphisms of functors X 2 End.E/ and T 2 End.E2/, and
3. a decomposition C DL

!2P C! .

Let Xı 2 End.F / be the endomorphism of F induced by adjunction. Then given
a 2 k let Ea (resp. Fa) be the generalized a-eigensubfunctor of X (resp. Xı) acting
on E (resp. F ). We assume that
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4. E DL

i2Z=pZ Ei ,
5. the action of fŒEi �; ŒFi �gi2Z=pZ on K.C/ gives rise to an integrable representation

of g;

6. for all i , Ei .C!/ � C!C˛i and Fi .C!/ � C!�˛i ,
7. the functor F is isomorphic to the left adjoint of E, and
8. the degenerate affine Hecke algebra DHn acts on End.En/ via

yi 7! En�i XEi�1 for 1 � i � n; (4)

and

�i 7! En�i�1TEi�1 for 1 � i � n � 1: (5)

Remark 2. The definition (cf. Definition 5.29 in [R]) uses Relation (2). For our
purposes we use Relation (3). On the representations of the symmetric groups (the
main example considered in [CR, Section 3.1.2]) another variant of Relation (3) is
used.

Remark 3. To clarify notation, the natural endomorphism yi of En assigns to
M 2 C an endomorphism of En.M/ as follows: first evaluate the natural transfor-
mation at the object Ei�1.M/ yielding a morphism XEi�1.M/ W Ei .M/! Ei .M/:

Applying the functor En�i to this morphism we obtain the endomorphism .yi /M W
En.M/! En.M/. See [BS1, BS2] for a more details on this construction.

The functorial isomorphisms lifting the defining relations of g are constructed
from the data of categorical g-action. More precisely, the adjunctions between E and
F and the functorial morphisms X and T are introduced precisely for this purpose.
The action of DHn on End.En/ in part (8) of Definition 2 is needed in order to
express the compatibility between the functorial isomorphisms. See [R] for details.

4 Polynomial functors

4.1 The category P

Our main goal in this paper is to define a categorical g-action on the category P of
strict polynomial functors of finite degree, and show that this categorifies the Fock
space representation of g. In this section we define the category P and recall some
of its basic features.

Let V denote the category of finite-dimensional vector spaces over k.
For V; W 2 V , polynomial maps from V to W are by definition elements of
S.V �/˝ W , where S.V �/ denotes the symmetric algebra of the linear dual of V .
Elements of Sd .V �/˝W are said to be homogeneous of degree d .
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Definition 3. The objects of the category P are functors M W V ! V that satisfy
the following properties:

1. for any V; W 2 V , the map of vector spaces

Homk.V; W /! Homk.M.V /; M.W //

is polynomial, and
2. the degree of the map

Endk.V /! Endk.M.V //

is bounded with respect to V 2 V .

The morphisms in P are natural transformations of functors. For M 2 P we denote
by 1M 2 HomP.M; M/ the identity natural transformation.

Let I 2 P be the identity functor from V to V and let k 2 P denote the constant
functor with value k. Tensor products in V define a symmetric monoidal structure
˝ on P , with unit k. The category P is abelian.

Let M 2 P and V 2 V . By functoriality M.V / carries a polynomial action of
the linear algebraic group GL.V /. We denote this representation by �M;V , or by �

when the context is clear:

�M;V W GL.V /! GL.M.V //:

Similarly, a morphism 	 W M ! N induces a GL.V /-equivariant map 	V W
M.V / ! N.V /. Thus evaluation on V yields a functor from P to Pol.GL.V //,
the category of polynomial representations of GL.V /.

Remark 4. Given a morphism 	 WM ! N of polynomial functors M; N , one can
talk about im.	/ 2 P . Explicitly, this functor is given on V 2 V by im.	/.V / D
im.	V /, and on linear maps f W V ! W by im.	/.f / D N.f /jim.	V /. This is
well-defined since 	 is a natural transformation.

4.2 Degrees and weight spaces

The degree of a functor M 2 P is the upper bound of the degrees of the
polynomials Endk.V / ! Endk.M.V // for V 2 V . For example, the functors of
degree zero are precisely the functors V ! V which are isomorphic to constant
functors. A functor M 2 P is homogeneous of degree d if all the polynomials
Endk.V /! Endk.M.V // are homogeneous polynomials of degree d .

For M 2 P , GL.k/ acts on M.V / by the formula

� �m D �M;V .�1V /.m/; for � 2 GL.k/ and m 2M.V /:
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This action is a polynomial action of GL.k/, so M.V / splits as a direct sum of
weight spaces

M.V / D
M

d�0

M.V /d ;

where

M.V /d D fm 2M.V / W � �m D �d mg:
Moreover, if f W V ! W is a linear map, it commutes with homotheties, so M.f /

is GL.k/-equivariant. Hence M.f / preserves weight spaces, and we denote by
M.f /d its restriction to the d -th weight spaces.

So we can define a strict polynomial functor Md by letting

Md .V / DM.V /d; Md .f / DM.f /d :

A routine check shows that Md is homogeneous of degree d . Thus, any functor
M decomposes as a finite direct sum of homogeneous functors Md of degree d .
Similarly, a morphism 	 W M ! N between strict polynomial functors preserves
weight spaces. So it decomposes as a direct sum of morphisms of homogeneous
functors 	d W Md ! Nd . This can be formulated by saying that the category P
is the direct sum of its subcategories Pd of homogeneous functors of degree d :

P D
M

d�0

Pd : (6)

If M 2 P , we define its Kuhn dual M ] 2 P by M ].V / D M.V �/�, where
‘�’ refers to k-linear duality in the category of vector spaces. Since .M ]/] ' M ,
duality yields an equivalence of categories [FS, Prop 2.6]:

] W P '�! Pop:

A routine check shows that ] respects degrees, i.e., M ] is homogeneous of degree
d if and only if M also is. Indeed, if � 2 GL.k/, then for ` 2 M ].V / and
m 2M.V �/, we have that .� � `/.m/ D `.M.��/.m// D `.M.�/.m//.

The following theorem, due to Friedlander and Suslin [FS], shows the cat-
egories Pd are a model for the stable categories of homogeneous polynomial
GLn.k/-modules of degree d . Let Pold .GL.V // denote the category of polynomial
representations of GL.V / of degree d .

Theorem 1. Let V 2 V be a k-vector space of dimension n � d . The functor
induced by evaluation on V :

Pd ! Pold .GL.V //;

is an equivalence of categories.
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As a consequence of Theorem 1, we obtain that strict polynomial functors are
noetherian objects in the following sense:

Corollary 1. Let M 2 P . Assume there is an increasing sequence of subfunctors
of M :

M 0 �M 1 � � � � �M i � � � � :

Then there exists an integer N such that for all n � N , M n DM N .

Let˝d denote the d -th tensor product functor, which sends V 2 V to V ˝d 2 V .
Then ˝d 2 Pd . Let � be a tuple of nonnegative integers summing to d , and let
S� � Sd denote the associated Young subgroup. We denote by 
 � the subfunctor
of˝d defined by 
 �.V / D .V ˝d /S� .

Proposition 1 (Theorem 2.10, [FS]). The functor 
 �, � 2 }, a partition of d , is
a (projective) generator of Pd .

In other words, the objects M 2 Pd are exactly the functors M W V ! V which can
be obtained as subquotients of a direct sum of a finite number of copies of the d -th
tensor product functor ˝d .

4.3 Recollections of Schur and Weyl functors

In this section we introduce Schur functors and Weyl functors. These strict
polynomial functors are the functorial version of the Schur modules and the Weyl
modules, and they were first defined in [ABW].

Let }d denote the partitions of d . For � 2 }d let �ı denote the conjugate
partition. We define a morphism of polynomial functors d� as the composite:

d� W ��ı

1 ˝ � � � ˝��ı

n ,!˝d ���! ˝d � S�1 ˝ � � � ˝ S�m:

Here the first map is the canonical inclusion and the last one is the canonical
epimorphism. The middle map is the isomorphism of ˝d which maps v1 ˝ � � � vd

onto v��.1/ ˝ � � � ˝ v��.d/, where �� 2 Sd is the permutation defined in the last
paragraph of Section 2.

Definition 4. Let � 2 }d .

1. The Schur functor S� 2 Pd is the image of d� (cf. Remark 4).
2. The Weyl functor W� is defined by duality W� WD S

]

�.
3. Let L� be the socle of the functor S�.

Remark 5. In [ABW, def. II.1.3], Schur functors are defined in the more general
setting of “skew partitions” �=˛, (i.e., pairs of partitions .�; ˛/ with ˛ � �), and
over arbitrary commutative rings. They denote Schur functors by L�ı , but we prefer
to reserve this notation for simple objects in Pd .
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The following statement makes the link between Schur functors and induced
modules (also called costandard modules, or Schur modules) and between Weyl
functors and Weyl modules (also called standard modules or Verma modules).

Proposition 2. Let � 2 }d .

(i) There is an isomorphism of GL.kn/-modules S�.kn/ ' H 0.�/, where
H 0.�/ D ind

GL.kn/
B�

.k�/ is the induced module from [J, II.2].
(ii) There is an isomorphism of GL.kn/-modules W�.kn/ ' V.�/, where

V.�/ D H 0.�w0�/�

is the Weyl module from [J, II.2].

Proof. We observe that (ii) follows from (i). Indeed, we know that V.�/ is the
transpose dual of H 0.�/, and evaluation on kn changes the duality ] in P into
the transpose duality. To prove (ii), we refer to [Mar]. The Schur module M.�/

defined in [Mar, Def 3.2.1] is isomorphic to H 0.�/ (this is a theorem of James, cf.
[Mar, Thm 3.2.6]). Now, using the embedding of M.�/ into S�1.kn/˝� � �˝S�m.kn/

of [Mar, Example (1) p.73], and [ABW, Thm II.2.16], we get an isomorphism
S�.kn/ 'M.�/. ut

The following portemanteau theorem collects some of the most important
properties of the functors S�, W�, L�, � 2 }d .

Theorem 2. (i) The functors L�, � 2 }d form a complete set of representatives
for the isomorphism classes of irreducible functors of Pd .

(ii) Irreducible functors are self-dual: for all � 2 }d , L
]

� ' L�.
(iii) For all � 2 }d , the L� which appear as composition factors in S� satisfy

� � �, where � denotes the lexicographic order. Moreover, the multiplicity of
L� in S� is one.

(iv) For all �; � 2 }d ,

ExtiP.W�; S�/ D
�

k if � D � and i D 0,
0 otherwise.

Proof. All these statements have functorial proofs, but for sake of brevity we shall
use Proposition 2, together with the fact that evaluation on V for dim V � d

is an equivalence of categories. Thus, (i) follows from [Mar, Thm. 3.4.2], (ii)
follows from [Mar, Thm. 3.4.9], (iii) follows from [Mar, Thm. 3.4.1(iii)]. Finally,
(iv) follows from [J, Prop. 4.13] and [FS, Cor. 3.13]. ut

Note that for any d � 0 the categories Pd are of finite global dimension
(cf. e.g., Theorem 3.3.8, [Mar]). Therefore projective objects descend to a basis
of the Grothendieck group. Simple objects of course also descend to a basis.

Corollary 2. The equivalence classes of the Weyl functors ŒW�� for � 2 } form a
basis of K.P/.
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Proof. Order } by the lexicographic order, denoted �. By parts (ii) and (iii) of
Theorem 2, the multiplicity of L� in W� is one, and all other simple objects
appearing as composition factors in W� are isomorphic to L�, where � � �. Form
the matrix of the map given by ŒL�� 7! ŒW�� in the basis ŒL���2} (ordered by �).
This is a lower triangular matrix, with 1’s on the diagonal. Hence it is invertible and
we obtain the result. ut
Corollary 3. The map K.P/ ! K.P/ given by ŒM � 7! ŒM ]� is the identity. In
particular, for all � 2 }, ŒW�� D ŒS��.

Proof. By Theorem 2(ii) simple functors are self-dual, hence the result. ut

4.4 Polynomial bifunctors

We shall also need the category P Œ2� of strict polynomial bi-functors. The objects of
P Œ2� are functors B W V�V ! V such that for every V 2 V , the functors B.�; V / and
B.V; �/ are in P and their degrees are bounded with respect to V . Morphisms in P Œ2�

are natural transformations of functors. The following example will be of particular
interest to us.

Exmaple 1. Let M 2 P . We denote by M Œ2� the bifunctor:

M Œ2� W V � V ! V
.V; W / 7! M.V ˚W /

.f; g/ 7! M.f ˚ g/:

Mapping M to M Œ2� yields a functor: P ! P Œ2�.

If B 2 P Œ2� and .V; W / is a pair of vector spaces, then functoriality endows
B.V; W / with a polynomial GL.V / � GL.W /-action, which we denote by �B;V;W

(or simply by � if the context is clear):

�B;V;W W GL.V / �GL.W /! GL.B.V; W //:

Evaluation on a pair .V; W / of vector spaces yields a functor from P Œ2� to
Reppol.GL.V / �GL.W //.

A bifunctor B is homogeneous of bidegree .d; e/ if for all V 2 V , B.V; �/ (resp.
B.�; V /) is a homogeneous strict polynomial functor of degree d , (resp. of degree
e). The decomposition of strict polynomial functors into a finite direct sums of
homogeneous functors generalizes to bifunctors. Indeed, if B 2 P Œ2�, the vector
space B.V; W / is endowed with a polynomial action of GL.k/�GL.k/ defined by

.�; �/ �m D �B;V;W .�1V ; �1W /.m/;
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and pairs of linear maps .f; g/ induce GL.k/ � GL.k/-equivariant morphisms
B.f; g/. So for i; j � 0 we can use the .i; j / weight spaces with respect to the
action of GL.k/ �GL.k/ to define bifunctors Bi;j , namely

Bi;j .V; W / D fm 2 B.V; W / W .�; �/ �m D �i �j mg
and Bi;j .f; g/ is the restriction of B.f; g/ to the .i; j /-weight spaces. Functors
Bi;j are homogenous of bidegree .i; j / and P Œ2� splits as the direct sum of its full

subcategories P Œ2�
i;j of homogeneous bifunctors of bidegree .i; j /. If B 2 P Œ2�, we

denote by B�;j the direct sum

B�;j D
M

i�0

Bi;j : (7)

Note that we have also a duality for bifunctors

] W P Œ2� '�! P Œ2� op;

which sends B to B], with B].V; W / D B.V �; W �/�, and which respects the
bidegrees (the same argument as in the previous section for usual polynomial
functors works also in the bi-functor case).

The generalization of these ideas to the category of strict polynomial tri-
functors of finite degree P Œ3�, which contains the tri-functors M Œ3� W .U; V; W / 7!
M.U ˚ V ˚W /, and so on, is straightforward.

We conclude this section by introducing a construction of new functors in P from
old ones that will be used in the next section. Let M 2 P and consider the functor
M Œ2�.�; k/ 2 P . By (7) we have a decomposition

M Œ2�.�; k/ D
M

i�0

M
Œ2�
�;i .�; k/:

In other words, M
Œ2�
�;i .V; k/ is the subspace of weight i of M.V ˚ k/ acted on by

GL.k/ via the composition

GL.k/ D 1V �GL.k/ ,! GL.V ˚ k/
�M;V ˚k�����! GL.M.V ˚ k//:

Since evaluation on V ˚k as well as taking weight spaces are exact, the assignment
M 7! M

Œ2�
�;i .�; k/ defines an exact endo-functor on P . Hence it descends to an

operator on Grothendieck groups.

5 Categorification data

Having defined the notion of categorical g-action and the category P , we are now
ready to begin the task of defining a categorical g-action on P . The present section is
devoted to introducing the necessary data to construct the categorification (cf. items
(1)–(3) of Definition 2. The following section will be devoted to showing that
this data satisfies the required properties (cf. items (4)–(8) of Definition 2).
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5.1 The functors E and F

Define E; F W P ! P by

E.M/ D M
Œ2�
�;1.�; k/

F.M/ D M ˝ I

for M 2 P . These are exact functors (F is clearly exact; for the exactness of E see
the last paragraph of Section 4.4). We prove that E and F are bi-adjoint.

Proposition 3. The pair .F; E/ is an adjoint pair, i.e., we have an isomorphism,
natural with respect to M; N 2 P:

ˇ W HomP.F.M/; N / ' HomP.M; E.N //:

Proof. We shall use the category P Œ2� of strict polynomial bifunctors. There are
functors:

� W P � P ! P Œ2� ˝ W P � P ! P
� W P Œ2� ! P Œ2� W P ! P Œ2�

respectively given by

M � N.V; W / DM.V /˝N.W / M ˝N.V / DM.V /˝N.V /

�B.V / D B.V; V / M Œ2�.V; W / DM.V ˚W /:

We observe that �.M � N / D M ˝ N . Moreover, we know (cf. [FFSS, Proof of
Thm 1.7] or [T1, Lm 5.8]) that � and Œ2� are bi-adjoint.

Now we are ready to establish the existence of the adjunction isomorphism. We
have the following natural isomorphisms:

HomP.F.M/; N / D HomP.M ˝ I; N /

' HomP Œ2� .M � I; N Œ2�/

' HomP.M.�/; HomP.I.�/; N.� ˚ �///:
Here HomP.I.�/; N.� ˚ �// denotes the polynomial functor which assigns to
V 2 V the vector space HomP.I; N.V ˚ �//. By Yoneda’s Lemma [FS, Thm
2.10], for any F 2 P , HomP.I; F / ' F.k/ if F is of degree one, and zero
otherwise. In particular, HomP.I; N.V ˚ �// ' N.V ˚ k/1 D E.N /.V /.
Hence, HomP.I.�/; N.� ˚ �// ' E.N / and we conclude that there is a natural
isomorphism:

HomP.F.M/; N / ' HomP.M; E.N //: ut
We are now going to derive the adjunction .E; F/ from proposition 3 and a duality

argument. The following lemma is an easy check.
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Lemma 1. For all M 2 P , we have isomorphisms, natural with respect to M :

F.M/] ' F.M ]/ ; E.M/] ' E.M ]/:

Proof. We have an isomorphism:

F.M/] D .M ˝ I /] 'M ] ˝ I ] D F.M ]/ ;

and a chain of isomorphisms:

E.M/] D �

M
Œ2�
�;1.�; k/

�] ' .M
Œ2�
�;1/].�; k/

' .M Œ2� ]/�;1.�; k/

' .M ]/
Œ2�
�;1.�; k/ D E.M ]/:

In the chain of isomorphisms, the first isomorphism follows from the isomorphism
of vector spaces k_ ' k, the second follows from the fact that duality preserves
bidegrees, and the last from the fact that duality of vector spaces commutes with
direct sums.

Proposition 4. The pair .E; F/ is an adjoint pair, i.e., we have an isomorphism,
natural with respect to M; N 2 P:

˛ W HomP.E.M/; N / ' HomP.M; F.N //:

Proof. The adjunction isomorphism of proposition 4 is defined as the composite of
the natural isomorphisms:

HomP.E.M/; N / ' HomP.N ]; E.M/]/ ' HomP.N ]; E.M ]//

' HomP.F.N ]/; M ]/ ' HomP.F.N /]; M ]/ ' HomP.M; F.N //: ut

Remark 6. The unit and counits of the adjunctions appearing in Propositions 3,4
are implicit from the canonical isomorphisms. For an explicit description see [HY2].

5.2 The operators X and T

We first introduce the natural transformation X W E ! E. We assume that p ¤ 2.
For any V 2 V , let U.gl.V ˚ k// denote the enveloping algebra of gl.V ˚ k/, and
let XV 2 U.gl.V ˚ k// be defined as follows. Fix a basis V D Ln

iD1 kei ; this
choice induces a basis of V ˚ k. Let xi;j 2 gl.V ˚ k/ be the operator mapping ej

to ei and e` to zero for all ` ¤ j . Then define

XV D
n

X

iD1

xnC1;i xi;nC1 � n:
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The element XV does not depend on the choice of basis. (For a proof of this see
Lemma 3.27 in [HY]. Note also the similarity to constructions which appear in
[BS1, BS2]. We also remark that this is where the hypothesis that p ¤ 2 is used.)

The group GL.V /�GL.k/ � GL.V ˚ k/ acts on the Lie algebra gl.V ˚ k/ by
the adjoint action, hence on the algebra U.gl.V ˚ k/. By Lemma 4.22 in [HY] we
have:

Lemma 2. Let V 2 V . Then XV commutes with GL.V / �GL.k/, i.e.,

XV 2 U.gl.V ˚ k//GL.V /�GL.k/:

The universal enveloping algebra U.gl.V ˚ k// acts on M.V ˚ k/ via differen-
tiation:

d�M;V W U.gl.V ˚ k//! End.M.V ˚ k//:

Exmaple 2. If M D I is the identity functor of V , and f 2 gl.V ˚ k/, then
d�I;V ˚k.f / D f . More generally, if d � 2 and M D ˝d is the d -th tensor
product, then d�˝d ;V ˚k sends f 2 gl.V ˚ k/ onto the element

d
X

iD1

.1V ˚k/˝i�1 ˝ f ˝ .1V ˚k/˝d�i 2 End..V ˚ k/˝d /:

The element XV acts on the vector space M.V ˚ k/ via d�M;V , and we denote
by XM;V the induced k-linear map:

XM;V WM.V ˚ k/!M.V ˚ k/:

By Lemma 2, XM;V is GL.V /�GL.k/-equivariant. Thus it restricts to the subspaces
E.M/.V / of weight 1 under the action of f1V g � GL.k/. We denote the resulting
map also by XM;V :

XM;V W E.M/.V /! E.M/.V /:

Proposition 5. The linear maps XM;V W E.M/.V / ! E.M/.V / are natural with
respect to M and V . Hence they define a morphism of functors

X W E! E:

Proof. The action of U.gl.V ˚ k// on M.V ˚ k/ is natural with respect to M .
Hence the k-linear maps XM;V are natural with respect to M .

So it remains to check the naturality with respect to V 2 V . For this, it suffices
to check that for all M 2 P , and for all f 2 Hom.V; W /, diagram (D) below is
commutative.
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M.V ˚ k/
M.f ˚1k/

��

XV;M

��

M.W ˚ k/

XW;M

��
M.V ˚ k/

M.f ˚1k/
�� M.W ˚ k/:

.D/

We observe that if diagram (D) commutes for a given strict polynomial
functor M , then by naturality with respect to M , it also commutes for direct
sums M ˚n, for n � 1, for the subfunctors N � M and the quotients M � N .
But as we already explained in Remark 1, every functor M 2 P is a subquotient of
a finite direct sum of copies of the tensor product functors ˝d , for d � 0. Thus, to
prove naturality with respect to V , it suffices to check that diagram (D) commutes
for M D ˝d for all d � 0.

In the case of the tensor products ˝d the action of U.gl.V ˚ k/ is explicitly
given in Example 2. Using this expression, a straightforward computation shows
that diagram (D) is commutative in this case. This finishes the proof. ut

We next introduce a natural transformation T W E2 ! E2. Let M 2 P and
V 2 V . By definition,

E2.M/ DM
Œ3�
�;1;1.�; k; k/:

Consider the map 1V ˚� W V ˚k˚k ! V ˚k˚k given by: .v; a; b/ 7! .v; b; a/.
Applying M Œ3� to this map we obtain a morphism:

TM;V WM Œ3�
�;1;1.V; k; k/!M

Œ3�
�;1;1.V; k; k/:

Lemma 3. The linear maps TM;V W E2.M/.V / ! E2.M/.V / are natural with
respect to M and V . Hence they define a morphism of functors

T W E2 ! E2:

Proof. Clearly the maps TM;V are natural with respect to M . Let f W V ! W

be a linear operator of vector spaces. We need to show that the following diagram
commutes:

E2 (M)(f)

E2 (M)(f)

TM,V

E2 (M )(W )

E2 (M )(W )E2 (M )(V )

E2 (M )(V )

TM,W

:

On the one hand, E2.M/.f / is the restriction of M Œ3�.f ˚ 1k ˚ 1k/ to the tri-
degrees .�; 1; 1/. On the other hand, TM;V is the restriction of M Œ3�.1V ˚ �/ to the
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tri-degrees .�; 1; 1/. Since f ˚ 1k ˚ 1k clearly commutes with 1V ˚ � , the above
diagram commutes. ut

5.3 The weight decomposition of P

As part of the data of categorical g-action, we need to introduce a decomposition
of P indexed by the weight lattice P of g. In this section we define such a
decomposition via the blocks of P .

We begin by recalling some combinatorial notions. For a nonnegative integer d ,
let }d denote the set of partitions of d . A partition � is a p-core if there exist no
� � � such that the skew-partition �=� is a rim p-hook. By definition, if p D 0,
then all partitions are p-cores. Given a partition �, we denote by e� the p-core
obtained by successively removing all rim p-hooks. For instance, the 3-core of
.6; 5; 2/ is 3; 1/. The p-weight of � is by definition the number .j�j � je�j/=p. The
notation j�j denotes the size of the partition �. Define an equivalence relation 	 on
}d by decreeing � 	 � if e� D e�.

Let �; � 2 }d . As a consequence of (11.6) in [Kl] we have

e� D e�” wt .�/ D wt .�/: (8)

(See (1) for the definition of wt .�/.) Therefore we index the set of equivalence
classes }d = 	 by weights in P , i.e., a weight ! 2 P corresponds to a subset
(possibly empty) of }d . For a more explicit description of the bijection which
associates to a weight of Fock space a p-core partition; see Section 2 of [LM].

Let IrrPd denote the set of simple objects in Pd up to isomorphism. This set is
naturally identified with }d . We say two simple objects in Pd are adjacent if they
occur as composition factors of some indecomposable object in Pd . Consider the
equivalence relation 
 on IrrPd generated by adjacency. Via the identification of
IrrPd with }d we obtain an equivalence relation
 on }d .

Theorem 3 (Theorem 2.12, [D]). The equivalence relations 	 and 
 on }d are
the same.

Given an equivalence class � 2 IrrPd = 
, the corresponding block P� � Pd

is the subcategory of objects whose composition factors belong to �. The block
decomposition of P is given by P D LP� , where � ranges over all classes in
IrrPd = 
 and d � 0.

By the above theorem and Equation (8), we can label the blocks of Pd by weights
! 2 P . Moreover, by Equation (1), wt .�/ determines the size of �. Therefore the
block decomposition of P can be expressed as

P D
M

!2P

P!:
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The p-weight of a block P! is the p-weight of �, where ! D wt .�/. This is well-
defined since if wt .�/ D wt .�/ then j�j D j�j and e� D e�, and hence the p-weights
of � and � agree.

6 Categorification of Fock space

In the previous section we defined all the data necessary to formulate the action g
on P . In this section we prove the main theorem:

Theorem 4. Suppose p ¤ 2. The category P along with the data of adjoint
functors E and F, operators X 2 End.E/ and T 2 End.E2/, and the weight
decomposition P D L

!2P P! defines a categorical g-action (in the sense of
Definition 2) which categorifies the Fock space representation of g.

Remark 7. The theorem is still true for p D 2. We only include this hypothesis
for ease of exposition (one can prove the p D 2 case using hyperalgebras instead of
enveloping algebras).

To prove this theorem we must show that the data satisfies properties (4)–(6), (8)
of Definition 2, and that the resulting representation of g on K.P/ is isomorphic to
the Fock space representation (property (7) already appears as Proposition 3).

6.1 The functors Ei

In this section we prove property (4) of Definition 2. For all a 2 k, and M 2 P we
can form a nested collection of subspaces of E.M/, natural with respect to M :

0 � Ea;1.M/ � Ea;2.M/ � � � � � Ea;n.M/ � � � � � E.M/;

where Ea;n.M/ is the kernel of .XM � a/n W E.M/! E.M/. We define

Ea.M/ D
[

n�0

Ea;n.M/:

Since the inclusions Ea;n.M/ � Ea;nC1.M/ are natural with respect to M , the
assignment M 7! Ea.M/ defines a sub-endofunctor of E.

Lemma 4. The endofunctor E W P ! P splits as a direct sum of its subfunctors Ea:

E D
M

a2k

Ea:
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Moreover, for all M 2 P there exists an integer N such that for all n � N ,
Ea.M/ D Ea;n.M/.

Proof. The decomposition as a direct summand of generalized eigenspaces is
standard linear algebra. The finiteness of the filtration .Ea;n.M//n�0 follows from
Corollary 1. ut
Proposition 6. Let � 2 } be a partition of d and set W D W�.

(i) The polynomial functor E.W / carries a Weyl filtration:

0 D E.W /0 � E.W /1 � � � � � E.W /N D E.W /:

The composition factors which occur in this filtration are isomorphic to W� for
all � such that � �! � and each such factor occurs exactly once.

(ii) The operator XW W E.W / ! E.W / preserves the filtration of E.W /, and
hence it acts on the associated graded object.

(iii) Given 0 � i � N � 1, set j 2 Z=pZ and � 2 } such that

E.W /iC1=E.W /i ' W�, and �
j�! �. Then XW acts on E.W /iC1=E.W /i by

multiplication by j .

In particular Ea D 0 for a 62 Z=pZ, and hence

E D
M

i2Z=pZ

Ei :

Proof. Theorem II.4.11 of [ABW] yields a filtration of the bifunctor S
Œ2�

� with
associated graded object

L

˛�� S˛ � S�=˛ . Here, S�=˛ 2 Pj�j�j˛j refers to the Schur
functor associated to the skew partition �=˛ and S˛ � S�=˛ is the homogeneous
bifunctor of bidegree .j˛j; j�j � j˛j/, defined by .V; U / 7! S˛.V / ˝ S�=˛.U /.

Thus .S
Œ2�

� /�;1 has a filtration whose graded object is the sum of the S˛ � S�=˛ with
j�j D j˛j C 1. In this case, S�=˛ is the identity functor of V by definition. Thus
taking U D k, we get a filtration of E.S�/ whose graded object is

L

S˛ , for all
˛ ! �. The first part of the proposition follows by duality ]. (For an alternative
proof based on [Mar] and [GW, Thm. 8.1.1], see [HY, Lemma A.3].)

For any V 2 V , by Lemma 4.22 in [HY] the map XW;V preserves the filtration of
GL.V /-modules:

0 D E.W /0.V / � E.W /1.V / � � � � � E.W /N .V / D E.W /.V /:

Indeed, since Weyl modules are highest weight modules, CV ˚k acts on

W.V ˚ k/

by scalar, and CV acts on the factors of the filtration by scalar as well. Therefore
XW preserves the filtration of E.W /, proving the second part of the proposition.
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Finally, let � and j be chosen as in the third part of the proposition. By
Lemma 5.7(1) in [HY], for any V 2 V , XW;V acts by j on E.W /iC1.V /=E.W /i .V /.
Therefore XW acts on E.W /iC1=E.W /i also by j . ut

By the adjunction of E and F and the Yoneda Lemma, the operator X 2 End.E/

induces an operator Xı 2 End.F/. The generalized eigenspaces of this operator
produce subfunctors Fa of F, which, by general nonsense, are adjoint to Ea.
Therefore we have decompositions

E D
M

i2Z=pZ

Ei ; F D
M

i2Z=pZ

Fi :

6.2 The action of g on K.P/

In this section we prove property (5) of Definition 2. The functors Ei ; Fi , being
exact functors, induce linear operators

ŒEi �; ŒFi � W K.P/! K.P/

for all i 2 Z=pZ. Define a map ~ W g ! End.K.P// by ei 7! ŒEi � and fi 7! ŒFi �.
Let  W K.P/! B be given by .ŒW��/ D v�.

Proposition 7. The map ~ is a representation of g and  is an isomorphism of
g-modules.

Proof. By Corollary 2  is a linear isomorphism. By Proposition 6,

ŒEi �.ŒW��/ D
X

�
i

�� �

ŒW��:

Therefore  intertwines ei and ŒEi �, i.e.,  ı ŒEi � D ei ı  . Consider the bilinear
form on K.P/ given by

hM; N i D
X

i�0

.�1/i dim Exti .M; N /:

By adjunction ŒEi � and ŒFi � are adjoint operators with respect to h�; �i, and by
Theorem 2(iv),

˝

W�; S�

˛ D ı��. Therefore

ŒFi �.ŒS��/ D
X

�
i

�� �

ŒS��:
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Hence by Corollary 3,  also intertwines the operators fi and ŒFi �. Both claims of
the proposition immediately follow. ut

6.3 Chevalley functors and weight decomposition of P

In this section we prove property (6) of Definition 2.

Proposition 8. Let ! 2 P . For every i 2 Z=pZ, the functors Ei ; Fi W P ! P
restrict to Ei W P! ! P!C˛i and Fi W P! ! P!�˛i :

Proof. We prove that Ei .P!/ � P!C˛i (the proof for Fi being entirely analogous).
Since Ei is exact it suffices to prove that if L� 2 P! , then Ei .L�/ 2 P!C˛i . Then, by
the same idea as used in the proof of Lemma 2, it suffices to show that if W� 2 P! ,
then Ei .W�/ 2 P!C˛i . By Proposition 6, Ei .W�/ has a Weyl filtration with factors

all of the form W�, where μ
i

λ. But then � 2 ! C ˛i , so W� 2 P!C˛i .
Therefore Ei .W�/ 2 P!C˛i . ut

6.4 The degenerate affine Hecke algebra action on En

In this section we prove property (8) of Definition 2.

Proposition 9. The assignments

yi 7! En�i XEi�1 for 1 � i � n;

�i 7! En�i�1T Ei�1 for 1 � i � n � 1

define an action of DHn on End.En/.

Proof. By definition, En.M/.V / is the subspace of M.V ˚ kn/ formed by the
vectors of weight $n D .1; 1; : : : ; 1/ for the action of GL.k/�n. Here GL.k/�n

acts via the composition:

GL.k/�n D 1V �GL.k/�n � GL.V ˚ kn/
�M;V ˚kn�����! GL.M.V ˚ kn//:

The map .�n�i /M;V is equal to the restriction of M.ti / to En.M/.V /, where
ti W V˚kn ! V˚kn maps .v; x1; : : : ; xn/ to .v; x1; : : : ; xiC1; xi ; : : : ; xn/. To check
that the �i define an action of ZSn on En, we need to check that the .�i /M;V define
an action of the symmetric group on En.M/.V /. By Remark 1 it suffices to check
this for M D ˝d , and this is a straightforward computation. Moreover, it is also
straightforward from the definition that the yi commute with each other. Thus they
define an action of the polynomial algebra ZŒy1; : : : ; yn� on En. Similarly, �i and yj

commute with each other if ji � j j � 1.
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So, to obtain the action of the Hecke algebra on End.En/, it remains to show that
�i yi � yiC1�i D 1 (see Remark 2). This will be proved by showing the following
identity in End.E2/:

T ı EX �XE ı T D 1: (9)

To check (9), it suffices to check that for all M 2 P and all V 2 V ,

TM;V ı E.XM /V �XE.M/ ı TM;V D 1E2.M/.V / (10)

If (10) holds for M 2 P , then by naturality with respect to M , it also holds for
direct sums M ˚n, for subfunctors N � M , and quotients M � N . By Remark 1,
every functor M 2 P is a subquotient of a finite direct sum of copies of the tensor
product functors ˝d , for d � 0. Thus it suffices to check that Equation (10) holds
for M D ˝d for all d � 0.

Let M D ˝d and let V 2 V . Choose a basis .e1; : : : ; en/ of V . We naturally
extend this to a basis .e1; : : : ; enC2/ of V ˚ k˚ k. By definition, E2.˝d /.V / is the
subspace of .V ˚k˚k/˝d spanned by the vectors of the form ei1˝� � �˝eid , where
exactly one of the eik equals enC1 and exactly one of the eik equals enC2. Let us fix
a vector � D ei1 ˝ � � � ˝ eid with enC1 in a-th position and enC2 in b-th position.
We will show that Equation (10) holds for � .

First, note that TM;V .�/ D ei.ab/.1/
˝ � � � ˝ ei.ab/.d/

, where .ab/ denotes the
transposition of Sd which exchanges a and b. Then

.XE/M;V ı TM;V .�/ D
0

@

n
X

j D1

xnC1;j xj;nC1 � n

1

A :.ei.ab/.1/
˝ � � � ˝ ei.ab/.d/

/

D
X

`¤a;b

ei.`ba/.1/
˝ � � � ˝ ei.`ba/.d/

:

Now we compute the other term on the left hand side of (10). Then

TM;V ı .EX/M;V .�/ D TM;V ı
0

@

nC1
X

j D1

xnC2;j xj;nC2 � .nC 1/

1

A .�/

D
X

`¤a;b

ei.`ba/.1/
˝ � � � ˝ ei.`ba/.d/

C �:

Therefore (10) holds.

This completes the proof of Theorem 4. ut
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7 Remarks

We conclude the paper by mentioning briefly some consequences of the categorical
g-action on P .

7.1 Derived equivalences

For this discussion we focus on the case p D char.k/ > 0. The main motivation
for Chuang and Rouquier’s original work on categorification was to prove Broué’s
abelian defect conjecture for the symmetric groups, which can be reduced to
showing that any two blocks of symmetric groups of the same p-weight are derived
equivalent [CR]. Their technique applies to the setting of sl2-categorifications. Since
for every simple root ˛ of g there is a corresponding root subalgebra of g isomorphic
to sl2, we have in fact defined a family of sl2-categorifications on P . To each of these
categorifications we can apply the Chuang–Rouqueir machinery.

Let W aff D Sp Ë Q denote the affine Weyl group associated to g, acting on
P in the usual way. By [Kac, Section 12], any weight ! appearing in the weight
decomposition of Fock space is of the form �.!0/� `ı, where � 2 W aff and ` � 0.
By Proposition 11.1.5 in [Kl], ` is exactly the p-weight of the corresponding block.
Therefore the weights of any two blocks are conjugate by some element of affine
Weyl group if and only if they have the same p-weight. By Theorem 6.4 in [CR] we
obtain

Theorem 5. If two blocks of P have the same p-weight, then they are derived
equivalent.

7.2 Misra–Miwa crystal

We can also apply the theory of categorical g-action to crystal basis theory. The
crystal structure is a combinatorial structure associated to integrable representations
of Kac–Moody algebras, introduced originally by Kashiwara via the theory of
quantum groups. From Kashiwara’s theory one can construct a canonical basis for
the corresponding representations, which agrees with Lusztig’s canonical basis of
geometric origins.

Loosely speaking, the crystal structure of an integrable representation of some
Kac–Moody algebra consists of a set B in bijection with a basis of the representa-
tion, along with Kashiwara operatorseei ; ef i on B indexed by the simple roots of the
Kac–Moody algebra, along with further data. For a precise definition see [Kas].

From the categorical g-action on P we can recover the crystal structure of Fock
space as follows. For the set B we take IrrP � K.P/, the set of equivalence classes
of simple objects. We construct Kashiwara operators on IrrP by composing the
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Chevalley functors with the socle functor:

eei ; ef i D ŒŒsocle ıEi �; Œsocle ıFi � W IrrP ! IrrP :

The other data defining a crystal structure can also be naturally obtained. In
Section 5.3 of [HY] it is shown that this data agrees with the crystal of B originally
discovered by Misra and Miwa [MM]. In particular, we can construct the crystal
graph of Fock space by taking the Z=pZ-colored directed graph whose vertices are

IrrP and edges are μ
i

λ if ef i .�/ D �. This graph is equal to the Misra–Miwa
crystal of Fock space.
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