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Abstract

We categorify various Fock space representations via the category of polynomial functors. In a prequel,
we used polynomial functors to categorify the Fock space representations of type A affine Lie algebras.
In the current work we continue the study of polynomial functors from the point of view of higher
representation theory. First, we categorify the Fock space representation of the Heisenberg algebra on the
category of polynomial functors. Second, we construct commuting actions of the affine Lie algebra and the
level p action of the Heisenberg algebra on the (derived) category of polynomial functors over a field of
characteristic p > 0, thus weakly categorifying the Fock space representation of glp . Moreover, we study
the relationship between these categorifications and Schur–Weyl duality. The duality is formulated as a
functor from the category of polynomial functors to the category of linear species. The category of linear
species is known to carry actions of the Kac–Moody algebra and the Heisenberg algebra. We prove that
Schur–Weyl duality is a morphism of these categorification structures.
c⃝ 2013 Elsevier Inc. All rights reserved.
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1. Introduction

It is oftentimes advantageous to study the symmetric group by considering properties of the
family of all symmetric groups {Sn, n ≥ 0}. This viewpoint already appears in the classical
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work of Zelevinsky, where the representation theory of the symmetric groups is developed from
first principles via the natural Hopf algebra structure on the direct sum of their representation
rings [23].

Sometimes completely new and surprising symmetries manifest from these considerations.
The direct sum of representation rings of symmetric groups is again an example of such a
phenomenon. Here a Kac–Moody algebra g appears, which naturally acts on this algebra via
the so-called i-induction and i-restriction.

In recent years, focus has shifted away from the representation rings to the categories
themselves. For instance, instead of looking at the representation rings of the symmetric groups,
we consider the category

R =

d≥0

Rep(kSd),

where Rep(kSd) denotes the category of finite-dimensional representations of Sd over a field k.
The aim is then to describe an action of g on this category. Making this notion precise is subtle,
and the representation theory of seemingly disparate objects, such as affine Hecke algebras, must
be invoked.

In fact, the category R has served as a motivating example for much of this theory. In their
landmark work, Chuang and Rouquier defined a notion of sl2-categorification, and endowing
R with such structure, proved Broue’s abelian defect conjecture for the symmetric groups [4].
This idea was later generalized to Kac–Moody algebra of arbitrary type in the works of
Khovanov–Lauda [14,16,15] and Rouquier [21].

We thus see that the category R is situated at the center of important recent developments
in categorification and representation theory. Since the representations of symmetric groups
and general linear groups are intimately related, it is natural to expect that an analogue of R
for the general linear groups will also be closely connected to many categorification theories.
This analogue, namely the category P of strict polynomial functors, is our central object of
study.

In a prequel to this work we showed that P is naturally endowed with a g-action (in the sense
of Chuang and Rouquier) categorifying the Fock space representation of g [10]. In the current
work we continue the study of P from the perspective of higher representation theory. One of
the main new ingredients that we emphasize is that Schur–Weyl duality is a functor S : P → R
which preserves various categorification structures.

The classical story that we study begins with the algebra B of symmetric functions in
infinitely many variables. There are several interesting algebras acting on B. First of all, B is the
natural carrier for the Fock space representation of the Heisenberg algebra H . Secondly, fixing
a nonnegative integer m, B carries also the Fock space representation of the affine Kac–Moody
algebra g, where

g =


sl∞ if m = 0slm if m > 0.

When m = 0 this is an irreducible representation, but for m > 0 this is no longer the case. In the
case m > 0, there is an action of Heisenberg algebra on B which commutes with the action of
g′ = [g, g]. We term it the “twisted” Heisenberg algebra and denote H (1). Then in this case B is
an irreducible U (g′)⊗ H (1)-module. In fact, the U (g′)⊗ H (1)-action can be viewed as an action
of U (glm) on B.
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It is well known that P categorifies the algebra B of symmetric functions, and, as mentioned
above, we have shown in previous work that P categorifies the action of g on B. Our aim in
the current work is to show P also categorifies the other representations on B mentioned in the
previous paragraph. We show that P categorifies the H action on B in the sense of Khovanov,
and that the derived category of P weakly categorifies the H (1) action on B. We also prove that
the actions of H (1) and g′ on Db(P) commute, thus categorifying the U (g′) ⊗ H (1) action on
B, i.e. the Fock space representation of glp. Moreover, we show that the Schur–Weyl duality
functor S : P → R is naturally compatible with all the categorification structures that we can
endow on both categories. That is, S can be enriched to a morphism of both g-categorifications
and H -categorifications. Let us now describe contents of the paper in more detail.

In Section 2 we review the classical picture, and, in particular, the representations that we
categorify in this work. We recall a less familiar presentation of the Heisenberg algebra from
Khovanov’s work.

Our main object of study, the category P , is introduced in Section 3. From this section on
we fix an infinite field k of characteristic p. We let Vk denote the category of finite dimensional
vector spaces over k. Then P is a functor category whose objects are polynomial endofunctors
on Vk which satisfy finiteness conditions.

When p = 0 the category P already appears in MacDonald’s book [20]. In positive charac-
teristic, and in greater generality, P is studied in the works of Friedlander and Suslin, where they
use this category to prove the finite generation of the cohomology of finite group schemes [7].
Polynomial functors have subsequently found many applications in algebraic topology (see p. 2
of [10] for a brief discussion and references on these applications).

In Section 4 we introduce the category R. Instead of using as a model for R the represen-
tations of symmetric groups, it is more natural for us to define R using Joyal’s theory of linear
species. Thus, objects in R are functors from the groupoid of finite sets to Vk which satisfy some
finiteness conditions. (Some authors refer to these as “vector species”. A modern account of the
theory of linear species appears in [1].) The category R is naturally equivalent to the direct sum
of representations of symmetric groups introduced above, but is more amenable to the higher
structures we are interested in.

Schur–Weyl duality enters the picture in Section 5, where we define a tensor functor S :
P → R. We will see throughout the course of this work that S is compatible with all the higher
structures inherent to both categories.

Our study of categorifications begins in Section 6, where we consider the theory of g-
categorifications. First we review Rouquier’s definition of g-categorification and morphisms of
such structures [21]. The definition of g-categorification consists of functors on some category
C that descend to an action of g on the Grothendieck group, and isomorphisms between these
functors and satisfying certain conditions. Subsequently, a morphism of g-categorifications has
to preserve all these higher structures in a suitable sense.

After this review of Rouquier’s theory, we briefly recall the g-categorification on P , which
categorifies the Fock space representation of g. This result appears in the prequel to this
work [10]. Next we recall the g-categorification on R which categorifies the basic representation
of g. Here everything is stated in the language of linear species, although it is equivalent to the
well-known formulation in terms of representations of symmetric groups. Finally, we conclude
Section 6 with the first new theorem in this work (Theorem 6.24). This theorem states that
S : P → R is a morphism of g-categorifications which categorifies a projection from Fock
space onto the basic representation of g. In other words, S not only induces an operator on the



J. Hong, O. Yacobi / Advances in Mathematics 237 (2013) 360–403 363

Grothendieck groups which is g-equivariant, it also preserves all the higher structures on the
categories themselves.

In Section 7 we move on to consider H -categorifications. First we review Khovanov’s
category H [13]. We opt to define the category algebraically, although in Khovanov’s original
work it is defined graphically. In characteristic zero Khovanov shows that the Grothendieck
group of H contains HZ, an integral form of H . (Licata and Savage defined a closely related
q-deformation of Khovanov’s category in [19]. Moreover, Cautis and Licata introduced a
categorification of more general Heisenberg algebras related to finite subgroups of SL(2,C) [3].)

Using this category, one can define a notion of a “strong” H -action on linear categories
defined over characteristic zero. We introduce also a notion of a morphism of H -
categorifications, analogous to Rouquier’s definition of morphism of g-categorifications.
Morphisms of H -categorifications categorify morphisms of H -modules (Proposition 7.6). In
positive characteristic, there is yet no notion of “strong” H -categorification, and so in this case
the defining relations of HZ define a notion of weak H -categorification.

Having reviewed the general theory of Heisenberg categorification, we prove our second
main result (Propositions 7.7 and 7.8), which is that H naturally acts on P . More precisely,
we construct a natural functor H → EndL(P), where EndL(P) is the category of endo-functors
on P admitting left adjoint functors. When p = 0 we show that this gives an H -categorification
of the Fock space representation (Theorem 7.10). When p > 0 we get a weak H -categorification
of the Fock space representation (Theorem 7.9).

Next, in Section 7.3, we briefly recall Khovanov’s H -categorification of the Fock space
representation. Again, we state this result in the language of linear species which is more suitable
for our purposes. We then prove that when p = 0 the Schur–Weyl duality functor S : P → R is
an equivalence of H -categorifications (Theorem 7.14).

The virtue of having a weak H -categorification when p > 0 is that it leads us to categorify
the twisted H (1)-action on B, which is taken up in Section 8. Recall that when p > 0, there
is a (level p) Heisenberg algebra acting on B which commutes with the g′-action. Using the
Frobenius twist functor on P we categorify the endomorphisms on B commuting with the g′-
action. More precisely, we prove Theorems 8.1 and 8.3, which state that the endofunctors on P
given by tensoring by Frobenius twists of polynomial functors (and their adjoints) are morphisms
of g′-categorifications on P . These endomorphisms of the g′-categorification on P categorify the
H (1)-action on B, but, in general, the adjoint functors are not exact. This forces us to move to the
bounded derived category Db(P). In Theorem 8.9 we describe a U (g′)⊗H (1)-action on Db(P),
which categorifies the irreducible U (g′)⊗ H (1)-action on B. We note in Remark 8.10 that this is
an instance of glp-categorification.

In the Appendix we collect some technical results which are necessary for the main part of
the paper. In particular we prove Proposition A.9 which states that an adjoint of a morphism of
g-categorifications (suitably enriched) is also a morphism of g-categorifications.

2. The classical picture

We begin by reviewing various structures related to the algebra of symmetric functions.

2.1. The algebra B

Let Sn denote the symmetric group on n letters. Sn acts on the polynomial algebra
Z[x1, . . . , xn] by permuting variables, and we denote by Bn = Z[x1, . . . , xn]

Sn the polynomials
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invariant under this action. There is a natural projection Bn � Bn−1 given by setting the last
variable to zero. Consequently, the rings Bn form an inverse system; let BZ denote the subspace
of finite degree elements in the inverse limit lim

←−
Bn . This is the algebra of symmetric functions

in infinitely many variables {x1, x2, . . .}. Let B = BZ⊗Z C denote the (bosonic) Fock space.
The algebra BZ has many well-known bases. Perhaps the nicest is the basis of Schur functions

(see e.g. [20]). Let ℘ denote the set of all partitions, and for λ ∈ ℘ let sλ ∈ BZ denote the
corresponding Schur function. These form a Z-basis of the algebra of symmetric functions:

BZ =

λ∈℘

Zsλ.

2.2. The Heisenberg action on B

Let (·, ·) be the inner product on B defined by declaring the Schur functions to be orthonormal:
(sλ, sµ) = δλ,µ. Any b ∈ B defines an operator on B via multiplication which we continue to
denote by b : B → B. Let b∗ : B → B denote the adjoint operator with respect to the inner
product.

Definition 2.1. The Heisenberg algebra H is the subalgebra of End(B) generated by b, b∗ for
all b ∈ B. The natural representation of H on B is the Fock space representation of H .

The Fock space representation of H is irreducible, and, up to isomorphism, it is the unique
irreducible (level 1) representation of H (cf. [12,18]).

The definition of H above is redundant, in the sense that of course we do not need to take
all b ∈ B to define H . It is enough to take some algebraically independent generating set,
and different choices of such sets lead to different presentations of H . This point will become
important later when we discuss categorifications of H -modules. Here are some examples.

Example 2.2. 1. Let pr be the r th power symmetric function. Then the operators pr and p∗r on
B satisfy the following relations

pr ps = ps pr

p∗r p∗s = p∗s p∗r
p∗r ps = ps p∗r + sδr,s1.

This leads to the usual presentation of the Heisenberg algebra H . In other words, we can take
as a definition for H to be the unital algebra generated by symbols pr and p∗r subject to the
above relations.

2. Let er be the r th elementary symmetric function, and hr the r th complete symmetric function.
Then operators er and h∗r on B satisfy the following relations

er es = eser

h∗r h∗s = h∗s h∗r
h∗r es = esh∗r + es−1h∗r−1.

This gives another presentation of H .

Definition 2.3. Let HZ denote the unital ring over Z with generators er , h∗r (as symbols), r ≥ 1
subject to the relations as in part two of the above example. The ring HZ is an integral form of
H , i.e. HZ⊗Z C ∼= H (see e.g. [13]). We refer to the action of HZ on BZ as the Fock space
representation of HZ.
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2.3. More symmetries on B

Fix an integer m ≥ 0. Let g denote the following complex Kac–Moody algebra:

g =


sl∞ if m = 0slm if m > 0.

For the precise relations defining g see [12]. The Lie algebra g has standard Chevalley generators
{ei , fi }i∈Z/mZ.

Set hi = [ei , fi ]. The Cartan subalgebra of g is spanned by the hi along with an element d .
Let {Λi : i ∈ Z/mZ}∪ {δ} be the dual weights. We let Q denote the root lattice and P the weight
lattice of g. Let V (Λ) be the irreducible integrable g-module of highest weight Λ ∈ P (so Λ is
necessarily dominant integral). In particular, the basic representation is V (Λ0). Let g′ = [g, g]
be the derived algebra of g.

Let us review some combinatorial notions related to Young diagrams. Firstly, we identify
partitions with their Young diagram (using English notation). For example the partition (4, 4,
2, 1) corresponds to the diagram

The content of a box in position (k, l) is the integer l − k ∈ Z/mZ. Given µ, λ ∈ ℘, we
write µ // λ if λ can be obtained from µ by adding some box. If the arrow is labeled i
then λ is obtained from µ by adding a box of content i (an i-box, for short). For instance, if

m = 3, µ = (2) and λ = (2, 1) then µ 2 // λ , because in this case −1 ≡ 2 mod 3. An i-box
of λ is addable (resp. removable) if it can be added to (resp. removed from) λ to obtain another
partition.

Of central importance to us is the Fock space representation of g on B (or BZ). The action of g

on B is given by the following formulas: ei .sλ =


sµ, the sum over all µ such that µ i // λ ,

and fi · sλ =


sµ, the sum over all µ such that λ
i // µ . Moreover, d acts on sλ by m0(λ),

where m0(λ) is the number of boxes of content zero in λ. These equations define an integral
representation of g (see e.g. [18,17]).

The basic representation V (Λ0) is isomorphic to U (g) · 1 ⊂ B, i.e. the g-submodule of B
generated by the unit. We identify V (Λ0) as a submodule of B in this manner.

The Fock space representation of g is semisimple, and the basic representation occurs with
multiplicity one in B. Hence there is a natural projection onto V (Λ0), π : B � V (Λ0), which
we term the standard projection.

When m = 0, V (Λ0) = B, but when m > 0 this is no longer the case. Indeed suppose m > 0.
For b ∈ B, let b(1) ∈ B be defined by b(1)(x1, x2, . . .) = b(xm

1 , xm
2 , . . .). We refer to b(1) as the

twist of b. Let H (1)
⊂ End(B) be the subalgebra generated by b(1), (b(1))∗ for all b ∈ B. We

refer to this as the “twisted” Heisenberg algebra. The following lemma is well-known, and can
be found e.g. in Section 2.2.8 of [18].

Lemma 2.4. 1. As algebras, H (1) ∼= H.
2. The H (1) action on B commutes with the g′ action on B.
3. As a U (g′)⊗ H (1)-module B is irreducible, moreover Endg′(B) ≃ H (1).
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Note that as operators on B,U (g) does not commute with H (1) since d does not commute
with H (1) (in particular d(H (1)

· 1) ⊂ B is nonzero).

Remark 2.5. The action of U (g′) ⊗ H (1) on B is equivalent to the action of U (gl
′

n) on B,
where gl

′

n is the derived algebra of gln (i.e. gl
′

n = gln ⊗ C[t, t−1
] ⊕ Cc). For our purposes it

is more natural to use the tensor product realization since we categorify these commuting actions
separately.

To summarize, we have introduced the algebra B, and considered the following structures on
it: the (irreducible) H -action on B, the g-action on B, and the (irreducible) U (g′)⊗ H (1)-action
on B for m > 0. One of our main goals is to show that the category P of polynomial functors
(which we introduce below) naturally categorifies all this structure when m = char(k) is the
characteristic of some field k.

3. Strict polynomial functors

In this section we define the category P and recall some of its basic features. Our basic
reference is [7]; see also [10] for a more concise recollection of the category P and its properties
that we utilize.

For the remainder of the paper, fix an infinite field k of characteristic p ≥ 0. The characteristic
p plays the role of the fixed nonnegative integer m of the previous section. So for example, from
now on anytime we refer to the Kac–Moody algebra g, it is either sl∞ or slp depending on
whether p = 0 or p > 0.

For a k-linear abelian or triangulated category C, let K0(C) denote the Grothendieck group of
C, and let K (C) denote the complexification of K0(C). If A ∈ C we let [A] denote its image in
K0(C). Similarly, for an exact functor F : C → C′ we let [F] : K0(C) → K0(C′) denote the
induced operator on the Grothendieck groups. Slightly abusing notation, the complexification of
[F] is also denoted by [F].

Let Vk denote the category of finite dimensional vector spaces over k. For V,W ∈ Vk ,
polynomial maps from V to W are by definition elements of S(V ∗)⊗W , where S(V ∗) denotes the
symmetric algebra of the linear dual of V . Elements of Sd(V ∗)⊗W are said to be homogeneous
of degree d .

3.1. The category P

The objects of the category P are strict polynomial functors of finite degree, i.e. functors
M : Vk → Vk that satisfy the following two properties: for any V,W ∈ Vk , the map of vector
spaces

Homk(V,W )→ Homk(M(V ),M(W ))

is polynomial, and the degree of the map Endk(V ) → Endk(M(V )) is uniformly bounded for
any V ∈ Vk . The morphisms in P are natural transformations of functors. For M ∈ P we denote
by 1M ∈ HomP (M,M) the identity natural transformation. P is a k-linear abelian category.

Let I ∈ P be the identity functor from Vk to Vk and let k ∈ P denote the constant functor
with value k. Tensor products in Vk define a tensor structure ⊗ on P , with unit k.

The d-fold tensor product, ⊗d , is an example of a polynomial functor. Similarly, the exterior
and symmetric powers, Λd and Sd , are also polynomial functors.

The dth divided power, Γ d , is a polynomial functor that plays an important role. It is defined
on V ∈ Vk by Γ d(V ) = (⊗d V )Sd , the Sd -invariants in ⊗d V . When p = 0 then Γ d ∼= Sd ,
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but in positive characteristic this is no longer the case. The reason is that, in the case of positive
characteristic, Γ d(V ) is not necessarily isomorphic to Sd(V ) as a representation of GL(V ).
The first example of this is the case when p = 2 and V = k2. One can check directly that
Gamma2(V ) � S2(V ), as representations of GL(V ).

For W ∈ Vk we also define Γ W,d
∈ P by Γ W,d(V ) = Γ d(Hom(W, V )). Similarly, SW,d is

given by SW,d(V ) = Sd(Hom(W, V )).
Finally, when p > 0 we have the Frobenius twist functor (·)(1) ∈ P which maps V ∈ Vk to

V (1), the Frobenius twist of V . (Recall that V (1)
= k⊗φ V , where φ : k → k maps z → z p.)

Let M ∈ P and V ∈ Vk . By functoriality, evaluation on V yields a functor from P to
Pol(GL(V )), the category of polynomial representations of GL(V ).

The degree of a functor M ∈ P is the upper bound of the degrees of the polynomials
Endk(V ) → Endk(M(V )) for V ∈ Vk . A functor M ∈ P is homogeneous of degree d if all
the polynomials Endk(V )→ Endk(M(V )) are homogeneous polynomials of degree d .

The category P splits as the direct sum of its subcategories Pd of homogeneous functors of
degree d:

P =

d≥0

Pd . (1)

Any M ∈ P can thus be expressed as M = ⊕Md , where Md is homogeneous of degree d [7,
Proposition 2.6].

If M ∈ P , we define its Kuhn dual M♯
∈ P by M♯(V ) = M(V ∗)∗, where ‘∗’ refers to

k-linear duality in the category of vector spaces. For example, (Γ d)♯ ≃ Sd . Since (M♯)♯ ≃ M ,

Kuhn duality yields an equivalence of categories ♯ : P ≃
−→ P op, op. cit. A routine check shows

that ♯ respects degree, i.e. M♯ is homogeneous of degree d if and only if M is homogeneous of
degree d.

The following lemma shows the category P is a model for the stable category of polynomial
GLn-modules. Let Pold(GL(V )) denote the category of polynomial representations of GL(V )
of degree d .

Lemma 3.1 ([7, Lemma 3.4]). Let V ∈ Vk be a vector space of dimension n ≥ d. Evaluation
on V induces an equivalence of categories Pd → Pold(GL(V )).

It is classically known that the representation ring of Pold(GL(V )) is Bd , when dim(V ) ≥ d
(cf. Section 2.1). This suggests that one can view the tensor category P as a categorification of
B, and this is the perspective we take in the current work. Let us make this explicit.

For λ ∈ ℘ let Sλ ∈ P denote the corresponding Schur functor. For precise definitions and
more details on the following proposition see Section 4.3 of [10] and references therein.

Proposition 3.2. The map ϱ : K0(P) → BZ determined by [Sλ] → sλ defines an algebra
isomorphism.

In particular, the isomorphism ρ maps Sd and Γ d to the complete symmetric function hd of
degree d, and it maps Λd to the elementary symmetric function ed of degree d .

We note that the Euler characteristic of the derived Hom functor on P categorifies the standard
inner product on B. More precisely, let ⟨·, ·⟩ be the bilinear form on K0(P) given by

⟨[M], [N ]⟩ =


(−1)i dimExti (M, N ).

Then, under the identification ϱ, ⟨·, ·⟩ corresponds to (·, ·) (for details see [10, Proposition 6.4]).
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Let M ∈ P . Tensor product defines a functor TM : P → P given by TM (N ) = M ⊗ N .
The functor TM admits the right adjoint T∗M , which is given by a general formula as follows: for
N ∈ P and V ∈ Vk ,

T∗M (N )(V ) = HomP (M, N (V ⊕ ·)).

Here N (V ⊕ ·) ∈ P denotes the functor W → N (V ⊕ W ). Therefore we obtain the following
lemma (originally communicated to us by Antoine Touzé):

Lemma 3.3. Let M ∈ P . Then T∗M is exact if and only if M is projective.

Now suppose ϱ([M]) = b. Then, under the identification ϱ, [TM ] = b, where here we regard
b as an operator on B. Recall that b∗ denotes the operator on B adjoint to b. When M is projective,
by the above lemma, [T∗M ] defines an operator on K0(P). Then [T∗M ] is adjoint to [TM ] with
respect to ⟨·, ·⟩, and, since ⟨·, ·⟩ corresponds to (·, ·), we obtain:

Lemma 3.4. Let M ∈ P be projective and suppose ϱ([M]) = b. Then, under the identification
ϱ, [T∗M ] = b∗.

Finally, we note that the Frobenius twist can also be regarded as a functor (·)(1) : P → P ,
which assigns M to M (1), where M (1)(V ) = M(V )(1). If [M] → b under ϱ, then [M (1)

] → b(1)

(thus explaining why we termed b(1) the twist of b). This is an example of a more general
phenomenon, namely that composition of polynomial functors categorifies the plethysm of
symmetric functions.

3.2. Polynomial bifunctors

We shall also need the category P [2] of strict polynomial bi-functors. The objects of P [2] are
functors B : Vk×Vk → Vk such that for every V ∈ Vk , the functors B(·, V ) and B(V, ·) are in P
and their degrees are bounded with respect to V . Morphisms in P [2] are natural transformations
of functors.

A bifunctor B is homogeneous of bidegree (d, e) if for all V ∈ Vk, B(V, ·) (resp. B(·, V ))
is a homogeneous strict polynomial functor of degree d , (resp. of degree e). The decomposition
of strict polynomial functors into a finite direct sums of homogeneous functors generalizes to
bifunctors. Indeed, P [2] splits as the direct sum of its full subcategories P [2]i, j of homogeneous

bifunctors of bidegree (i, j). If B ∈ P [2], we denote by B∗, j the direct sum:

B∗, j =

i≥0

Bi, j . (2)

Note that we have also a duality for bifunctors

♯
: P [2] ≃−→ P [2] op

which sends B to B♯, with B♯(V,W ) = B(V ∗,W ∗)∗, and which respects the bidegrees.
There are natural functors:

� : P × P → P [2] ⊗ : P × P → P
∇ : P [2]→ P ∆ : P → P [2]
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respectively given by

(M � N )(V,W ) = M(V )⊗ N (W ) (M ⊗ N )(V ) = M(V )⊗ N (V )

∇B(V ) = B(V, V ) 1M(V,W ) = M(V ⊕W ).

We conclude this section by introducing a construction of new functors in P from old ones
that will be used later. Let M ∈ P and consider the functor 1M(·, k) ∈ P . By (2) we have a
decomposition

1M(·, k) =

i≥0

1M∗,i (·, k).

Note that 1M∗,i (V, k) is the subspace of weight i of M(V ⊕ k) acted on by GL(k) via the
composition

GL(k) = 1V × GL(k) ↩→ GL(V ⊕ k) −→ GL(M(V ⊕ k)).

In other words, the action of GL(k) induces a decomposition of M(V ⊕ k) indexed by the
polynomial characters of GL(k)

M(V ⊕ k) =

i≥0

M(V ⊕ k)i ,

and 1M∗,i (V, k) = M(V ⊕ k)i .
Since evaluation on V⊕k and extracting weight spaces are both exact functors, the assignment

M → 1M∗,i (·, k) defines an exact endo-functor on P .

4. Linear species

4.1. Finite sets

It will be convenient for us to use as a model for the category of representations of all
symmetric groups Joyal’s theory of linear species [1]. Let X be the groupoid of finite sets, and let
Xk be the sub-groupoid of finite sets of cardinality k. So, by definition, the morphisms in these
categories are bijections. Clearly, X =


k Xk , and Xk is a connected groupoid with stabilizer

isomorphic to the symmetric group Sk .
We fix once and for all a one-element set {∗}. We abuse notation and refer to the set {∗} simply

by ∗, and we employ this convention for other one-element sets as well.
If J, J ′, K , K ′ ∈ X and f : J → K , f ′ : J ′→ K ′ are bijections, then

f ⊔ f ′ : J ⊔ J ′→ K ⊔ K ′

is the canonical bijection on the disjoint unions.
Let us now introduce some morphisms in X. For J ∈ X, 1J : J → J denotes the identity

map. To a bijection f : J → K and j ∈ J , we associate the map f j
: J r j → K r f ( j).

For i, j ∈ J, si, j : J → J is the “transposition”:

si, j (ℓ) =

ℓ if ℓ ≠ i, j
j if ℓ = i
i if ℓ = j.
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The map ti, j : J r i → J r j is given by:

ti, j (ℓ) =


ℓ if ℓ ≠ j
i if ℓ = j.

The map u j : J → J r j ⊔ ∗ is given by:

u j (ℓ) =


ℓ if ℓ ≠ j
∗ if ℓ = j.

We record for future reference the following elementary commutation. For f : J → K and
i, j ∈ J :

f j
◦ ti, j = t f (i), f ( j) ◦ f i . (3)

We also remark that these notations can be combined to construct new bijections. For instance
we have a bijection ui

j : J r i → J r {u j (i), j} ⊔ ∗, and in particular u j
j : J r j → J r j is

the identity map.

4.2. The category R

Let Rn be the category of covariant functors from Xn to Vk , morphisms being natural
transformations of functors. There is an equivalence of Rn and Rep(Sn):

Rn −→ Rep(Sn)

given by assigning T to T ([n]), where [n] = {1, 2, . . . , n}.
Let R be the category of linear species of finite degree, i.e. the category of covariant functors

T : X→ Vk such that T (J ) = {0} for |J | ≫ 0. There is an equivalence of categories

R →
∞

k=0

Rep(Sk)

given by T →

∞

n=0 T ([n]). (This sum is finite.)
We note R is a tensor category, with the tensor product defined as follows: for S, T ∈ R and

J ∈ X, set

(S ⊗ T )(J ) =

K⊂J

S(K )⊗ T (J \ K ).

The functor U ∈ R given by U (∅) = k and U (J ) = 0 for all J ≠ ∅ is the unit of R.

5. Duality between P and R

Schur–Weyl duality can be reformulated as a duality between the categories P and R as
follows. For J ∈ X and ⊗J denote the |J |-fold tensor product. Define the Schur–Weyl duality
functor S : P → R by

S(M)(J ) = HomP (⊗
J ,M).

Given a morphism φ : M → N in P , we define S(φ) : S(M) → S(N ) in the obvious way:
S(φ)J : S(M)(J )→ S(N )(J ) maps ψ ∈ S(M)(J ) to φ ◦ ψ ∈ S(N )(J ).
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One of the goals of this paper is to show that the functor S preserves the higher structures
which are inherent to both categories P and R. In particular, we will show that it is a morphism
of both the g and HZ categorifications structures which we define below. A more basic property
of the Schur–Weyl duality functor is the following:

Proposition 5.1. The functor S : P → R is monoidal.

Proof. Let M, N ∈ P and J ∈ X. We have the following chain of natural isomorphisms:

S(M ⊗ N )(J ) = HomP (⊗
J ,M ⊗ N )

= HomP (⊗
J ,∇(M � N ))

≃ HomP [2](∆(⊗
J ),M � N )

≃ HomP [2]

 
J1∪J2=J

⊗
J1 �⊗J2 ,M � N


=


J1∪J2=J

HomP [2](⊗
J1 �⊗J2 ,M � N )

≃


J1∪J2=J

HomP (⊗
J1 ,M)⊗ Hom(⊗J2 , N )

=


J1∪J2=J

S(M)(J1)⊗ S(N )(J2)

= (S(M)⊗ S(N ))(J ).

Note that we used here that ∆ and ∇ are adjoint (cf. the proof of Theorem 1.7 in [6] or Lemma
5.8 in [22]). �

6. The g-categorification

In this section we discuss the g-categorification structures on the categories P and R, and
their relationship via the duality functor.

In Section 6.1 we briefly recall the relevant notions, including the definitions of g-
categorifications and morphisms of such structures.

In Section 6.3 we review the g-categorification on R. This is a categorification of the basic
representation of g, and is well-known, although here it is presented in setting of species. Weak
versions of this statement go back at least to the works of Lascoux, Leclerc, and Thibon [17].
The strong version which incorporates the theory developed by Chuang and Rouquier, appears
already in their paper [4].

In Section 6.2 the g-categorification on P is recalled [10].
Finally, in Section 6.4, we prove the following theorem: the Schur–Weyl duality functor

S : P → R is a morphism of g-categorifications, which categorifies the standard projection
π : B � V (Λ0) (cf. Section 2.3).

6.1. Definition of g-categorification

To give the definition of g-categorification we use here, due to Chuang and Rouquier, we first
recall the degenerate affine Hecke algebra.
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Definition 6.1. Let DHn be the degenerate affine Hecke algebra of GLn . As an abelian group

DHn = Z[y1, . . . , yn] ⊗ ZSn .

The algebra structure is defined as follows: Z[y1, . . . , yn] and ZSn are subalgebras, and the
following relations hold between the generators of these subalgebras:

σi y j = y jσi if |i − j | ≥ 1

and

σi yi − yi+1σi = 1 (4)

(here σ1, . . . , σn−1 are the simple generators of ZSn).

Definition 6.2 (Definition 5.29 in [21]). Let C be a k-linear abelian category. A g-categorification
on C is the data of:

1. An adjoint pair (E, F) of exact functors C → C,
2. morphisms of functors X ∈ End(E) and σ ∈ End(E2), and
3. a decomposition C =


ω∈P Cω.

Let X◦ ∈ End(F) be the endomorphism of F induced by adjunction. Then given a ∈ k let
Ea (resp. Fa) be the generalized a-eigensubfunctor of X (resp. X◦) acting on E (resp. F). We
assume that

4. E =


i∈Z/pZ Ei ,
5. for all i, Ei (Cω) ⊂ Cω+αi and Fi (Cω) ⊂ Cω−αi ,
6. the action of {[Ei ], [Fi ]}i∈Z/pZ on K0(C) =


ω∈P K0(Cω) gives rise to an integrable

representation of g,
7. the functor F is isomorphic to the left adjoint of E , and
8. the degenerate affine Hecke algebra DHn acts on End(En) via

yi → En−i X E i−1 for 1 ≤ i ≤ n, (5)

and

σi → En−i−1σ E i−1 for 1 ≤ i ≤ n − 1. (6)

Remark 6.3. The notion of g′-categorification can be defined similarly, but without taking
into account the compatibility with the weight decomposition cf. Definition 5.32 in [21]. It is
immediate that a g-categorification induces a g′-categorification.

Now that we introduced the notion of g-categorification, we discuss morphisms of
categorifications.

In their study of sl2-categorifications, Chuang and Rouquier defined a notion of morphisms in
their setting, and in fact the definition can be generalized to g-categorifications. Below, we adopt
their definition of a morphism of categorifications to our setting, and show that it is a reasonable
generalization.

Definition 6.4 (Cf. Section 5.2.1 in [4]). Let C and C′ be g-categorifications with associated data
(E, F, X, σ, C = ⊕ω Cω) and (E ′, F ′, X ′, σ ′, C′ = ⊕ω C′ω). Let (η, ϵ) (resp. (η′, ϵ′)) be the
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unit/counit for the adjunction (E, F) (resp. (E ′, F ′)). A morphism of g-categorifications is the
data of an additive functor Φ : C → C′ such that

Φ(Cω) ⊂ C′ω, (7)

along with isomorphisms of functors

ζ+ : ΦE → E ′Φ
ζ− : ΦF → F ′Φ

such that the following diagrams commute:

1.

Φ
Φη

zzuuuuuuuuuu
η′Φ

%%JJJJJJJJJJ

ΦF E
ζ−E // F ′ΦE

F ′ζ+ // F ′E ′Φ

2.

ΦE
ζ+ //

ΦX
��

E ′Φ

X ′Φ
��

ΦE
ζ+ // E ′Φ

3.

ΦE E
ζ+E //

Φσ ′

��

E ′ΦE
Eζ+ // E ′E ′Φ

σΦ
��

ΦE E
ζ+E // E ′ΦE

Eζ+ // E ′E ′Φ

Remark 6.5. A morphism of g′-categorifications is the same as a morphism of g-catego-
rifications, except one ignores condition (7).

To argue that the above definition of morphism of categorifications is reasonable, we must
show that it categorifies morphisms of g-modules. With this in mind, suppose C is a g-
categorification, with all the corresponding data as in the above definition. Then for every
i ∈ Z/pZ, the functors Ei and Fi are adjoint, X restricts to a morphism in End(Ei ), and
T restricts to a morphism in End(E2

i ). Moreover, it follows directly from the definition of g-
categorification that this data defines an sl2-categorification as in [4]. (This is analogous to
restricting a g-module to an sl2 root subalgebra in g.) We denote this sl2-categorification structure
on C by Ci .

Proposition 6.6. In the setting of Definition 7.5, suppose that (Φ, ζ+, ζ−) : C → C′ is a
morphism of g-categorifications. Then for every i ∈ Z/pZ, (Φ, ζ+, ζ−) canonically induces
morphisms (Φ, ζ+,i , ζ−,i ) : Ci → C′i of sl2-categorifications.

Proof. We have to construct ζi,+ : ΦEi → E ′iΦ and ζi,− : ΦFi → F ′i Φ from ζ+ and ζ−. Let
Ei,n be the kernel of (X−i)n : E → E . Then 0 ⊂ Ei,1 ⊂ Ei,2 ⊂ · · · . By hypothesis, for any A ∈

C, there exists N ≫ 0, such that Ei (A) is equal to Ei,N (A) = Ei,N+1(A) = · · · . The analogous
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statement holds also for E ′. Then there exists N ′, such that for any ℓ ≥ N ′, Ei (A) = Ei,ℓ(A) and
E ′i (Φ(A)) = E ′i,ℓ(Φ(A)). By diagram 2 in Definition 6.4, for any n ≥ 0, the following diagram
commutes:

ΦE(A)
ζ+ //

Φ(X−i)n

��

E ′Φ(A)

(X ′−i)nΦ
��

ΦE(A)
ζ+ // E ′Φ(A)

(8)

In particular when ℓ ≥ N ′, Ei,ℓ(A) is a direct summand of E(A) and E ′i,ℓ(Φ(A)) is a direct
summand of E ′(Φ(A)). Then Φ(Ei,ℓ(A)) is also a direct summand of Φ(E(A)), since Φ is
an additive functor. Then the above diagram induces an isomorphism ζ+,i,ℓ : Φ(Ei,ℓ(A)) →
E ′i,ℓ(Φ(A)). This isomorphism does not depend on ℓ ≥ N ′, and it is functorial in A. We
thus obtain the isomorphism ζ+,i : ΦEi → E ′iΦ. Similarly, we construct isomorphisms
ζ−,i : ΦFi → F ′i Φ. Since (Φ, ζ+, ζ−) is a morphism of g-categorifications, it follows formally
from the construction that (Φ, ζ+,i , ζ−,i ) are morphisms of sl2-categorifications. �

Let Φ : C → C′ be a morphism of g-categorifications as in Definition 6.4 and assume further
that Φ is left exact. Let RΦ be the right derived functor of Φ. If for any A ∈ C the right derived
functors RiΦ(A) = 0 for i ≫ 0, then RΦ : Db(C)→ Db(C′) is well-defined.

Corollary 6.7. Under the above assumptions, RΦ yields a g-morphism from K0(C) to K0(C′).
In particular, if Φ is exact, then Φ yields a g-morphism from K0(C) to K0(C′).

Proof. The map [RΦ] : K0(C) → K0(C′) is defined as follows: for any A ∈ C, [RΦ]([A]) =
i (−1)i [RiΦ(A)]. Consider the natural isomorphism Φ ◦ Ei ≃ E ′i ◦ Φ from Proposition 6.6.

It induces a natural isomorphism RΦ ◦ Ei ≃ E ′i ◦ RΦ, since Ei and E ′i are exact. The
analogous statement holds also for functors Fi and F ′i . From the definition of morphism of g-
categorifications, [RΦ] also preserves weight decompositions. Then the corollary follows. �

Remark 6.8. There is an analogue of Corollary 6.7 when Φ is right exact and the left derived
functor LΦ is defined on Db(C).

6.2. The g-categorification on P

In [10] we defined a g-categorification on P , categorifying the Fock space representation of
g. In this section we briefly recall this result.

Let I : P → P be the identity functor. Define E,F : P → P as follows. For M ∈ P , set

E(M) = 1M∗,1(·, k), and

F(M) = M ⊗ I.

These functors are adjoint. In fact, they are bi-adjoint, i.e. both (E,F) and (F,E) are adjoint pairs
(Propositions 5.1 and 5.3 in [10]). Although for the purposes of g-categorification we only need
to make explicit the first adjunction, later on when we discuss Heisenberg categorification the
bi-adjunction data will be crucial. Therefore we take the opportunity now to present all this data.



J. Hong, O. Yacobi / Advances in Mathematics 237 (2013) 360–403 375

For V ∈ Vk and v ∈ V , associate a map ṽ : V ⊕ k → V by ṽ(w, a) = w + av. To ξ ∈ V ∗

associate ξ̃ : V → V ⊕ k by ξ̃ (v) = (v, ξ(v)). Note that

FE(M)(V ) = M(V ⊕ k)1 ⊗ V

EF(M)(V ) = M(V ⊕ k)1 ⊗ V ⊕ M(V ⊕ k)0 ⊗ k.

We proceed to define units/counits

I
η1 // FE

ϵ2 // I

I
η2 // EF

ϵ1 // I

as follows:

η1: Choose a basis {ei } of V and let ξi be the dual basis. Then for m ∈ M(V ) let ηM,V (m) =
i (M(ξ̃i )(m))1⊗ ei . Here we employ the notation (·)1 to denote the weight one component

of an element of M(V ⊕ k) relative to the action of GL(k).
ϵ2: For m ⊗ v ∈ FE(M)(V ) let (ϵ2)M,V (m ⊗ v) = M(ṽ)(m).
η2: For m ∈ M(V ), let (η2)M,V (m) = (0,M(iV )(m) ⊗ 1). Here iV is the natural embedding

V ↩→ V ⊕ k.
ϵ1: For x = (n ⊗ v,m ⊗ 1) ∈ EF(M)(V ), let (ϵ1)M,V (x) = M(pV )(m). Here pV is the natural

projection V ⊕ k � V .

A routine computation shows that indeed the formulas above define natural transformations
of functors. This datum can be derived from the abstract adjunctions for E and F proved in
Propositions 5.1 and 5.3 in [10]. The following is a restatement of these propositions.

Proposition 6.9. The data (E,F, η1, ϵ1) and (F,E, η2, ϵ2) are adjunctions.

The next datum we need to introduce are the natural transformations X and σ acting on E
and E2.

For any V ∈ Vk , let U (gl(V ⊕ k)) denote the enveloping algebra of gl(V ⊕ k), and let
XV ∈ U (gl(V ⊕ k)) the normalized split Casimir operator, which is defined as follows.

Fix a basis V =
n

i=1 kei ; this choice induces a basis of V ⊕ k. Let xi, j ∈ gl(V ⊕ k) be the
operator mapping e j to ei and eℓ to zero for all ℓ ≠ j . Then

XV =

n
i=1

xn+1,i xi,n+1 − n.

The element XV does not depend on the choice of basis. The universal enveloping algebra
U (gl(V ⊕ k)) acts on M(V ⊕ k), and we define X M,V to be the action of XV on M(V ⊕ k).

In [11] we proved that XV ∈ U (gl(V ⊕ k))GL(V )×GL(k). Hence X M,V defines an operator on
E(M)(V ), and this defines the natural transformation X : E → E (see Section 5.2 of [10] for
more details on this construction).

We next introduce the natural transformation σ : E2
→ E2. Let M ∈ P and V ∈ Vk . By

definition,

E2(M)(V ) = M∗,1,1(V ⊕ k ⊕ k) = M(V ⊕ k ⊕ k)1,1,
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where M∗,1,1(V ⊕ k ⊕ k) denotes the (1, 1) weight space of GL(k) × GL(K ) acting on
M(V ⊕ k ⊕ k). Consider the map V ⊕ k ⊕ k → V ⊕ k ⊕ k given by (v, a, b) → (v, b, a).
Applying M to this map we obtain a morphism:

σM,V : M∗,1,1(V ⊕ k ⊕ k)→ M∗,1,1(V ⊕ k ⊕ k).

This defines the morphism σ acting on E2.
Finally, we need to define the weight decomposition of P . By a theorem of Donkin’s, the

blocks of P are parameterized by pairs (d, λ̃), where d is a nonnegative integer and λ̃ is a p-core
of a partition of size d [5]. Consequently the block decomposition of P is naturally indexed by
the weight lattice of g:

P =

ω∈P

Pω.

See Section 5.3 of [10] for further details and references. We can now state Theorem 6.1 of [10]:

Theorem 6.10. Let p ≠ 2. The category P along with the data of adjoint functors E and F,
operators X ∈ End(E) and σ ∈ End(E2), and the weight decomposition P =


ω∈P Pω defines

a g-categorification which categorifies the Fock space representation of g.

6.3. The g-categorification on R

One of the first examples of g-categorification is on the direct sum of representations of
symmetric groups. We recall this result now, recast in the language of linear species that is more
suitable for our purposes.

We begin by defining functors E′,F′ : R → R. (All the data defined on the category R is
“primed” since we reserve the non-primed notation for P .) Let I : R → R denote the identity
functor.

For any linear species S ∈ R, set

E′(S)(J ) = S(J ⊔ ∗).

On bijections f : J → J ′,E′(S)( f ) = S( f ⊔ 1∗). For a morphism φ : S → T in R,
E′(φ)J : E′(S)(J )→ E′(T )(J ) is given by φJ⊔∗.

The functor F′ is given by

F′(S)(J ) =

j∈J

S(J r j).

On bijections f : J → J ′,F′(S)( f ) =


j∈J S( f j ). For a morphism φ : S → T in R,
F′(φ)J : F ′(S)(J )→ F ′(T )(J ) is given by


j∈J φJr j .

We now describe an explicit bi-adjunction between E′ and F′. To begin, let S ∈ R and J ∈ X
and consider E′F′(S)(J ) and F′E′(S)(J ):

E′F′(S)(J ) =

j∈J

S((J r j) ⊔ ∗)⊕ S(J )

and

F′E′(S)(J ) =

j∈J

S((J r j) ⊔ ∗).
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We construct the following candidate maps for the adjunctions between E′ and F′:

I
η′1 // F′E′

ϵ′2 // I .

I
η′2 // E′F′

ϵ′1 // I .

For S ∈ R and J ∈ X,

(η′1)S,J : S(J )→ F′E′(S)(J ) is given by m → (S(u j )(m)) j∈J ,
(η′2)S,J : S(J )→ E′F′(S)(J ) is given by m → (0,m),
(ϵ′1)S,J : E

′F′(S)(J )→ S(J ) is given by projection onto S(J ), and
(ϵ′2)S,J : F

′E′(S)(J )→ S(J ) is given by (m j ) j∈J →


j∈J S(u−1
j )(m j ).

Theorem 6.11. The data (E′,F′, η′1, ϵ
′

1) and (F′,E′, η′2, ϵ
′

2) are both adjunctions.

Proof. To see that (E′,F′, η′1, ϵ
′

1) is an adjunction we need to check

ϵ′1E′ ◦ E′η′1 = 1 : E′→ E′F′E′→ E′ (9)

F′ϵ′1 ◦ η
′

1F′ = 1 : F′→ F′E′F′→ F′. (10)

When evaluated on S ∈ R and J ∈ X, the left hand side of the first equation is the composition:

S(J ⊔ ∗) −→

j∈J

S((J r j) ⊔ ∗ ⊔ ∗)⊕ S(J ⊔ ∗)

−→ S(J ⊔ ∗)

given by

m → ((S(u j )(m)) j∈J , S(u∗)(m)) → S(u∗)(m).

Here u j : J ⊔ ∗ → (J r j) ⊔ ∗ ⊔ ∗ and u∗ : J ⊔ ∗ → (J ⊔ ∗)r ∗ ⊔ ∗ = J ⊔ ∗. Since u∗ is the
identity map this proves the first equation.

Now we prove (10). When evaluated on S ∈ R and J ∈ X, the left hand side is the
composition:

i∈J

S(J r i) −→

i, j∈J

S(J r {i, j} ⊔ ∗)⊕

j∈J

S(J r j)

−→


i∈J

S(J r i)

where for m ∈ S(J r i),

m → ((S(ui
j )(m)) j∈J ) → S(ui

i )(m).

Here ui
j : J r i −→ J r { j, u j (i)} ⊔ ∗, and in particular ui

i : J r i → J r i is the identity map.
This proves (10).

The proof of the second adjunction follows from a similar computation, which is left to the
reader. �

Next we introduce the Jucys–Murphy morphism X ′ on E′. For S ∈ R, J ∈ X, define
X ′M,J : E

′(S)(J )→ E′(S)(J ) by

X ′S,J =

j∈J

S(s j,∗).
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Lemma 6.12. The Jucys–Murphy morphism X ′ is an endomorphism of E′.

Proof. Let S ∈ R and J, J ′ ∈ X. Given a bijection f : J → J ′, for any j ∈ J we have the
following commutative diagram:

S(J ⊔ ∗)
S(s j,∗) //

S( f ⊔1∗)
��

S(J ⊔ ∗)

S( f ⊔1∗)
��

S(J ′ ⊔ ∗)
S(s f ( j),∗)

// S(J ′ ⊔ ∗)

Then summing up j ∈ J , we conclude that X ′S,J is functorial in J . It is clear X ′S is functorial
in S. �

Now note that (E ′)2(S)(J ) = S(J⊔∗⊔∗). There is a natural bijection σ ′J : J⊔∗⊔∗ → J⊔∗⊔∗
which switches the two auxiliary elements and leaves elements in J fixed. (Since we are using
disjoint unions here, this bijection is well-defined.) Define σ ′S,J = S(σ ′J ). It is clear that this
defines a natural transformation σ ′ : (E′)2 → (E′)2.

Finally, we recall that the block decomposition of R can also be parameterized by weight
of g. Indeed, by Nakayama’s Conjecture [2], the blocks of R (recall that R is equivalent
to


d≥0 Rep(kSd)) are also parameterized by pairs (d, λ̃), where λ̃ is a p-core of a
partition of d . Then by the same combinatorial rules as we applied in Section 5.3 of [10],
we can associate to such a pair a well-defined weight ω ∈ P . In this way we obtain a
decomposition

R =

ω∈P

Rω.

A “weak” version of the following theorem goes back to the works of Leclerc, Lascoux, and
Thibon [17]. The “strong” version we state is essentially contained in [4], although Chuang and
Rouquier do not use the language of linear species and the definition of g-categorification appears
in [21] later on.

Theorem 6.13. The category R along with the data of adjoint functors E′ and F′, operators
X ′ ∈ End(E′) and σ ′ ∈ End((E′)2), and the weight decomposition R =


ω∈P Rω defines a

g-categorification which categorifies the basic representation of g.

6.4. Schur–Weyl duality and the g-categorifications

We have two g-categorifications, (P,E,F, X, σ ) and (R,E′,F′, X ′, σ ′), of B and V (Λ0),
respectively. In this section we prove our first main theorem which is that the Schur–Weyl duality
functor S : P → R can be naturally enriched to a morphism of these g-categorifications, in the
sense of Definition 7.5. We will see that S categorifies the standard projection π : B � V (Λ0)

(cf. Section 2.3).

6.4.1. Preparatory lemmas
For V ∈ Vk let ιV : V → V ⊕ k be the embedding and pV : V ⊕ k → V be the projection.

Recall the notation M(V ⊕ k)i introduced in Section 3.2.
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Lemma 6.14. Let V ∈ Vk and M ∈ P . Then

1. M(ιV ) maps M(V ) to M(V ⊕ k)0 and M(ιV ) : M(V )→ M(V ⊕ k)0 is an isomorphism.
2. M(pV ) maps M(V ⊕ k)0 isomorphically onto M(V ) and M(pV )(M(V ⊕ k)i ) = {0} for all

i > 0.

Proof. We first prove that M(ιV ) : M(V )→ M(V ⊕ k)0 is an isomorphism.
It is easy to check M(ιV ) maps M(V ) to M(V ⊕ k)0. Suppose M is of degree d . The group

GL(V ) acts on the functor Γ V,d , and this induces a representation of GL(V ) on the vector space
Hom(Γ V,d ,M). By Theorem 2.10 in [7], M(V ) is canonically isomorphic to Hom(Γ V,d ,M) as
GL(V )-modules.

We thus need to check that Hom(Γ V,d ,M) ≃ Hom(Γ V⊕k,d ,M)0. We choose a basis of V ,
such that V = kn . Then the functor Γ n,d

= Γ V,d can be decomposed canonically as

Γ n,d
=


d1+d2···+dn=d

Γ d1 ⊗ · · · ⊗ Γ dn .

By Corollary 2.12 in [7], Γ d1 ⊗ · · · ⊗ Γ dn represents the weight space of M(kn) with weight
(d1, d2, . . . , dn). In other words,

Hom(Γ d1 ⊗ · · · ⊗ Γ dn ,M) ≃ M(kn)(d1,...,dn), (11)

where M(kn)(d1,...,dn) is the weight space corresponding to the character (d1, . . . , dn). Hence

Hom(Γ n,d ,M) ≃


d1+d2···+dn=d

Hom(Γ d1 ⊗ · · · ⊗ Γ dn ,M)

≃ Hom(Γ n+1,d ,M)0.

Secondly, since M(pV ) ◦ M(ιV ) = idM(V ), it follows that M(pV ) : M(V ⊕ k)0 → M(V ) is
also an isomorphism.

Finally, by degree considerations, when i ≥ 1,M(pV ) maps M(V ⊕ k)i to zero. �

Recall the construction of ξ̃ : V → V ⊕ k from ξ ∈ V ∗, which we introduced in Section 6.2:
ξ̃ (v) = (v, ξ(v)).

Lemma 6.15. For any ξ ∈ V ∗, the map M(ξ̃ )0 : M(V )→ M(V ⊕ k)0 is equal to M(ιV ), and
so it is an isomorphism.

Proof. To show M(ξ̃ )0 = M(ιV ), it is enough to show M(pV ) ◦ M(ξ̃ )0 = M(pV ) ◦ M(ιV ),
since M(pV ) : M(V ⊕ k)0 → M(V ) is an isomorphism by Lemma 6.14. Moreover, also by
Lemma 6.14, M(pV ) kills all M(V⊕k) j , if j > 0. Hence M(pV )◦(M(ξ̃ ))0 = M(pV )◦M(ξ̃ ) =
M(idV ) = M(pV ) ◦ M(ιV ). �

Letϖn = (1, . . . , 1) be the character of GLn corresponding to the determinant representation.
By Eq. (11), for any M ∈ P and n ≥ 0,

HomP (⊗
n,M) ≃ M(kn)ϖn . (12)

There exists a canonical right action of Sn on ⊗n , which induces a left action of Sn on the left
hand side of (12). Moreover, the group of permutation matrices acts on the right hand side.

Lemma 6.16. Eq. (12) is an isomorphism of Sn-modules.

Proof. Suppose M is of degree d . Theorem 2.10 in [7] says that the natural isomorphism
Hom(Γ n,d ,M) ≃ M(kn) is a GLn-isomorphism, and ⊗n represents the ωn weight space. It is
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straightforward to see that the right action of Sn on ⊗n coincides with the right action of group
of permutation matrices in GLn . �

We take the opportunity now to prove a lemma which will be useful later on. Recall that we
defined an operator σ : E2

→ E2 in Section 6.2. There is also a natural operator τ : F2
→ F2

which just flips the two factors, i.e. for M ∈ P and V ∈ Vk then F2(M)(V ) = M(V )⊗ V ⊗ V
and τ maps m ⊗ v ⊗ w → m ⊗ w ⊗ v.

Lemma 6.17. The operators σ and τ are compatible with respect to the adjunction (F,E,
η2, ϵ2).

Proof. We need to check that given any M, N ∈ P the isomorphism induced by the adjunction
(F,E, η2, ϵ2)

Hom(F2 M, N ) ≃ Hom(M,E2 N ),

intertwines the S2-action induced by τ and σ respectively. Since any object M ∈ P is a sum
of subquotients of functors of the form ⊗n (see Remark 4.4 in [10]), it is enough to check the
lemma for ⊗n , and this follows from Lemma 6.16. �

By Kuhn duality the above lemma implies also the analogous result for other adjunction:

Lemma 6.18. The operators σ and τ are compatible with respect to the adjunction (E,F,
η1, ϵ1).

The following lemma will also be used.

Lemma 6.19. Suppose char(k) ≠ 2. Let V be any polynomial representation of degree 2 of

GL2. As an element in GL2, s =


0 1
1 0


acts on the ϖ2 = (1, 1)-weight space of V . The

representation of GL2 induces an infinitesimal action of the Lie algebra gl2 on V . Let e and f
be the standard Chevalley generators of gl2. The operator e f − 1 also acts on ϖ2-weight space
Vϖ2 . As operators on Vϖ2 , s and e f − 1 coincide.

Proof. We denote Vω2 the ω2-weight space of V . Since char(k) ≠ 2, any polynomial
representation of degree 2 is semisimple. Hence

Vω2 ⊂ V (1, 1)⊕ V (2, 0),

where V (i, j) is the isotypic component of V corresponding to the irreducible representation of
GL2 of highest weight (i, j). Hence any v ∈ Vω2 decomposes as v = v′+v′′, where v′ ∈ V (1, 1)
and v′′ ∈ V (2, 0). Now one computes separately on v′ and v′′ that the actions of e f − 1 and s
coincide. �

6.4.2. S is a morphism of g-categorifications
We are now ready to enrich the functor S to a morphism of g-categorifications (cf. Defini-

tion 6.4). First we introduce the isomorphisms of functors ζ+ : SE→ E′S and ζ− : SF→ F′S.
By definition, the transformation ζ+ : SE → E′S consists of a family of morphisms

(ζ+)M,J : (SE)(M)(J ) → (E′S)(M)(J ), where M ∈ P and J ∈ X. Of course this family
must satisfy the usual naturality conditions. Now, by our constructions,

(SE)(M)(J ) = HomP (⊗
J ,E(M)),

and

(E′S)(M)(J ) = HomP (F(⊗
J ),M).
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Therefore we can simply define (ζ+)M,J to be the isomorphism coming from the adjunction
(F,E). It is straight-forward to check that indeed the family of morphisms {(ζ+)M,J : M ∈
P, J ∈ X} satisfies the naturality conditions with respect to morphisms in P and X.

Similarly, we use the adjunction (E,F) to define ζ−. Let M ∈ P and J ∈ X. Then

(SF)(M)(J ) = HomP (⊗
J ,F(M)),

while

(F′S)(M)(J ) =

j∈J

S(M)(J r j)

=


j∈J

HomP (⊗
Jr j ,M)

= HomP


j∈J

⊗
Jr j ,M


= HomP (E(⊗

J ),M).

Therefore the adjunction (E,F) provides an isomorphism,

(ζ−)M,J : (SF)(M)(J )→ (F′S)(M)(J ).

The family of such isomorphisms define the natural isomorphism ζ−.
Now that we have introduced the data ζ+ and ζ−, we are ready to prove that (S, ζ+, ζ−) : P →

R satisfies the conditions making it a morphism of g-categorifications. The following series of
lemmas prove these conditions.

Lemma 6.20. The natural transformations ζ+ and ζ− are compatible with respect to adjunctions
(F,E, η2, ϵ2) and (F′,E′, η′2, ϵ

′

2), i.e. the following diagram commutes:

S
Sη2

{{wwwwwwwww
η′2S

$$HH
HH

HH
HH

HH

SEF
ζ+F // E′SF

E′ζ− // E′F′S

Proof. Evaluating the above diagram on M ∈ P and J ∈ X we obtain:

HomP (⊗J ,M)

ttiiiiiiiiiiiiiiii

��

Hom(⊗J ,EF(M))

��
Hom(⊗J⊔∗,F(M))

**UUUUUUUUUUUUUUUU


i∈J⊔∗ Hom(⊗(J⊔∗)ri ,M)
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So we need to check that the above diagram commutes. For any morphism f : ⊗J
→ M ,

applying Sη2 and then ζ+F, we get F( f ) : ⊗J⊔∗
→ F(M), which is equal to f ⊗ 1. Then

applying E′ζ− we obtain the map η′2S( f ). �

The next lemma can be proved from the above lemmas using Lemmas A.1 and A.2 in the
Appendix.

Lemma 6.21. The natural transformations ζ+ and ζ− are compatible with respect to the
adjunction (E,F, η1, ϵ1) and (E′,F′, η′1, ϵ

′

1), i.e. the diagram commutes:

S
Sη1

{{wwwwwwwww
η′1S

$$HH
HH

HH
HH

HH

SFE
ζ+E // F′SE

F′ζ− // F′E′S

Lemma 6.22. The natural transformation ζ+ is compatible with X and X ′, i.e. the following
diagram commutes:

SE
ζ+ //

SX
��

E′S

X ′S
��

SE
ζ+ // E′S

Proof. Evaluating the above diagram on M ∈ P and J ∈ X gives:

Hom(⊗J ,E(M)) //

��

Hom(⊗J⊔∗,M)

��
Hom(⊗J ,E(M)) // Hom(⊗J⊔∗,M)

By Lemma 6.16, we are reduced to show that the split Casimir operator
n

i=1 xn+1,i xi,n+1 − n
coincides with the Jucys–Murphy element

n
i=1(i, n+ 1) on the space M(kn+1)ϖn+1 . It suffices

to check that (i, n+ 1) coincides with xn+1,i xi,n+1− 1 on the M(kn+1)ϖn+1 ; this is precisely the
content of Lemma 6.19. �

The next compatibility follows from Lemma 6.16.

Lemma 6.23. The natural transformation ζ+ is compatible with σ and σ ′, i.e. the following
diagram commutates:

SE2
ζ+E //

Sσ
��

E′SE
E′ζ+ // E′2S

σ ′S
��

SE2
ζ+E // E′SE

E′ζ+ // E′2S

Theorem 6.24. The data (S, ζ+, ζ−) is a morphism of g-categorifications from P to R,
categorifying the standard projection π : B � V (Λ0).
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Proof. By Lemmas 6.21–6.23, to prove that (S, ζ+, ζ−) is a morphism of g-categorifications, it
remains to show that S : Pω → Rω.

For λ ∈ ℘, let Lλ be the socle of Sλ. Up to isomorphism, the polynomials functors Lλ are
the simple objects in P (cf. Theorem 4.8 in [10] and references therein). Therefore it suffices
to show that for any Lλ ∈ Pω,S(Lλ) ∈ Rω. Now suppose λ is a partition of n. Then Sλ, and
hence Lλ, are homogeneous of degree n. Hence by (12), S(Lλ) ∼= Lλ(kn)ωn as Sn-modules.
Then by [8, Theorem 6.4b] S(Lλ) = 0 unless λ is “column p-restricted”, i.e. if λ = (λ1, λ2, . . .)

then 0 ≤ λi − λi+1 < p for all i . In the case that λ is column p-restricted then S(Lλ) ∼= L ′λ, the
irreducible Sn-module indexed by this partition.

Now recall that Pω (resp. Rω) is the block consisting of objects whose composition factors
lie ω. (Here weights of g correspond to certain classes of partitions. See Section 5.3 of [10] for
the relevant combinatorics.) So if Lλ ∈ Pω then λ ∈ ω, and therefore S(Lλ) ∈ Rω. It follows
that S(Pω) ⊂ Rω. This shows that S is a morphism of g-categorifications.

By Proposition 6.6, this implies that [S] is a morphism of g-modules. Moreover, since
S(k) = U , where k and U are units in tensor categories P and R respectively. Since the basic
representation, as a g-module, occurs with multiplicity one in B, we conclude that [S] must
categorify the standard projection. �

Remark 6.25. Let ProjR be the subcategory of P consisting of projective objects. Let S∗ :
ProjR → P be the adjoint functor of S. By the machinery developed in Proposition A.9, it
follows that S∗ is a morphism of g-categorifications. S∗ categorifies the embedding from V (Λ0)

to B. For details see [9].

7. Heisenberg categorification

In this section we undertake the study of Heisenberg categorifications on P .
In Section 7.1 we recall Khovanov’s category H which is used to define a notion of “strong”

HZ-categorification. This allows us to define morphisms of HZ-categorifications. We also record
a notion of “weak” HZ-categorification.

In Section 7.2 we construct a functor H → EndL(P), where EndL(P) is the category of exact
endo-functors on P admitting a left adjoint. This leads to two theorems; the first is a weak HZ-
categorification of the Fock space representation (which holds for all p ≥ 0), and the second is
an HZ-categorification on P when p = 0.

In Section 7.3 we briefly recall Khovanov’s HZ-categorification on R when p = 0.
We then show in Section 7.4 that the Schur–Weyl duality functor is an equivalence of HZ-

categorifications. This is expected, since P and R are naturally equivalent when p = 0.
Nevertheless, the fact that S preserves all the higher structure endowed on these categories by the
HZ-categorifications is nontrivial.

7.1. Definition of H-categorification

In [13] Khovanov defines a (conjectural) categorification of an integral form of the Heisenberg
algebra H . This is a monoidal category H which is additive and linear over a field of
characteristic zero, and there is an injective homomorphism from HZ to K0(H). (Recall that
HZ is the integral form of H defined by generators er , h∗r and relations as in Example 2.2(2).)
Conjecturally this map is actually an isomorphism.

Let us now recall briefly Khovanov’s constructions. Following his work, we first introduce a
preliminary category H′, and H will be defined as the Karoubi envelope of H′.
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The category H′ has two generating objects, Q+ and Q−. Any object of H′ is a sum of
products of these two objects. Such a product is denoted Qε, where ε is a sequence of +′ s and
−
′ s. The object indexed by the empty sequence ∅ serves as a unit 1 = Q∅ ∈ H′.
The space of morphisms HomH′(Qε, Qε′) is the vector space generated by suitable planar

diagram, modulo local relations. For the graphical calculus see [13]; we opt to define the
morphisms algebraically.

The identity morphism of an object Qε is denoted by Id. In addition to the identity morphisms,
we introduce distinguished morphisms:

η1 ∈ HomH′(1, Q+−), ϵ1 ∈ HomH′(Q−+, 1),

η2 ∈ HomH′(1, Q−+), ϵ2 ∈ HomH′(Q+−, 1),

τ ∈ HomH′(Q++, Q++).

The space of all morphisms is generated by the identity morphisms along with the distinguished
morphisms, such that the following local relations hold:

(R1) ϵ1 ◦ η2 = Id

(R2) τ ◦ τ = Id

(R3) Q+τ ◦ τQ+ ◦ Q+τ = τQ+ ◦ Q+τ ◦ τQ+

(R4) ϵ1 Q+ ◦ Q−τ ◦ η2 Q+ = 0.

To describe the final two conditions set:

△ = Q+−
η2 Q+− // Q−++−

Q−τQ−// Q−++−
Q−+ϵ2 // Q−+

� = Q−+
Q−+η1 // Q−++−

Q−τQ−// Q−++−
ϵ1 Q+− // Q+−

Then

(R5) � ◦ △ = Id

(R6) △ ◦� = Id− η2 ◦ ϵ1.

The category H = Kar(H′) is the Karoubi envelope of H′. Recall that objects of H are pairs
(A, e), where A ∈ H′ and e ∈ HomH′(A, A) is an idempotent. The morphisms f : (A, e) →
(A′, e′) are morphisms f : A → A′ in H′ such that f = f ◦ e = e′ ◦ f . Notice that
e : (A, e)→ (A, e) is the identity morphism of (A, e) ∈ H.

Let +n (resp. −n) denote the sequence of n +′ s (resp. −′ s). There is an action of Sn on
Q+n . Indeed, the simple transposition σi acts by Q+n−i−1τQ+i−1 . By (R2) and (R3) this defines
a representation of Sn on EndH′(Q+n ). Similarly, there is an action of Sn on Q−n . We define
σ ∈ HomH(Q−−, Q−−) by the composition

Q−−
Q−η2η1 Q− // Q−−++−−

Q−−τQ−− // Q−−++−−
Q−ϵ1ϵ2 Q− // Q−−

It is clear that σ satisfies relations analogous to (R2) and (R3), and consequently we use this
morphism to define an action of Sn on Q−n .
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Now suppose char(k) = 0. Then there are distinguished objects Sn
− and Λn

+ in H defined as
follows. Consider the symmetrization and anti-symmetrization idempotents:

e(n) =
1
n!


σ∈Sn

σ

e′(n) =
1
n!


σ∈Sn

sgn(σ )σ.

Set

Sn
− = (Q−n , e(n)) and Λn

+ = (Q+n , e′(n)),

objects in H. Define γ : HZ→ K0(H) by h∗n → [S
n
−] and en → [Λn

+].

Theorem 7.1 ([13, Theorem 1]). The map γ is an injective ring homomorphism.

Remark 7.2. Conjecture 1 in [13] is that γ is an isomorphism.

For a k-linear abelian category V , let End(V) denote the category of exact endofunctors on V .
As usual, morphisms are natural transformations of functors.

Definition 7.3. 1. Let p = 0. An HZ-categorification of an HZ-module V is a pair (V,Ω) of a
k-linear abelian category V and a k-linear monoidal functor Ω : H → End(V), such that the
action of HZ on K0(V), defined by [Ω ] ◦ γ , is isomorphic to V .

2. A weak HZ-categorification of an HZ-module V is an abelian category V , a family of exact
functors An, Bn : V → V (n ≥ 0), and functorial isomorphisms
An ◦ Bm ∼= Bm ◦ An ⊕ Bm−1 ◦ An−1
An ◦ Am ∼= Am ◦ An
Bn ◦ Bm ∼= Bm ◦ Bn

such that the map HZ→ End(K0(V)) given by h∗n → [An] and en → [Bn] is a representation
of HZ isomorphic to V .

Remark 7.4. When discussing strong Heisenberg categorification we always work over
characteristic 0. To be able talk about Heisenberg categorification when the category is defined
over a field of positive characteristic, we have to use the notion of weak HZ-categorification. This
is because in this case, we cannot give the same definition of strong Heisenberg categorification
since the idempotent arguments fail. In particular, one cannot define the trivial and sign
idempotents as in the case of characteristic zero. It is indeed an interesting question to propose a
definition of strong Heisenberg categorification that works over all characteristics.

Now that we have defined the notion of HZ-categorification, we can formulate a morphism
of such categorifications. Suppose (V,Ω) is an HZ-categorification. The functor Ω induces the
data of endo-functors F = Ω(Q+), E = Ω(Q−), unit/counits coming from the morphisms
Ω(ϵi ),Ω(ηi ) (i = 1, 2), and the morphism Ω(τ ).

Conversely, given such data we can reconstruct the functor Ω by first constructing Ω ′ : H′→
End(V), and then extending to the Karoubi envelope (which is possible since we are assuming
that the functor Ω already exists). Therefore an HZ-categorification can be alternatively presented
as datum (V, E, F, ϵ1, η1, ϵ2, η2, τ ) subject to the local relations, and in addition subject to the
assumption that the functor Ω ′ constructed from this datum extends to the Karoubi envelope. We
write (V,Ω) = (V, E, F, ϵ1, η1, ϵ2, η2, τ ) to express this alternative formulation.
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Definition 7.5. Let

(V,Ω) = (V, E, F, ϵ1, η1, ϵ2, η2, τ )

and

(V ′,Ω ′) = (V ′, E ′, F ′, ϵ′1, η
′

1, ϵ
′

2, η
′

2, τ
′)

be HZ-categorifications. A morphism of HZ-categorifications is the data of a functor

Φ : V → V ′

along with isomorphisms of functors

ζ+ : ΦE → E ′Φ
ζ− : ΦF → F ′Φ

such that the following diagrams commute:

1.

Φ
Φη1

zzuuuuuuuuuu
η′1Φ

%%JJJJJJJJJJ

ΦF E
ζ−E // F ′ΦE

F ′ζ+ // F ′E ′Φ

2.

Φ
Φη2

zzuuuuuuuuuu
η′2Φ

%%JJJJJJJJJJ

ΦE F
ζ+F // E ′ΦF

E ′ζ− // E ′F ′Φ

3.

ΦF F
ζ−F //

Φτ
��

F ′ΦF
Fζ− // F ′F ′Φ

τ ′Φ
��

ΦF F
ζ−F // F ′ΦF

Fζ− // F ′F ′Φ

The following proposition shows that a morphism of HZ-categorifications really categorifies
a morphism of HZ-modules. For convenience of exposition, we assume the functor Φ in the
following is exact. The analogue of this proposition where Φ is right or left exact can also be
proven once we pass to the derived functor.

Proposition 7.6. Let Φ : (V,Ω)→ (V ′,Ω ′) be a morphism of HZ-categorifications. Assume Φ
is exact. Then [Φ] : [V] → [V ′] is an HZ-morphism.

Proof. From the data ζ−, for every n we can produce the natural isomorphism

ΦFn
≃ FnΦ.

By Condition 3 in Definition 7.5, this isomorphism intertwines the action of symmetric group
Sn . Therefore it induces a natural isomorphism

Φ ◦ Ω(Λn
+) ≃ Ω ′(Λn

+) ◦ Φ.
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By Conditions 2 and 3, and Lemma A.7, we get the following commuting diagram

ΦE E
ζ+E //

Φτ∨

��

E ′ΦE
E ′ζ+ // E ′E ′Φ

τ ′∨Φ
��

ΦE E
ζ+E // E ′ΦE

E ′ζ+ // E ′E ′Φ

,

where τ∨ and τ ′∨ are the operators on E2 and E ′2 induced from τ and τ ′ by appropriate
adjunctions. Then as above, we get a natural isomorphism

Φ ◦ Ω(Sn
−) ≃ Ω ′(Sn

−) ◦ Φ.

This shows that [Φ] intertwines the HZ-action. �

7.2. The HZ-categorification on P

In this section we define an HZ-categorification in the case when p = 0, and a weak
HZ-categorification in the case when p > 0. In both cases these categorify the Fock space
representation of HZ.

Let EndL(P) be the category of endo-functors of P that admit a left adjoint. That is, the
objects of EndL(P) are exact functors from P to P that admit a left adjoint, and morphisms are
natural transformations of functors.

We now define a k-linear monoidal functor Ω ′ : H′→ EndL(P). On objects Ω ′ is determined
by Ω ′(Q+) = F and Ω ′(Q−) = E. The distinguished morphisms η1, η2, ϵ1, ϵ2 of H′ correspond
under Ω ′ to the eponymous morphisms in EndL(P) (defined in Section 6.2). The morphism
τ ∈ H′ corresponds to the morphism τ : F2

→ F2 (defined in Section 6.4.1).

Proposition 7.7. The functor Ω ′ : H′→ EndL(P) is well-defined.

Proof. We need to check that the local relations (R1)–(R6) are satisfied. Relations (R1)–(R3) are
obvious.

Fix M ∈ P and V ∈ Vk . To check relation (R4), first we note that EFF(M)(V ) is equal to

(M(V ⊕ k)1 ⊗ V ⊗ V )⊕ (M(V ⊕ k)0 ⊗ k ⊗ V )⊕ (M(V ⊕ k)0 ⊗ V ⊗ k).

Let m ⊗ v ∈ M(V )⊗ V . Then

(η2F)M,V (m ⊗ v) = M(iV )(m)⊗ v ⊗ 1,

which is in the component M(V ⊕ k)0 ⊗ V ⊗ k of EFF(M)(V ). Applying (Eτ)M,V , we obtain

M(iV )(m)⊗ 1⊗ v ∈ M(V ⊕ k)0 ⊗ k ⊗ V .

Now (ϵ1F)M,V is the projection from EFF(M)(V ) onto the component M(V ⊕ k)0 ⊗ V ⊗ k,
followed by the map M(pV ) ⊗ 1V . In particular, M(iV )(m) ⊗ 1 ⊗ v is mapped to zero,
proving (R4).

In order to check (R5) and (R6), let us first note that

FE(M)(V ) = M(V ⊕ k)1 ⊗ V,

EF(M)(V ) = (M(V ⊕ k)1 ⊗ V )⊕ (M(V ⊕ k)0 ⊗ k),
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and EF2E(M)(V ) is equal to

(M(V ⊕ k ⊕ k)1,1 ⊗ V ⊗ V )⊕ (M(V ⊕ k ⊕ k)0,1 ⊗ k ⊗ V )

⊕(M(V ⊕ k ⊕ k)0,1 ⊗ V ⊗ k).

Now we compute △. Let m ⊗ v ∈ M(V ⊕ k)1 ⊗ V . The operator (η2FE)M,V maps
m ⊗ v to M(iV⊕k)(m) ⊗ v ⊗ 1, which is an element of M(V ⊕ k ⊕ k)0,1 ⊗ V ⊗ k. Next,
(EτE)M,V maps M(iV⊕k)(m) ⊗ v ⊗ 1 to M(iV⊕k)(m) ⊗ 1 ⊗ v. Finally, (EFϵ2)M,V maps
M(iV⊕k)(m)⊗1⊗v to M(1̃)M(iV⊕k)(m)⊗v, where here we write 1 for the vector (0, 1) ∈ V⊕k.
Now, M(1̃)M(iV⊕k) = M(1̃◦iV⊕k) = M(1V⊕k), and therefore M(1̃)M(iV⊕k)(m)⊗v = m⊗v.
The upshot is that

△M,V : FE(M)(V )→ EF(M)(V )

is the natural inclusion of M(V ⊕ k)1 ⊗ V into (M(V ⊕ k)1 ⊗ V )⊕ (M(V ⊕ k)0 ⊗ k).
A similar computation shows that

�M,V : EF(M)(V )→ FE(M)(V )

is the projection of (M(V ⊕ k)1 ⊗ V )⊕ (M(V ⊕ k)0 ⊗ k) onto M(V ⊕ k)1 ⊗ V .
Relation (R5) is immediate from these computations. To see (R6), note that M(iV pV )

restricted to M(V ⊕ k)0 is the identity operator. (This is clearly true for M = ⊗d , and hence for
all sums of subfunctors of such functors.) Therefore, (η2 ◦ ϵ1)M,V : EF(M)(V )→ EF(M)(V )
maps

(y, y′) ∈ EF(M)(V ) = (M(V ⊕ k)1 ⊗ V )⊕ (M(V ⊕ k)0 ⊗ k)

to (0, y′). Relation (R6) follows. �

In order to conclude that Ω ′ extends canonically to a functor Ω : H → EndL(P), we need
to show that EndL(P) is idempotent complete. Let P [2]′ denote the category of bi-polynomial
functors, which are contra-variant in the first variable and co-variant in the second variable. This
is an abelian category, and hence idempotent complete.

Proposition 7.8. The category EndL(P) is equivalent to P [2]′ . In particular, EndL(P) is
idempotent complete and Ω ′ extends canonically to a functor Ω : H → EndL(P).

Proof. First, we construct the functors between the two categories. Given T ∈ EndL(P) with
left adjoint ∗T , construct an associated bi-polynomial functor,

BT (V,W ) =


d

∗T (Γ V,d)(W ).

Conversely, given a bi-polynomial functor B ∈ P [2]′ , we associate the endo-functor TB of P
which is defined by:

TB(M)(V ) = HomP (B(V, ∗),M(∗)).

We first show that TB ∈ EndL(P) admits the left adjoint ∗TB given by the formula:
∗TB(M)(V ) = Hom(M, B(·, V )∗)∗.

Recall that we defined SW,d
∈ P by SW,d(V ) = Sd(Hom(W, V )). Then one can check that

SW,d
= (Γ W ∗,d)♯. By duality, these are injective co-generators of P [7, Theorem 2.10]. They

satisfy the property that for any M ∈ P ,

Hom(M, SW,d) ∼= Md(W )∗.
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Then we have

Hom(∗TB(M), SW,d) ∼= (
∗TB(M)d)(W )∗

= Hom(M, B(·,W )∗d)

= Hom(M, TB(S
W,d)).

Since functors of the form SW,d are injective co-generators in P , we have the functorial
isomorphism:

Hom(∗TB(M), N ) ≃ Hom(M, TB(N )).

This shows that ∗TB is left adjoint to TB , and hence TB ∈ EndL(P).
We now show that the two functors T → BT and B → TB are inverse to each other, and

therefore define an equivalence EndL(P) ∼= P [2]′ .
Given T : P → P with left adjoint, consider the new functor TBT . Then for M ∈ P and

V ∈ Vk :

TBT (M)(V ) = Hom(BT (V, ·),M)

= Hom


d

∗T (Γ V,d),M


=


d

Hom(∗T (Γ V,d),M)

∼=


d

Hom(Γ V,d , T (M))

∼=


d

T (M)(V )d

= T (M)(V ).

Therefore we obtain the functorial isomorphism TBT
∼= T .

Conversely, given B ∈ P [2]′ , consider the new bi-polynomial functor BTB . Then,

Hom(BTB (V, ·),M) = Hom


d

∗TB(Γ V,d),M


=


d

Hom(∗TB(Γ V,d),M)

≃


d

Hom(Γ V,d , TB(M))

≃ TB(M)(V )

= Hom(B(V, ·),M).

By the Yoneda Lemma BTB ≃ B. �

By the above proposition, and the universal property of the Karoubi envelope, we have a
functor Ω : H → EndL(P). We will show that when p = 0 this defines an HZ-categorification
in the sense of Definition 7.3. First, we introduce a weak HZ-categorification, which is valid for
all characteristics.
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Define functors Ar ,Br : P → P as follows: for M ∈ P and V ∈ Vk ,

Ar (M)(V ) = M(V ⊕ k)r
Br (M)(V ) = M(V )⊗ Λr .

For the definition of M(V ⊕ k)r see Section 3.2.

Theorem 7.9. Let p ≥ 0. The family of functors {An,Bn : n ≥ 1} defines a weak HZ-
categorification on P in the sense of Definition 7.3(2), which categorifies the Fock space
representation of HZ.

Proof. For M ∈ P and V ∈ Vk :

An ◦ Bm(M)(V ) = Bm(M)(V ⊕ k)n
= [M(V ⊕ k)⊗ Λm(V ⊕ k)]n
= M(V ⊕ k)n ⊗ Λm(V )⊕ M(V ⊕ k)n−1 ⊗ Λm−1(V )

and

Bm ◦ An(M)(V ) = An(M)(V )⊗ Λm(V )

= M(V ⊕ k)n ⊗ Λm(V ).

Immediately we obtain the isomorphism,

An ◦ Bm ∼= Bm ◦ An ⊕ Bm−1 ◦ An−1.

Therefore the family of functors {An,Bn : n ≥ 1} is a weak HZ-categorification.
It remains to show that this categorifies the Fock space representation of HZ. First note that

under ϱ, [Λn
] → en . This implies that under this identification [Bn] = en , where here en is

viewed as the operator en : B → B. Next, note that [Γ n
] → hn Since Γ n is projective [7,

Theorem 2.10], by Lemma 3.4 we have that [T∗Γ n ] = h∗n . But T∗Γ n = An [7, Corollary 2.12],
showing that indeed {An,Bn : n ≥ 1} categorifies the Fock space representation of HZ. �

Theorem 7.10. Let p = 0. Then the functor Ω : H → EndL(P) categorifies the Fock
space representation of HZ in the sense of Definition 7.3(1). In particular Ω(Sr

−)
∼= Ar and

Ω(Λr
+)
∼= Br .

Proof. It remains only to show that [Ω ] ◦ γ : HZ → End(K0(P)) is isomorphic to the Fock
space representation of HZ. For this we will show that Ω(Sr

−)
∼= Ar and Ω(Λr

+)
∼= Br ; by the

above theorem it will follow that [Ω ] ◦ γ is isomorphic to Fock space.
By the construction of Ω ′, for M ∈ P and V ∈ Vk ,

Ω(Sr
−)(M)(V ) = e(r) · Er (M)(V )

= e(r) · M(V ⊕ kr )ϖr .

Note that Er is right adjoint to Fr , and by Lemma 6.17, the action of Sr on these functors is
compatible via the adjunction (F,E). It follows that Ω(Sr

−) is right adjoint to TSr . On the other
hand, it is known that the functor Ar is right adjoint to the functor TΓ r . Since Sr ∼= Γ r in
characteristic zero, by the Yoneda lemma we conclude Ω(Sr

−)
∼= Ar . It is immediate from the

definition that Ω(Λr
+)
∼= Br . �
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7.3. Khovanov’s H-categorification on R

Throughout this section p = 0. In [13], Khovanov defines a functor

Φ : H → End(R),

which is a categorification of the Fock space representation of HZ, although he does not describe
this categorification in terms of linear species. We briefly recall Khovanov’s functor, reformulated
in the setting of linear species.

In fact, we have already introduced most of the data required to define Φ. In Section 6.3 we
defined functors E′,F′ and unit/counit data expressing the bi-adjointness of these functors, which
we denoted ϵ′1, ϵ

′

2, η
′

1, η
′

2. Then we define first Φ′ : H′ → End(R) by Q+ → F′ and Q− → E′.
We require Φ′ to be a k-linear monoidal functor, and hence this determines Φ′ on all objects of
H′.

On morphisms, ϵi , ηi → ϵ′i , η
′

i for i = 1, 2. It remains only to define the image τ ′ of the
morphism τ ∈ HomH′(Q++, Q++). For any S ∈ R and J ∈ X,

(F′)2(S)(J ) =

j,ℓ∈J

S(J r { j, ℓ})⊕2.

Let τ ′S,J be the map induced by the permutation on S(J r { j, ℓ})⊕2, for any pair j, ℓ ∈ J . This
defines an operator τ ′ on F′2.

The following is a reformulation of a theorem of Khovanov’s.

Theorem 7.11 (Khovanov). The functor Φ′ : H′ → End(R) is well-defined, and extends to a
functor Φ : H → End(R) which is a categorification of the Fock space representation of HZ in
the sense of Definition 7.3(1).

Remark 7.12. When the field is of characteristic p, we still have the functor Φ′ : H′→ End(R).
However it is unlikely to extend this functor to Φ : H → End(R). The reason is that, if the
functor Φ′ is extendable, then by Section 7.4 the Schur–Weyl functor S induces a morphism of
H -modules from K (P) to K (R). It is unlikely, since this map is surjective and non-isomorphic,
however the action of HZ on K (P) is irreducible. Actually only a subalgebra of H which is also
isomorphic to the Heisenberg algebra, can acts on K (R). It would be an interesting question to
categorify the action of this Heisenberg algebra.

7.4. S is a morphism of HZ-categorifications

We continue to assume that p = 0. We have introduced two HZ-categorifications of the Fock
space representation of HZ, one via the category P and the other via the category R. We now
enrich the Schur–Weyl duality functor to an equivalence of these HZ-categorifications.

Let (P,Ω) be the HZ-categorification appearing in Theorem 7.10. Let (R,Φ) be the HZ-
categorification appearing in Theorem 7.11. Let (S, ζ+, ζ−) be the data of Theorem 6.24. We
claim that this same data also defines a morphism of HZ-categorifications.

Lemma 7.13. The operators σ ′ on (E′)2 and τ ′ on F′2 are compatible with respect to the
adjunction (E′2,F′2).

Proof. Let S, T ∈ R. The adjunction (E′2,F′2) induces the following canonical isomorphism:

θ : HomR(E
′2(S), T ) ∼= HomR(S,F′2(T )).
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Let us describe θ explicitly. Let f : E′2(S) → T be a morphism. Then for any J ∈ X we have
collection of compatible maps f J : S(J ⊔ ∗ ⊔ ∗) → T (J ). Now, if we fix a pair of elements
j, ℓ ∈ J , then f Jr{ j,ℓ} : S(J r { j, ℓ} ⊔∗⊔∗)→ T (J r { j, ℓ}). The two bijections from { j, l} to
∗⊔∗ induce two bijections from J to J r { j, ℓ}⊔∗⊔∗. Hence we get two linear maps from S(J )
to S(J r { j, ℓ} ⊔ ∗ ⊔ ∗). Composing with f Jr{ j,ℓ} we get two maps from S(J ) to T (J r { j, ℓ}).
This defines the map

θJ ( f ) : S(J )→ F′2(T )(J ).

Using this description of θ the lemma can be easily checked. �

Theorem 7.14. The data (S, ζ+, ζ−) is an equivalence of HZ-categorifications in the sense
of Definition 7.5.

Proof. We must show that Diagrams 1–3 of Definition 7.5 commute. Diagram 1 commutes by
Lemma 6.21, and Diagram 2 commutes by Lemma 6.20. It remains to show that Diagram 3
commutes.

From the adjunction (F,E, η1, ϵ1) we produce an adjunction (F2,E2, η̃1, ϵ̃1), where η̃1 =

Fη1E◦η1 and ϵ̃1 = Fϵ1E◦ ϵ1. Similarly set η̃′1 = F′η′1E′ ◦η′1 and ϵ̃′1 = F′ϵ′1E′ ◦ ϵ′1. This defines
an adjunction (F′2,E′2, η̃′1, ϵ̃

′

1). Let ζ̃+ = E′ζ+ ◦ ζ+E and ζ̃− = F′ζ− ◦ ζ−F.
The commutativity of Diagram 1 implies that the following diagram commutes:

S
Sη̃1

zztttttttttt
η̃′1S

%%KKKKKKKKKKK

SF2E2
˜ζ−E2

// F′2SE2
F′2 ˜ζ+

// F′2E′2S.

By Lemma 6.23 the following diagram commutates:

SE2
˜ζ+ //

Sσ
��

E′2S

σ ′S
��

SE2
˜ζ+

// E′2S

By Lemma 6.17, σ and τ are compatible with respect to the adjunction (E2,F2, η̃1, ϵ̃1). By
Lemma 7.13, σ ′ and τ ′ are compatible with respect to the adjunction (E′2,F′2, η̃′1, ϵ̃

′

1). Therefore
we are in the setting of Lemma A.7, and so we conclude that Diagram 3 commutes:

SF2
˜ζ− //

Sτ
��

F′2S

τ ′S
��

SF2
˜ζ− // F′2S

�

8. gl p-categorification

In this section we define an action of H (1) on Db(P), the bounded derived category of P ,
which categorifies the H (1) action on B. We also prove the commutativity between the action of
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g′-action on P and the H (1)-action on Db(P). Hence it categorifies the action of U (g′) ⊗ H (1)

on B.
Note that the U (g′) ⊗ H (1)-action on B is essentially equivalent to the U (glp)-action on B;

more precisely, as subalgebras of End(B) they are equal. Therefore, combining the results of this
section with the g-action on P from Section 6.2, we obtain a (weak) glp-categorification of the
Fock space representation (cf. Remark 8.10).

8.1. Commutativity between two categorifications

Recall that we defined H (1) to be the subalgebra of End(B) generated by twisted operators
b(1) and their adjoints (b(1))∗, for all b ∈ B. The key combinatorial lemma (Lemma 2.4) that we
cited was that such operators in fact lie in Endg′(B). Our first order of business is to categorify
this fact.

Suppose ϱ([M]) = b. Then this implies ϱ([M (1)
]) = b(1), and therefore the operator

TM(1) categorifies the operator b(1) (Lemma 3.4). Consequently, to categorify the fact that
b(1) ∈ Endg′(B) we must show that TM(1) is a morphism of g′-categorifications. In order to
properly formulate this we first introduce the relevant data.

First we construct ζ+ : TM(1) ◦ E ∼= E ◦ TM(1) as follows: for any N ∈ P and V ∈ Vk we
compute that

(TM(1) ◦ E(N ))(V ) = N (V ⊕ k)1 ⊗ M (1)(V )

(E ◦ TM(1))(N )(V ) = (N (V ⊕ k)⊗ M (1)(V ⊕ k))1.

The GL(k)-weights of M (1)(V ⊕ k) are multiples of p, so by Lemma 6.14,

(N (V ⊕ k)⊗ M (1)(V ⊕ k))1 = N (V ⊕ k)1 ⊗ M (1)(V ⊕ k)0
∼= N (V ⊕ k)1 ⊗ M (1)(V )

and this isomorphism defines ζ+.
The isomorphism ζ− : TM(1) ◦ F ≃ F ◦ TM(1) is simply given by the flip map.

Theorem 8.1. The data (TM(1) , ζ+, ζ−) is a morphism of g′-categorifications (cf. Remark 6.5).

Proof. To prove this theorem we must check conditions (1)–(3) of Definition 6.4. To begin, we
check condition (1), i.e. we must check that for N ,M ∈ P and V ∈ Vk the following diagram
commutes:

N (V )⊗ M (1)(V )
TM(1)η1

ssggggggggggggggggggg

η1TM(1)

��

N (V ⊕ k)1 ⊗ V ⊗ M (1)(V )

ζ−E
��

N (V ⊕ k)1 ⊗ M (1)(V )⊗ V

Fζ+ ++WWWWWWWWWWWWWWWWWWW

N (V ⊕ k)1 ⊗ M (1)(V ⊕ k)0 ⊗ V
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Let n⊗m ∈ N (V )⊗M (1)(V ). Applying the map TM(1)η1 we obtain


i (N (ξ̃i )n)1⊗ei⊗m. Then
applying ζ−E we obtain


i (N (ξ̃i )n)1⊗m⊗ei . Finally, applying Fζ+ we obtain


i (N (ξ̃i )n)1⊗

M (1)(ιV )m⊗ ei . On the other hand, starting with n⊗m and applying the map η1TM(1) we obtain
i ((N ⊗M (1))⊕ (ξ̃i )(n⊗m))1⊗ ei . For every i , we have ((N ⊗M (1))⊕ (ξ̃i )(n⊗m))1 equals

(N (ξ̃i )n)0 ⊗ (M
(1)(ξ̃i )m)1 + (N (ξ̃i )n)1 ⊗ (M

(1)(ξ̃i )m)0.

Since in the space M (1)(V ⊕ k), all weights are multiples by p, it forces (M (1)(ξ̃i )m)1 = 0.
Hence we get

((N ⊗ M (1))⊕ (ξ̃i )(n ⊗ m))1 = (N (ξ̃i )n)1 ⊗ (M
(1)(ξ̃i )m)0.

Then, by Lemma 6.15, (M (1)(ξ̃i )m)0 = M (1)(ιV )m. This proves condition (1).
To check condition (2) we have to show that the following diagram commutes:

N (V ⊕ k)1 ⊗ M (1)(V )
ζ+ //

TM(1) X

��

N (V ⊕ k)⊗ M (1)(V ⊕ k)0

XTM(1)

��
N (V ⊕ k)1 ⊗ M (1)(V )

ζ+ // N (V ⊕ k)⊗ M (1)(V ⊕ k)0.

Let n ⊗ m ∈ N (V ⊕ k)1 ⊗ M (1)(V ). Applying TM(1) X and then ζ+, we obtain


1≤i≤d−1

(xd,i xi,d − d + 1)n ⊗ M (1)(ιV )m. On the other hand, if we first apply ζ+ and then XTM(1) , we
also get


1≤i≤d−1(xd,i xi,d − d + 1)(n ⊗ M (1)(ιV )m), proving that condition 2 holds. Proving

condition (3) is a routine computation. �

Suppose as above that [M] → b under ϱ. We have seen that TM(1) categorifies the twisted
operator b(1). We would now like to categorify the adjoint operator (b(1))∗. A natural candidate
for this is the functor T∗

M(1) , the right adjoint to TM(1) . The problem is that T∗
M(1) is not exact, since

M (1) is not projective. Therefore we are led to consider Db(P), the bounded derived category
of P .

Lemma 8.2. Let M ∈ P and let RT∗M be the right derived functor of T∗M . Then for any
N ∈ P, RT∗M (N ) is a bounded complex in Db(P), and therefore RT∗M defines a functor on
Db(P).

Proof. By [7, Theorem 2.10] there exists a projective resolution of M, P · � M . We have a
general formula:

T∗M (N )(∗) = Hom(M(·), N (∗ ⊕ ·)).

By definition of derived functors, once we replace M by P ·, we obtain that RT∗M (N ) =
(T∗P (N ))

·. This formula does not depend on N , and hence in general

RT∗M = (T
∗

P )
·.

Since the global dimension of each Pd is finite, on evaluation on N ∈ P, RT∗M (N ) is a complex
whose cohomology vanishes almost everywhere. Hence RT∗M is defined on Db(P). �

Now we prove that the functors RT∗
M(1) categorify (b(1))∗. We first show that T∗

M(1) is an
endomorphism of the g′-categorification on P .
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Let ζ∨+ : T
∗

M(1) ◦E→ E◦T∗
M(1) and ζ∨− : T

∗

M(1) ◦F→ F◦T∗
M(1) be the isomorphisms induced

by the isomorphisms ζ+, ζ− appearing in Theorem 8.1, the bi-adjunctions between E and F, and
also the adjunction between TM(1) and T∗

M(1) .

Theorem 8.3. Let M ∈ P . The data (T∗
M(1) , ζ

∨
− , ζ

∨
+ ) induces a morphism of g′-categorifications

P . In particular RT∗
M(1) yields a g′-endomorphism on K (P).

Proof. As in the proof of Theorem 8.1, one checks that the following diagram commutes:

TM(1)

TM(1)η2

yyrrrrrrrrrr η2TM(1)

%%LLLLLLLLLL

TM(1)EF
ζ+F // ETM(1)F

Eζ− // EFTM(1)

By Proposition A.6 the conditions of Proposition A.9 are satisfied. Hence we can conclude that
T∗

M(1) is an endomorphism of g′-categorification on P . Then by Corollary 6.7, RT∗
M(1) yields an

endomorphism of K (P) commuting with the g′ action. �

Remark 8.4. To properly discuss g-categorifications on triangulated categories one can employ
Rouquier’s 2-representation theory [21]. In this setting, the functor RT∗

M(1) should be a morphism
of 2-representations of A(g′), the 2-category associated to g′ in loc. cit.

8.2. Categorifying the twist Heisenberg action

We are ready now to categorify the twisted Heisenberg algebra action on Fock space. Note
that under our identification, H (1) is generated by operators [TM ]

(1) and ([TM ]
(1))∗.

Lemma 8.5. The assignment

[TM ]
(1)
→ [TM(1) ]

([TM ]
(1))∗ → [RT∗M(1) ]

defines a representation of H (1) on K (P) isomorphic to B.

Proof. By the adjunction of TM(1) and RT∗
M(1) on Db(P), for any M, L ∈ Db(P), we have

HomDb(P)(TM(1)N , L) ≃ HomDb(P)(N , RT∗M(1)L).

Under the identification of K (Db(P)) = K (P) = B, this descends to

([TM(1) ]([N ]), [L]) = ([N ], [RT∗M(1) ][L]).

Therefore [RT∗
M(1) ] = [TM(1) ]

∗. On the other hand, we have that [TM(1) ] = [TM ]
(1). Hence

[RT∗
M(1) ] = ([TM ]

(1))∗. Since [TM ]
(1) and their adjoints generate the algebra H (1), the

proposition follows. �

Now we enrich the above lemma to a proper (weak) categorification. In other words, we
will distinguish endo-functors on Db(P) that lift the action of H (1) on B, and functorial
isomorphisms between these functors lifting defining relations of H (1).

Recall that for M, N ∈ P we have a general formula

T∗M (N )(∗) = Hom(M(·), N (∗ ⊕ ·)). (13)
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It is quite easy to see that ∗TM ≃ ♯T∗M♯♯. Recall also that RT∗M is the right derived functor of
T∗M . Then we have:

RT∗M (N )(∗) = RHom(M(·), N (∗ ⊕ ·)). (14)

Let L∗TM be the left derived functor of ∗TM . We again have L∗TM ≃ ♯RT∗
M♯♯.

Lemma 8.6. For M, N , L ∈ P there is a canonical isomorphism

RHom(M, N ⊗ L) ≃ RHom(L∗TN (M), L).

Proof. The functor ∗TN sends projective objects to projective objects, since it admits an
exact right adjoint TN . Then the right derived functor of Hom(∗TN (·), L) is isomorphic to
RHom(L∗TN (·), L). Thus the lemma follows from the adjunction

Hom(M, N ⊗ L) ≃ Hom(∗TN (M), L). �

Recall that Γ n is the n-th divided power and Λm is the m-th exterior power. Let Γ n(1) and
Λm (1) be the Frobenius twist of these functors.

Proposition 8.7. On the derived category Db(P), we have isomorphisms of endo-functors

RT∗
Γ n (1) ◦ TΛm (1) ≃


0≤ j≤min{m,n}

C( j)⊗ TΛm− j (1) ◦ RT∗
Γ n− j (1) , (15)

where C( j) = RHom(Λ j (1), S j (1)) is a complex of vector spaces, which has only nonzero coho-
mologies at even degrees. Moreover the alternating sum of the dimension of all cohomologies of

C( j) is equal to


p
j


.

Proof. Given any M ∈ P and V ∈ Vk , then

TΛm (1)(RT∗
Λm (1)(L))(V ) = Λm(V (1))⊗ RHom(Γ n(1), L(V ⊕ ·)).

Now consider the following chain of isomorphisms:

RT∗
Γ n (1)TΛm (1)(L)(V ) ≃ RHom(Γ n(1),Λm (1)(V ⊕ ·)⊗ L(V ⊕ ·))

≃


i+ j=m

Λi (V (1))⊗ RHom(Γ n(1),Λ j (1)
⊗ L(V ⊕ ·))

≃


i+ j=m

Λi (V (1))⊗ RHom(L∗TΛ j (1)(Γ n(1)), L(V ⊕ ·))

≃


0≤ j≤min{m,n}

Λm− j (V (1))⊗ RHom(L∗TΛ j (1)(Γ n(1)), L(V ⊕ ·)).

In the above chain of isomorphisms, the third isomorphism follows from Lemma 8.6, and the
fourth isomorphism follows by degree consideration. Now we want to compute L∗TΛ j (1)(Γ n(1)).
By the general formula L∗TM ≃ ♯RT∗

M♯♯. In our case, since (Λ j (1))♯ = Λ j (1), then we have

L∗TΛ j (1) ≃ ♯RT∗
Λ j (1)♯. Moreover, (Γ n(1))♯ = Sn(1), so

L∗TΛ j (1)(Γ n(1)) ≃ ♯(RT∗
Λ j (1)(S

n(1))).
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So we are reduced to compute RT∗
Λ j (1)(S

n(1)). We claim it is isomorphic to Sn− j (1)
⊗

RHom(Λ j (1), S j (1)), since for any W ∈ Vk ,

RT∗
Λ j (1)(S

n(1))(W ) ≃ RHom(Λ j (1), Sn(1)(W ⊕ ·))

≃


k+ℓ=n

Sk(W (1))⊗ RHom(Λ j (1), Sℓ(1))

≃ Sn− j (W (1))⊗ RHom(Λ j (1), S j (1)).

In the above chain of isomorphisms, the third isomorphism follows by degree considerations and
the condition that j ≤ n.

Therefore in the end we obtain

RT∗
Γ n (1) ◦ TΛm (1) ≃


0≤ j≤min{m,n}

C( j)⊗ TΛm− j (1) ◦ RT∗
Γ n− j (1) ,

where C( j) = RHom(Λ j (1), S j (1)). As to the computation of C( j), i.e. the computation of
Ext∗(Λ j (1), S j (1)), one can refer to [6, Theorem 4.5]. �

From above proposition, we immediately obtain the following corollary.

Corollary 8.8. As linear operators on the space B of symmetric functions, for any n,m ≥ 0 we
have following equality

(h(1)n )∗e(1)m =


0≤ j≤min{m,n}


p

j


e(1)m− j (h

(1)
n− j )

∗. (16)

Theorem 8.9. The family of functors

{RT∗
Γ n (1) ,TΛn (1) |n ≥ 0}

along with the functorial isomorphisms from Proposition 8.7 (weakly) categorify the
representation of H (1) on B.

Proof. By Proposition 8.7, this family of functors categorifies the action of an algebra H̃ acting
on B, where H̃ is the unital algebra generated by tn, sm, (n,m = 0, 1, . . .) subject to relations

tn tm = tm tn, snsm = smsn (17)

tnsm =


j≤min{n,m}


p

j


sm− j tn− j , (18)

and t0 = s0 = 1. So to prove the theorem it remains to show that H̃ ∼= H (1).
By [18, Section 2.2.8], the twisted Heisenberg H (1) has a presentation with standard

generators un, vm , subject to relations

unum = umun, vnvm = vmvn

vnum − unvm = pnδn,m,

and u0 = v0 = 1. (In our realization of H (1), un corresponds to the (pn)th power symmetric
function, and vn is its adjoint.)

By Corollary 8.8 and Lemma 2.4, there is a natural map θ : H̃ → Endg′(B) = H (1)

by mapping sn to e(1)n and mapping tn to (h(1)n )∗. In the algebra B of symmetric functions,
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{en}, {hn}, {pn} are three algebraically independent basis. So it is clear that θ is surjective; we
will show it is an isomorphism.

We introduce a filtration F̃ on H̃ , by declaring that the degree of tn is n and the degree
of sm is m; similarly we introduce a filtration F on H (1) such that the degree of un is n
and the degree of vm is m. Since θ(tn), θ(sn)

∗ are homogeneous symmetric functions, it is
easy to see that θ preserves the filtration. Since θ : C[t1, t2, . . .] → C[v1, v2, . . .] and
θ : C[s1, s2, . . .] → C[u1, u2, . . .] are isomorphisms, and gr F̃ (H̃) and grF (H (1)) are both
polynomial rings, it implies that gr(θ) : gr F̃ (H̃) → grF (H (1)) is an isomorphism. Therefore
θ : H̃ → H (1) is an isomorphism. �

Remark 8.10. By Theorem 6.10 we have a g-categorification on P , which can be derived to
obtain a g-categorification on Db(P). In particular, we have functors Ei , Fi : Db(P)→ Db(P)
and functorial isomorphisms between these functors that define a categorification of the Fock
space representation of g. By the above theorem we also have a family of functors on Db(P),
along with functorial isomorphisms, that categorify the action of H (1) on Fock space. Combining
all this data and the commutativity data from Theorems 8.1 and 8.3, we therefore obtain a (weak)
categorification of the (irreducible) Fock space representation of glp.
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Appendix

In this appendix we gather some useful lemmas. In Appendix A.1 we record some relations
between various dualities on the categories P and R. In Appendix A.2 we describe an explicit
formula for an operator on the functor F obtained from X via adjunction. In Appendix A.3
we prove that the adjoint of a morphism of g-categorifications, suitably enriched, is again a
morphism of g-categorifications.

A.1. Duality

In this part, we collect some facts relating to Kuhn duality ♯ : P → P , a duality ♯′ : R → R
defined below, the bi-adjoint pairs (E,F), (E′,F′), and the Schur–Weyl duality functor S : P →
R. We refer the reader to [9] for proofs and more detail.

Recall that ♯ : P → P is defined as follows: for M ∈ P and V ∈ Vk,M♯(V ) = M(V ∗)∗.
The functor ♯′ : R → R is given as follows. Firstly, for J ∈ X, define θ : EndX(J ) →

EndX(J ) by θ(si, j ) = si, j and θ(w1w2) = θ(w2)θ(w1). Then, for S ∈ R and J ∈ X, set
S♯
′

(J ) = S(J )∗. Given any invertible map f : J → J , set S♯
′

( f ) = S(θ( f ))∗.
Recall from Sections 6.2 and 6.3 that we have bi-adjunction data

I
η1 // FE

ϵ2 // I , I
η2 // EF

ϵ1 // I

I
η′1 // F′E′

ϵ′2 // I , I
η′2 // E′F′

ϵ′1 // I

In Section 6.4.2 we defined isomorphisms ζ+ : SE→ E′S, and ζ− : SF→ F′S.
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Let ♯E ≃ E♯, ♯F ≃ F♯, ♯E′♯′, ♯′F ≃ F′♯ and ♯′S ≃ S♯ be the obvious natural isomorphisms.
So as not to inundate the reader with more notation, will not name these isomorphisms.
By composition we also obtain natural isomorphisms ♯′SE ≃ SE♯, ♯′SF ≃ SF♯, ♯EF ≃
EF♯, ♯′E′F′ ≃ F′E′ etc.

Lemma A.1. We have the following commutative diagrams

♯ ♯EF
♯η2oo

��
EF♯,

ϵ1♯

`̀BBBBBBBB

♯
♯ϵ2 //

η1♯   BB
BB

BB
BB

♯FE

��
FE♯.

♯′ ♯′E′F′
♯′η2oo

��
E′F′♯′,

ϵ′1♯
′

bbDDDDDDDDD

♯′
♯′ϵ′2 //

η′1♯
′

""DD
DD

DD
DD

D ♯′F′E′

��
F′E′♯′.

Lemma A.2. We have the following commutative diagrams

♯′SE

��

♯′E′S
♯′ζ+oo

��
SE♯

ζ+♯ // E′S♯,

♯′SF

��

♯′F′S
♯′ζ−oo

��
SF♯

ζ−♯ // F′S♯

A.2. Compatibility of operators X and Y via bi-adjunction

Let dπM,V be the representation of gl(V ) on M(V ). Then

dπM♯,V (A) = dπM,V ∗(A
∗)∗, (19)

for any A ∈ gl(V ). Let X ♯M,V be the operator on E(M)♯(V ) = E(M)(V ∗)∗ induced from the
operator X M,V ∗ on E(M)(V ∗).

Lemma A.3. We have the following commutative diagram:

E(M♯)
α //

X M♯

��

E(M)♯

X♯M
��

E(M♯)
α // E(M)♯

Proof. Recall that X M,V =


i dπM,V (xn,i )dπM,V (xi,n) − n, where n = dim V . If we replace
V by V ∗, then we have to exchange the role of ei and ξi . Hence X ♯M,V =


i (dπM,V ∗(x∗i,n)

dπM,V ∗(x∗n,i ))
∗
−n. By (19) we have X M♯,V =


i dπM♯,V (xn,i )dπM♯,V (xi,n)−n = X ♯M,V . �

Let Y be the operator on F induced from the operator X on E via the adjunction (E,F, η1, ϵ1).
We describe the operator Y explicitly in the following proposition (see [9] for details).
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Proposition A.4. Let M ∈ P and V ∈ Vk . Choose a basis ei of V and let xi j ∈ gl(V ) be the
operators xi j (ek) = δ jkei . Then YM,V =


i, j xi, j ⊗ x j,i on F(M)(V ) = M(V )⊗ V .

There is a canonical isomorphism F(M♯) ≃ F(M)♯, which we use to identify the two spaces.
Let Y ♯M,V be the induced operator on F(M)(V ∗)∗ from the operator YM,V ∗ on F(M)(V ∗). Using
the explicit formula for Y , one can prove as in Lemma A.3 the following:

Lemma A.5. The operator Y ♯M,V coincides with YM♯,V .

Proposition A.6. The operators X on E and Y on F are compatible via the second adjunction
(F,E, η2, ϵ2).

Proof. Following the chain of natural isomorphisms

Hom(F(M), N ) ≃ Hom(N ♯,F(M)♯) ≃ Hom(N ♯,F(M♯))

≃ Hom(E(N ♯),M♯) ≃ Hom(M,E(N ♯)♯)

≃ Hom(M,E(N )),

by Lemma A.3, Proposition A.4 and Lemma A.5, one can conclude the proof of proposition. �

A.3. Adjunction and morphisms of categorifications

We first prove an abstract category-theoretic lemma. Suppose we are in the situation where
we have two categories Ci , i = 1, 2. Suppose we are also given functors Ei , Fi : Ci → Ci and
adjunctions (Ei , Fi , ηi , ϵi ) for i = 1, 2. Moreover, assume X i is a natural transformation on
Ei , and let Yi be the induced natural transformation on Fi via the adjunction (Ei , Fi , ηi , ϵi ).
Finally, let Φ : C1 → C2 be a functor, along with natural isomorphisms ζ+ : ΦE1 ≃ E2Φ and
ζ− : ΦF1 ≃ F2Φ.

Lemma A.7. If the following diagrams commute

Φ
η2Φ

%%KKKKKKKKKK
Φη1

yyssssssssss

ΦF1 E1
ζ−E1

// F2ΦE1 F2ζ+

// F2 E2Φ

ΦE1
ζ+ //

ΦX1

��

E2Φ

X2Φ
��

ΦE1
ζ+ // E2Φ.

then this diagram also commutes

ΦF1
ζ− //

ΦY1

��

F2Φ

Y2Φ
��

ΦF1
ζ− // F2Φ.
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Proof. We look at the following diagram,

F2ΦE1 F1
F2ζ+F1 //

F2 X1 F1

���
�
�
�
�
�
� F2 E2ΦF1

F2 E2ζ− //

F2 X2ΦF1

���
�
�
�
�
�
� F2 E2 F2Φ

F2 X2 F2Φ

��

ΦF1 E1 F1

ζ−E1 F1

88rrrrrrrrrr

ΦF1 X1 F1

��

ΦF1
Φη1 F1

oo

η2ΦF1

::uuuuuuuuu ζ− //

ΦY1

��

F2Φ

η2 F2Φ
::uuuuuuuuu

Y2Φ

��

F2ΦE1 F1
F2Φϵ1

++XXXXXXXXXXXXXX
F2ζ+F1 //_______ F2 E2ΦF1

F2 E2ζ−

//_______ F2 E2 F2Φ

F2ϵ2Φzzuuuuuuuuu

ΦF1 E1 F1
ΦF1ϵ1 //

ζ−E1 F1

88r
r

r
r

r
ΦF1

ζ−

// F2Φ

We want to show the right square in the front face commute. It follows from the commutativity
of other squares, which follows from our assumptions and functoriality. Note that we apply
[4, Lemma 5.3] to show the right triangle diagram in the bottom face commute. �

Lemma A.8. Given a bi-adjunction (E, F, η1, ϵ1) and (F, E, η2, ϵ2), the induced map η∨2 :
E F → id from η2 : id→ E F by adjunctions is equal to ϵ1.

Proof. By definition, the map η∨2 is the composition of the following maps

E F
η2 E F// E F E F

Eϵ2 F // E F
ϵ1 // id .

Then note that Eϵ2 ◦ η2 E = 1, since (F, E, η2, ϵ2) is an adjunction. It is immediate that
η∨2 = ϵ1. �

We would like now to prove the main result of the appendix, namely that the adjoint
of a morphism of g-categorifications is again a morphism of g-categorifications. The proper
formulation of this statement has to incorporate a fixed bi-adjunction between the functors
E, F .

Suppose that C, C′ are two g-categorifications with associated data

(E, F, η1, ϵ1, X, σ, C = ⊕ω Cω)

and

(E ′, F ′, η′1, ϵ
′

1, X ′, σ ′, C′ = ⊕ω C′ω).

Moreover, suppose these data are enriched to include a bi-adjunction between E, F and E ′, F ′.
In other words, suppose we fix η2, ϵ2 and η′2, ϵ

′

2 as usual:

I
η1 // F E

ϵ2 // I , I
η2 // E F

ϵ1 // I

I
η′1 // F ′E ′

ϵ′2 // I , I
η′2 // E ′F ′

ϵ′1 // I

The bi-adjunction data are compatible in the following sense: let X∨ (resp. X ′∨, σ∨, σ ′∨) be
the operator on F (resp. F ′, F2, F ′2) induced from the operator X (resp. X ′, σ , σ ′) on E (resp.
E ′, E2, E ′2) via the adjunction (E, F, η1, ϵ1) (resp. (E ′, F ′, η′1, ϵ

′

1), . . .). Then we assume that
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the induced operator (X∨)∨ (resp. (X ′∨)∨, (σ∨)∨, (σ ′∨)∨) from X∨ (resp. X ′∨, σ∨, σ ′∨) via the
other adjunction (F, E, η2, ϵ2) (resp. (F ′, E ′, η′2, ϵ

′

2), . . .), coincides with X (resp. X ′, σ , σ ′).
Now let (Φ, ζ+, ζ−) : C → C′ be a morphism of g-categorifications. We assume that Φ

preserves the bi-adjunction, i.e. the following diagram commutes

Φ
Φη2

zzuuuuuuuuuu
η′2Φ

%%KKKKKKKKKK

ΦE F
ζ+F // E ′ΦF

E ′ζ− // E ′F ′Φ.

(20)

Proposition A.9. Let C, C′ be g-categorifications with fixed compatible bi-adjunctions as above.
Let Φ : C → C′ be a morphism of g-categorifications satisfying (20). Let Ψ : C′ → C be the
right adjoint of Φ. Let ζ∨− : Ψ E ′ → EΨ and ζ∨+ : Ψ F ′ → FΨ be the induced isomorphisms
from ζ− and ζ+ by appropriate adjunctions. Then (Ψ , ζ∨− , ζ

∨
+ ) : C′→ C is a morphism from the

g-categorifications.

Proof. From Diagram (20), by adjunction and Lemma A.8 we get the following commutative
diagram

Ψ

Ψ E ′F ′

Ψϵ′1

99tttttttttt ζ∨− F ′
// EΦF ′

Eζ∨+ // E FΦ.

ϵ1Ψ
ddJJJJJJJJJJ

By Lemma 5.3 in [4] this commutative diagram is equivalent to the commutativity of:

Ψ
Φη′1

yytttttttttt
η1Ψ

%%JJJJJJJJJJ

Ψ F ′E ′
ζ∨+ E ′

// FΨ E ′
Fζ∨− // F EΨ .

(21)

From the commutativity of diagram (1) and diagram (2) in the definition of morphism
of g-categorifications (Definition 6.4), by Lemma A.7 we get the following commutative
diagram

ΦF
ζ− //

X∨

��

F ′Φ

X ′∨Φ
��

ΦF
ζ− // F ′Φ.

Then we apply appropriate adjunctions on this diagram, we get the following commutative
diagram

Ψ E ′
ζ∨− //

Ψ X
��

EΨ

X ′Ψ
��

Ψ E ′
ζ∨− // EΨ .

(22)
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By similar argument, we can get the following commutative diagram.

Ψ E ′E ′
ζ∨− E ′

//

Ψσ ′

��

EΨ E ′
Eζ∨− // E EΨ

σΨ
��

Ψ E ′E ′
ζ∨− E ′

// EΨ E ′
Eζ∨− // E EΨ .

(23)

From cite commutative diagrams (21)–(23), the proposition follows. �

References

[1] M. Aguiar, S. Mahajan, Monoidal Functors, Species and Hopf Algebras, in: CRM Monograph Series, vol. 29,
American Mathematical Society, Providence, RI, 2010. With forewords by Kenneth Brown and Stephen Chase and
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[19] A. Licata, A. Savage, Hecke algebras, finite general linear groups, and Heisenberg categorification, Quantum Topol.

arXiv:1101.0420.
[20] I.G. Macdonald, Symmetric Functions and Hall Polynomials, second ed., in: Oxford Mathematical Monographs,

Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995.
[21] R. Rouquier, 2-Kac–Moody algebras, arXiv:0812.5023 [math.RT].
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