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ABSTRACT

We make an observation which doubles the exponent of distribution in

certain Affine Sieve problems, such as those considered by Liu–Sarnak,

Kontorovich, and Kontorovich–Oh. As a consequence, we decrease the

known bounds on the saturation numbers in these problems.
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1. Introduction

The purpose of this paper is to make a simple observation about the execution

of the Affine Sieve, which has the effect of doubling the exponent of distribution

in many natural sieve problems. For concreteness, we will illustrate the method

on problems studied by Liu–Sarnak [LS10], Kontorovich [Kon07, Kon09], and

Kontorovich–Oh [KO12]. We first briefly recall the general setup, then specialize

to these particular problems, explain what is known, and finally describe our

results.

1.1. The General Affine Sieve. Roughly speaking, the Affine Sieve inputs

a pair (O, f) consisting of (i) an integer orbit O ⊂ Zn by a linear group and (ii)

a polynomial function f which is integral on O, and outputs a number R ≤ ∞
so that there are “many” points x ∈ O with f(x) having at most R prime

divisors. Let us make this precise.

Let Γ < GLn(Z) be a finitely-generated group of invertible n × n integer

matrices, let G := Zcl(Γ) be its Zariski closure, and denote the real points of

G by G := G(R). When the Haar measure of Γ\G is infinite, we refer to Γ as

thin. For a fixed primitive vector y ∈ Zn, we consider the orbit

(1.1) O := y · Γ ⊂ Zn;

we refer to O as thin when Γ is. Given a polynomial f in n variables which

is integral on O, we say that the pair (O, f) is strongly primitive1 if, for

all integers q ≥ 1, there is an x ∈ O so that f(x) ∈ (Z/qZ)×. We assume

henceforth that this is the case.

For an integer R ≥ 1, let

PR ⊂ Z

denote the set of R-almost primes, that is, numbers with at most R prime

divisors. We allow R = ∞, in which case PR = Z. Let

O(f,R) := {x ∈ O : f(x) ∈ PR}.
The goal of the Affine Sieve is to study the so-called saturation number,

given by

R0(O, f) := min{R ≤ ∞ : Zcl(O(f,R)) = Zcl(O)}.
1 This corrects the typo in [KO12, Definition 1.3].
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That is, R0 is the minimal R for which O(f,R) is Zariski dense in the Zariski

closure of O. (Here Zcl(·) refers to the Zariski closure in affine space An
Q.)

The program initiated by Bourgain–Gamburd–Sarnak [BGS06, BGS10] and

completed by Salehi Golsefidy–Sarnak [SGS11] shows in essentially the greatest

generality possible that pairs (O, f) are factor finite, meaning that we have

the strict inequality R0(O, f) <∞. Beyond factor-finiteness, one would like to

actually determine the saturation number of any given pair (O, f). As stated,

this problem is completely hopeless, as it includes all classical sieve problems

(see the discussion in, e.g., [BGS10]). Nevertheless, there is an ongoing program

of determining, or at least giving strong estimates for, the saturation number

in certain specific cases, where more structure can be exploited. We give a few

natural examples below.

1.2. Thin Pythagorean Orbits. Let G = SOQ(R) < SL3(R) be the real

special orthogonal group preserving the “Pythagorean” quadratic form

(1.2) Q(x) := x2 + y2 − z2,

where x = (x, y, z). We define a Pythagorean triple to be a primitive integer

vector on the cone Q = 0.

Let Γ < G(Z) be a finitely generated subgroup of the integer matrices in G,

and assume Γ is non-elementary, or equivalently, that its Zariski closure is SOQ.
For a fixed Pythagorean triple, e.g., y = (3, 4, 5), let O be its corresponding

Γ-orbit, as in (1.1). We allow Γ, and hence O, to be thin, in which case we refer

to O as a thin Pythagorean orbit.

A measure of this thinness is the critical exponent

δ = δΓ ∈ [0, 1]

of Γ; this is the abscissa of convergence of the Poincaré series of Γ, or equiva-

lently, the Hausdorff dimension of the limit set of Γ. Since Γ is non-elementary,

δ is strictly positive; moreover, Γ is thin if and only if δ < 1. The role played

by this geometric invariant is illustrated by the easy fact that

(1.3) #{x ∈ O : ‖x‖ < T } = T δ+o(1),

as T → ∞, where ‖ · ‖ is the standard Euclidean norm.

For various choices of the polynomial f , one can consider the problem of esti-

mating the saturation number R0(O, f). Three natural choices for f considered
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in [Kon07, Kon09, KO12] are

(1.4)

⎧⎪⎪⎨
⎪⎪⎩
fH (x) = z, the “hypotenuse”,

fA (x) = 1
12xy, the “area”,

fC (x) = 1
60xyz, the product of coordinates.

Recall that we assume, as throughout, that the pair (O, f) is strongly prim-

itive; the fractions in (1.4) are to remove extraneous prime factors (e.g., it is

elementary that the product of coordinates xyz in a Pythagorean triple is always

divisible by 60).

We will refer to the pairs (O, f) above with f ∈ {fH , fA , fC } as Examples

A, B, and C, respectively.

Theorem 1.5 ([Kon07, Kon09, KO12]): Assume the critical exponent δ of Γ is

sufficiently close to 1. Then we have

(1.6) R0(O, f) ≤

⎧⎪⎪⎨
⎪⎪⎩
13, for Example A,

40, for Example B,

58, for Example C.

Remark 1.7: We have taken this opportunity to correct the values of R in the

statement of [KO12, Theorem 1.5], which were improperly computed; see Re-

mark 2.38.

The upper bounds on R0 given in (1.6) are based on Gamburd’s spectral gap

[Gam02] (see §2.1); the lower bounds, and expected true values of R0, are the

so-called “sieve dimensions” (see Remark 2.19), given by

(1.8) κ = κ(O, f) :=

⎧⎪⎪⎨
⎪⎪⎩
1, for Example A,

4, for Example B,

5, for Example C.

In Example A, the upper bound on the saturation number has been reduced

significantly in [BK13] to

(1.9) R0(O, fH ) ≤ 4

by quite different methods from those discussed here, so we will not focus on

this case. For the other two choices of f , an easy consequence of our method is

the following improvement.
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Theorem 1.10: Theorem 1.5 holds with (1.6) replaced by

(1.11) R0(O, f) ≤
⎧⎨
⎩
25, for Example B,

37, for Example C.

Remark 1.12: For Example A, our method gives R0(O, fH ) ≤ 7; see §3.3.1.
This is an improvement over (1.6), but does not compete with (1.9).

Remark 1.13: In all the statements above (and below), the Zariski density is

an easy consequence of a lower bound on the cardinality of O(f,R) restricted

roughly to an archimedean ball; see Remark 2.48.

1.3. Anisotropic Orbits. In [LS10], Liu–Sarnak consider a related problem.

Instead of the isotropic Pythagorean formQ in (1.2), they let Q be an anistropic

(over Q) indefinite integral ternary quadratic form, e.g., Q(x) = x2 + y2 − 3z2.

This means that there are no rational points on the cone Q = 0, and so one

instead considers the affine quadric

(1.14) V = VQ,t := {x : Q(x) = t},
for a fixed non-zero integer t, chosen so that V (Z) is non-empty. For simplicity,

assume that t ·Δ(Q) is square-free, where Δ(Q) is the discriminant of Q. The

study of the vectors in V (Z) reduces (see [LS10, §2]) to that of orbits O := y ·Γ,
where y ∈ V (Z), and Γ = SOQ(Z) is the integer matrix group preserving Q.

(Such an orbit is not thin, as Γ is a lattice in G = SOQ(R), with critical

exponent δ = 1.) Let f(x) = xyz be the product of coordinates, and recall

our assumption that the pair (O, f) is strongly primitive (for example, this is

guaranteed if y = (1, 1, 1)).

We refer to this pair (O, f) as Example D.

Theorem 1.15 ([LS10]): We have the following bound on the saturation num-

ber in Example D:

(1.16) R0(O, f) ≤ 26.

Assuming the Selberg Eigenvalue Conjecture (see Theorem 2.2), we have

(1.17) R0(O, f) ≤ 22.

Remark 1.18: Note that for the product of coordinates here the sieve dimension

is κ = 3 (see §2.4), rather than κ = 5 in (1.8) for Example C, that is, for
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f = fC . This is because in the isotropic case, there are non-constant polynomial

parametrizations of the integer points of the corresponding orbits which can be

(and, in the Pythagorean case, are) reducible; see Remark 2.32.

As a consequence of our method, we have

Theorem 1.19: Theorem 1.15 holds unconditionally with (1.16) replaced by

R0(O, f) ≤ 16.

Assuming the Selberg Eigenvalue Conjecture, (1.17) may be replaced by

R0(O, f) ≤ 14.

1.4. New Observation. Our key new observation is that, for all the problems

above (indeed for nearly all natural Affine Sieve problems in the literature),

the polynomial f is homogeneous. Roughly speaking, this allows us, in the

modular/archimedean decomposition of the Affine Sieve, to projectivize, taking

a larger stabilizer group (see §3.2). As a result, we have no modular loss in

the error terms, whereas in the previous approaches, a power of the level was

lost; see Remark 3.6. The upshot is an improvement by a factor of two in

the level of distribution (see §2.3) in the above problems, which translates to

the above-claimed improved bounds on saturation numbers. In fact our main

observation is a general principle, applying to many other settings, e.g., the

pairs (O, f) considered in [NS10] with f homogeneous; we will not bother with

other applications here.

1.5. Outline. In §2 we collect some relevant background. In particular, we

recall facts on spectral gaps, counting, levels of distribution, and the Diamond–

Halberstam–Richert sieve. We also sketch proofs of Theorems 1.5 and 1.15, since

our proofs of Theorems 1.10 and 1.19 are nearly identical. In §3 we explain our

new observation, and use it to prove Theorems 1.10 and 1.19.

1.6. Notation. We use the standard notation f = O(g) and f 	 g synony-

mously to mean f(x) ≤ Cg(x) for an implied constant C > 0 and all x suffi-

ciently large. Unless otherwise specified, C may depend only on the pair (O, f),
which is treated as fixed. The little-oh notation f = o(g) means f/g → 0.

Acknowledgements. The authors thank Shamgar Gurevich, Nick Katz, and

Peter Sarnak for enlightening discussions.
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2. Background

2.1. Spectral Gap. We take the following as our definition of a spectral gap

for the cases of interest to us here. For Q a ternary indefinite integral quadratic

form (either isotropic or anisotropic over Q), let

G = SOQ(R) ∼= SO2,1(R)

be its stabilizer group, and let Γ < G(Z) be a finitely generated (and hence

geometrically finite) integer subgroup with critical exponent

δ > 1/2.

The decomposition of the right regular representation of G on L2(Γ\G) is of

the form [GGPS66, LP82]

L2(Γ\G) = V0 ⊕ V1 ⊕ · · · ⊕ VJ ⊕ Vtemp.

Here Vtemp is a (reducible) subspace consisting of the tempered spectrum; the

Vj , j = 1, . . . , J are isomorphic as G-representations to complementary series

representations with corresponding parameters

1/2 < sJ ≤ · · · ≤ s1 < δ ≤ 1

(in our normalization, the principal series representations lie on the critical line

Re(s) = 1/2); and V0 is either the trivial representation if Γ is a lattice, or a

complementary series representation of parameter s0 = δ if δ < 1 [Pat76, Sul84].

We say a number s ∈ (1/2, 1) appears in L2(Γ\G) if it arises as one of the sj

above.

For a square-free integer q ≥ 1, define the level q principal congruence sub-

group of Γ as

Γ(q) := {γ ∈ Γ : γ ≡ I(mod q)}.
We have a similar decomposition for L2(Γ(q)\G), and the inclusion Γ(q) < Γ

induces the reverse inclusion on spectrum; that is, any parameter s which ap-

pears in L2(Γ\G) also appears in L2(Γ(q)\G). We say s ∈ (1/2, 1) is the new

spectrum at level q, if the parameter s appears in L2(Γ(q)\G) but does not arise
in this way as a lift from L2(Γ\G); let Specnew(q) denote the new spectra at

level q.

We say that Γ has a uniform spectral gap

1

2
≤ θ = θ(Γ) < δ
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if there exists an integer

(2.1) B ≥ 1

so that, for all q coprime to B,

Specnew(q) ⊂ (1/2, θ].

In particular, the “base” parameter δ remains isolated as q ranges through

square-free numbers coprime to the “bad” modulus B.

In our archimedean (as opposed to combinatorial, for which see [SGV12])

setting, the following is the current state of affairs on spectral gaps.

Theorem 2.2: Assume δ > 1/2. Then:

• Γ has some spectral gap θ ∈ [1/2, δ) [BG08, BGS10, BGS11].

• If moreover δ > 5/6, then we can take θ = 5/6 [Gam02].

• If moreover Γ is a congruence group (and hence δ = 1), then we can

take θ = 1/2 + 7/64 = 39/64 and B = 1 [JL70, KS03].

• If moreover we assume the Selberg Eigenvalue Conjecture, then we can

take θ = 1/2 and B = 1 [Sel65].

Remark 2.3: In the case Q is anisotropic over Q, that is, for Example D, the

quotient Γ\G is compact, and the Jacquet–Langlands correspondence is used to

apply the best-known bounds towards the Selberg Eigenvalue (or Generalized

Ramanujan) Conjecture in the statement of Theorem 2.2.

2.2. Effective Counting on Congruence Towers. With the spectral gap

in place, we state the following now-standard smooth counting theorem (see,

e.g., [BKS10] or [BK13, Theorem 2.9]). We define a norm onG via ‖g‖2 = tr gtg.

Theorem 2.4: Assume Γ < G is a finitely-generated discrete group as above

with critical exponent δ > 1/2 and spectral gap 1/2 ≤ θ < δ. Then for T → ∞,

there is a function ΥT : G→ R≥0 with the following properties.

(i) ΥT is a smoothed indicator of ‖g‖ < T , in the sense that

(2.5) ΥT (g) =

⎧⎪⎪⎨
⎪⎪⎩
1, if ‖g‖ < 1

2T ,

0, if ‖g‖ > 2T ,

∈ [0, 1], otherwise,
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and2

(2.6)
∑
γ∈Γ

ΥT (γ) = T δ+o(1).

Moreover,

(ii) for any γ0 ∈ Γ, any square-free q ≥ 1 coprime to B in (2.1), and any

Ξ(q) satisfying Γ(q) � Ξ(q) � Γ, we have

(2.7)
∑

γ1∈Ξ(q)

ΥT (γ1γ0) =
1

[Γ : Ξ(q)]

∑
γ∈Γ

ΥT (γ) +O(T θ+o(1)).

The implied constant above is independent of q and γ0.

Remark 2.8: The interpretation of (2.7) is that one has effective (with power

savings down to the spectral gap) equidistribution of Γ along congruence towers

mod q. It is important here (in fact absolutely crucial to our observation!) to

have the flexibility to choose any Ξ(q) lying between Γ and the full level q

principal congruence subgroup Γ(q).

2.3. Level of Distribution. We now define a certain finite sequence

A = {an(T )}
of non-negative real numbers depending on a parameter

T → ∞,

which will play a key role in the analysis. This sequence is supported on values

of f(x), with x ∈ O, where the pair (O, f) is one of the pairs discussed in §1.2 or
§1.3, that is, Examples A–D. For ease of exposition, we assume henceforth that

B = 1; minor adjustments are needed in the general case. Using the smooth

counting function from the previous subsection, we define

(2.9) an(T ) :=
∑
γ∈Γ

ΥT (γ) · 1{f(y·γ)=n}.

Thus an(T ) counts roughly the number of representations of n of the form

f(y · γ), for γ restricted to an archimedean ball. (In the case that y has a non-

trivial stabilizer in Γ, this will be an over-count; statements about the Zariski

closure of O(f,R) are not sensitive to this over-counting.)

2 Throughout, only the exponents will be relevant to our analysis, so we will be quite crude

with such statements, even when much more information is available.
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We first determine the total amount of “mass” contained in A, that is, we

have from (2.6) the approximation

(2.10) |A| :=
∑
n

an(T ) = T δ+o(1).

Next we introduce a parameter N which controls the number of terms in A
that are non-zero, setting

(2.11) N := max{n ≥ 1 : an = 0}.
Since y is treated as fixed and γ ∈ Γ is of size T , we have roughly that

|f(y · γ)| ≤ N , where

(2.12) N = T deg(f)+o(1).

For a square-free integer q ≥ 1 called the level, we will need to understand

the distribution of the sequence A along multiples of q. To this end, we define

(2.13) |Aq| :=
∑

n≡0(q)

an(T ).

The following key theorem is used to determine for how large we can take the

level and still prove equi-distribution.

Theorem 2.14: Let (O, f) be as in Examples A–D, with Γ having critical

exponent δ > 1/2 and spectral gap θ < δ. For any square-free integer q ≥ 1, we

have the estimate

(2.15) |Aq| = ω(q) · |A|+O(q · T θ (qT )o(1)),

where ω(q) is a “local density” function with the following properties. It is a

multiplicative function on square-free q’s with

(1) ω(1) = 1,

(2) for all primes p ≥ 2,

(2.16) 0 ≤ ω(p) < 1,

and

(3) there are constants K ≥ 2 and κ ≥ 1 so that we have the local density

bound

(2.17)
∏

z1≤p≤z

1

1− ω(p)
≤

( log z

log z1

)κ(
1 +

K

log z1

)

for any 2 ≤ z1 < z.
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Remark 2.18: Versions of Theorem 2.14 are proved in [Kon09, Proposition 4.3],

[KO12, §5.2], and [LS10, Theorem 2.1] for Examples A–D, but we repeat a

sketch of the proof below, as it will be relevant to us later.

Remark 2.19: One can interpret (2.17) as insisting that the local density at

primes be roughly

(2.20) ω(p) ≈ κ

p
,

at least on average; see Lemma 2.30. The number κ appearing in (2.17) is called

the “sieve dimension” for A; see (1.8). Note that κ is not uniquely defined by

(2.17), as any larger value also satisfies (2.17); in practice one typically takes

the least allowable value.

Sketch of Proof. To prove Theorem 2.14, we first insert the definition (2.9) into

(2.13):

|Aq| =
∑

n≡0(q)

an(T ) =
∑
γ∈Γ

ΥT (γ) · 1{f(y·γ)≡0(mod q)}.

The first most basic Affine Sieve observation is that the condition

(2.21) f(y · γ) ≡ 0(mod q)

can be captured by breaking the sum according to the residue of γ mod q. In

other words, we can decompose

(2.22) Γ ∼= Γ(q)× (Γ(q)\Γ).
Using this decomposition and following the procedure below, one would obtain

(2.15) with the worse error term O(q2T θ), ignoring o(1)’s. This would lead to

(2.36) being replaced by the exponent of distribution α = (δ − θ)/(3 deg(f)).

Instead, what is done in [Kon09, LS10, KO12] is to capture the condition

(2.21) by decomposing y · γ (rather than just γ) into residue classes mod q. To

this end, let Γy(q) be the stabilizer group of y(mod q), that is, define

Γy(q) := {γ ∈ Γ : y · γ ≡ y(mod q)},
and write γ ∈ Γ uniquely as

γ = γ1γ0,

with γ1 ∈ Γy(q) and γ0 ∈ Γy(q)\Γ. Then since yγ1 ≡ y(mod q), we have that

(2.23) f(y · γ) = f(y · γ1γ0) ≡ f(y · γ0) (mod q).
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Hence applying (2.7) with Ξ(q) = Γy(q), we have

|Aq| =
∑

γ0∈Γy(q)\Γ

∑
γ1∈Γy(q)

ΥT (γ1γ0) · 1{f(y·γ1γ0)≡0(mod q)}

=
∑

γ0∈Γy(q)\Γ
1{f(y·γ0)≡0(mod q)}

[ ∑
γ1∈Γy(q)

ΥT (γ1γ0)

]

(2.7)
=

∑
γ0∈Γy(q)\Γ

f(y·γ0)≡0(mod q)

[ 1

[Γ : Γy(q)]
|A|+O(T θ+o(1))

]
(2.24)

=
C(Γy(q); f)

[Γ : Γy(q)]
|A|+O(C(Γy(q); f) · T θ+o(1)).(2.25)

Here we have defined

(2.26) C(Ξ(q); f) := #{γ0 ∈ Ξ(q)\Γ : f(y · γ0) ≡ 0(mod q)},

where Ξ(q) is any group with Γ(q) � Ξ(q) � Γ, for which the above makes sense,

that is, whenever the condition f(y · γ0) ≡ 0(mod q) is left-Ξ(q) invariant.

Now we can set the local density function to be

(2.27) ω(q) :=
C(Γy(q); f)

[Γ : Γy(q)]
,

whence we have a decomposition of the form (2.15).

It is straightforward to compute that the index

(2.28) [Γ : Γy(q)] = q2+o(1),

and moreover that, very roughly,

(2.29) C(Γy(q); f) < q1+o(1).

Inserting (2.29) into the error term of (2.25) confirms the error term in (2.15).

It remains to verify the properties of ω. The condition (1), that is, that

ω(1) = 1, is clear, and multiplicativity follows from Strong Approximation

and Goursat’s Lemma. It follows from the strong primitivity assumption that

ω(p) < 1 for all primes. Verification of the key property (2.17) is postponed to

the next Lemma, whence the proof of Theorem 2.14 is complete.

The following Lemma verifies (2.20), from which the local density bound

(2.17) follows by classical methods.



Vol. 209, 2015 ANISOTROPIC AND THIN PYTHAGOREAN ORBITS 409

Lemma 2.30: For primes p sufficiently large, we have the following estimates

on ω(p). In the “thin Pythagorean” cases, we have that (see [KO12, Lemma

5.4])

ω(p) =

⎧⎨
⎩

2
p+1 , if p ≡ 1(mod 4),

0, if p ≡ 3(mod 4),
for Example A,

ω(p) =
4

p+ 1
, for Example B,

and3

ω(p) =

⎧⎨
⎩

6
p+1 , if p ≡ 1(mod 4),

4
p+1 , if p ≡ 3(mod 4),

for Example C.

In the “anisotropic” case, we have [LS10, (6.4)] that

ω(p) =
3

p
+O

( 1

p2

)
, for Example D.

In particular, (2.17) holds with

(2.31) κ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, in Example A,

4, in Example B,

5, in Example C,

3, in Example D.

Remark 2.32: It is only here in the local density estimate that the sieve can dis-

tinguish the sieve dimensions κ for the product of coordinates in the isotropic

Example C and the anisotropic Example D (see Remark 1.18). The form

Q being isotropic is equivalent to the cone Q = 0 (and other level sets) be-

ing parametrizable by non-constant polynomial maps. In particular, if Q is

isotropic, then there exist rational binary quadratic forms G1, G2, G3 so that

Q(G1(c, d), G2(c, d), G3(c, d)) = 0.

If the Gj are reducible, then the product of coordinates f(x) = xyz can be the

product of more than 3 irreducible factors, and this is exactly what happens

in the Pythagorean case. On the other hand, no such parametrization exists

if Q is anisotropic, whence the product of three coordinates always has sieve

dimension κ = 3.

3 This corrects a typo in [KO12, (5.6)].
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To make this completely concrete for the form Q = x2 + y2 − z2, recall the

ancient parametrization of Pythagorean triples x = (x, y, z) with y even as⎧⎪⎪⎨
⎪⎪⎩
x = G1(c, d) = c2 − d2,

y = G2(c, d) = 2cd,

z = G3(c, d) = c2 + d2.

Both G1 and G2 factor into products of two linear forms, and so in Example C,

fC (x) =
1

60
xyz =

1

30
(c+ d)(c− d)cd(c2 + d2)

is a product of κ = 5 irreducible factors.

On the other hand, the form

Q(x) = x2 + y2 − 2z2

is also isotropic over Q, but the cone Q = 0 has a parametrization⎧⎪⎪⎨
⎪⎪⎩
x = G1(c, d) = c2 + 2cd− d2,

y = G2(c, d) = c2 − 2cd− d2,

z = G3(c, d) = c2 + d2,

in which all three forms Gj are irreducible. In this example, the product of

coordinates would have sieve dimension κ = 3.

In light of (2.20) and (2.10), the “main” term in the approximation (2.15) is

roughly of size T δ/q, while the “error” is about qT θ. Balancing these terms,

we can take q almost as large as T (δ−θ)/2. Converting to the parameter N in

(2.12), we see that the approximation (2.15) is a true asymptotic whenever

(2.33) q < N (δ−θ)/(2 deg(f))−ε,

for any fixed ε > 0. For later reference, we record the following estimate, which

follows immediately from (2.15).

Corollary 2.34: For any fixed ε > 0, there is an η = η(ε) > 0, so that

(2.35)
∑

q<Nα−ε

q square-free

||Aq| − ω(q) · |A|| 	ε |A|1−η,

as T → ∞, where

(2.36) α :=
δ − θ

2 deg(f)

is the exponent in (2.33).
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Remark 2.37: The quantity Nα is called a level of distribution for A, and

the exponent α in (2.36) is called an exponent of distribution. This is not a

quantity intrinsic to A but is rather a function of what one can prove about A.

In particular, any smaller value of α is also an exponent of distribution, but in

applications, one wishes to take α as large as possible.

Remark 2.38: We are correcting here a typo in [KO12, (2.23)], where deg(f)

was omitted from α (our α is 1/μ in the notation of [KO12]); hence the values

of R computed in [KO12] are only accurate in the case f = fH of Example A;

see Remark 1.7.

Remark 2.39: In sieve applications, one only needs the average estimate (2.35)

and not the estimate for individual q discussed before (2.33). In Example A,

it is exactly this averaging which is exploited in [BK13] to prove (1.9). In

Examples B–D, we do not currently know how to exploit this average, and so

the level of distribution just follows from the individual estimate (2.15). See

[Mar10] for some sharp levels of distribution for non-thin isotropic (and hence

parametrizable; cf. Remark 2.32) orbits, also obtained by exploiting the average

on q.

We now have all the properties we need from the sequence A. In the next

subsection, we recall the high-dimensional weighted sieve used in applications.

2.4. Diamond–Halberstam–Richert Sieve. Recall that PR is the set of

R-almost primes. Sieve theory produces an estimate for

∑
n∈PR

an(T ),

given knowledge of the distribution ofA along arithmetic progressions. Adapted

to our setting, we have the following

Theorem 2.40 ([DHR88, DH97]): Let A, N , ω, κ, and α be as described

in (2.9), (2.11), (2.27), (2.31), and (2.36); in particular, they satisfy the key

conditions (2.17) and (2.35). It is convenient to define another parameter

(2.41) τ :=
α logN

log |A| =
α · deg(f)

δ
+ o(1).
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Figure 1. Plots of σ(u), f(u) and F (u) for κ = 1.

(i) Let σ(u) = σκ(u) be the continuous solution of the differential-difference

problem

(2.42)

⎧⎨
⎩
u−κσ(u)=A−1

κ , for 0<u≤2, Aκ=(2eγ)κΓ(κ+ 1),

(u−κσ(u))′=−κu−κ−1σ(u− 2), for u>2,

where γ is the Euler constant and Γ is the Gamma function4. Then

there exist numbers

(2.43) ακ ≥ βκ ≥ 2

so that the following simultaneous differential-difference system has con-

tinuous solutions F (u) = Fκ(u) and f(u) = fκ(u) which satisfy

F (u) = 1 +O(e−u), f(u) = 1 +O(e−u),

and F (resp. f) decreases (resp. increases) monotonically towards 1 as

u→ ∞:

(2.44)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F (u) = 1/σ(u), for 0 < u ≤ ακ,

f(u) = 0, for 0 < u ≤ βκ,

(uF (u))′ = f(u− 1), for u > ακ,

(uf(u))′ = F (u− 1), for u > βκ.

See Figure 1 for plots of σ, f and F in the case κ = 1.

(ii) For any two real numbers u and v with

(2.45) τ−1 < u ≤ v, βκ < τv,

4 There should be no confusion here with the discrete group Γ.
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and assuming that

(2.46) R >
τu

α
− 1 +

κ

f(τv)

∫ v/u

1

F (τv − s)
(
1− u

v
s
)ds
s
,

we have

(2.47)
∑

n∈PR

an(T ) � |A|
∏

p<Nα

(1 − ω(p)) � |A|
(logT )κ

.

Remark 2.48: The statements in Examples A–D on the Zariski density of

O(f,R) are then proved easily from the archimedean bounds in (2.47); see,

e.g., the proof of [LS10, Corollary 2.3].

Remark 2.49: The sieve dimensions relevant to us are κ = 1, 3, 4, and 5, and

we will need the corresponding values of the constant βκ for (2.45). These are

computed in [DHR88, p. 345], and we reproduce them in Table 1.

κ 1 3 4 5

βκ 2 6.6408. . . 9.0722. . . 11.5347. . .

Table 1. Values of βκ for κ = 1, 3, 4, 5.

While the expression on the right-hand side of (2.46) is unwieldy, it can

certainly be estimated by one’s favorite software package. That said, the fol-

lowing simplification is quite effective in practice (see [LS10, (6.15)]): for any

0 < ζ < βκ, the expression is maximized by any value of

(2.50) mα,κ(ζ) :=
1

α

(
1 + ζ − ζ

βκ

)
− 1 + (κ+ ζ) log

βκ
ζ

− κ+ ζ
κ

βκ
.

2.5. Proofs of Theorems 1.5 and 1.15. It remains to insert the specific

values of α, κ, and τ , and compute the resulting values of R for each of our

examples.

2.5.1. Example A. To obtain as small a value of R as possible, we take δ as

large as possible, that is, near 1, to take advantage of Gamburd’s θ = 5/6 gap

in Theorem 2.2. At first, we just set δ = 1. The degree of f = fH is deg(f) = 1,

so the exponent of distribution (2.36) is

α =
1− 5/6

2
=

1

12
,
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and the sieve dimension is κ = 1. With these values of α and κ, the minimal

value ofm(ζ) in (2.50) ism(0.12) = 13.93, leading to the bound R0(O, fH ) ≤ 14

for the saturation number. Letting δ be slightly less than 1, we can still ensure

that α is large enough that the minimal value of m(ζ) is < 14.

But in fact, better methods are known to estimate R-values for linear (that

is, dimension κ = 1) sieve problems using essentially identical assumptions;

see, e.g., Richert’s weights in [FI10, §25.3]. From the exponent of distribution

αA = 1/12, these produce R = 13-almost primes, with room to perturb δ to a

little below 1. This is the R value we stated in Theorem 1.5 for Example A.

Regardless, none of these values are relevant anymore, in light of (1.9).

2.5.2. Example B. Because the Pythagorean form Q(x) = x2 + y2 − z2 is

isotropic with reducible parametrizing forms (see Remark 2.32), the sieve di-

mension for the “area” function f(x) = fA (x) = 1
12xy is κ = 4 (rather than

κ = 2). The degree is deg(f) = 2. As above, we begin by taking δ = 1 and

using Gamburd’s gap θ = 5/6. This gives the exponent of distribution

α =
1− 5/6

2 · 2 =
1

24
.

Optimizing m(ζ) with these values gives m(0.16) = 39.28. Again, letting δ be

slightly below 1 still recovers the value R = 40, as claimed in Theorem 1.5.

2.5.3. Example C. For f = fC , the degree is deg(f) = 3 and sieve dimension is

κ = 5. Again we take δ = 1 and θ = 5/6, giving the exponent of distribution

α =
1− 5/6

2 · 3 =
1

36
.

Now optimizing m(ζ) gives m(0.136) = 57.3. For δ slightly below 1, we still

recover R = 58.

2.5.4. Example D. In this non-thin anisotropic example, we have δ = 1,

deg(f) = 3, and sieve dimension κ = 3. Using the Kim–Sarnak spectral gap

θ = 39/64 in Theorem 2.2, we obtain the exponent of distribution

α =
1− 39/64

2 · 3 ≈ 1

15.36
.

Optimizing m(ζ) gives m(0.186) = 25.26, giving the claimed value R = 26.

Assuming the Selberg Eigenvalue Conjecture, we can take θ = 1/2 and

α =
1− 1/2

2 · 3 =
1

12
.
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Then m(ζ) is optimized at m(0.23) = 21.3, giving R = 22, as claimed in Theo-

rem 1.15.

These are the values of R produced in [Kon09], [LS10], and [KO12]. In

the next section, we make one further simple observation, which has the effect

of doubling the exponent of distribution over that in (2.36). Using the same

methods as here, we then conclude Theorems 1.10 and 1.19.

3. Proofs of Theorems 1.10 and 1.19

We keep all the same notation from the previous section, first describing our

initial aim in rough terms, before explaining our new observation.

3.1. Initial Idea. The goal of this project was to try to improve the level of

distribution by exploiting the γ0 sum in (2.24), which was estimated trivially to

arrive at (2.25). Of course this requires us to keep track of all the lower order

terms in (2.7), rather than estimating them in absolute value. We proceed as

follows.

We will want Ξ(q)\Γ to be a group (i.e., Ξ(q) to be normal in Γ), so return to

the decomposition (2.22); that is, we set Ξ(q) = Γ(q), rather than Ξ(q) = Γy(q).

(So the length of the γ0 sum in (2.24) is now about q2 instead of q, but we hope

to recover this loss and more.) Assume for simplicity that Γ(q)\Γ ∼= PSL2(q)

and that q is prime. The space L2(Γ(q)\G) carries not only a right (regular)

G-action, but also a left (Hecke-like) Γ(q)\Γ-action. Decomposing with respect

to the latter action, the estimate (2.7) can be obtained from an expansion of

the form (see the discussion after [BK13, (2.12)])

(3.1)
∑

γ1∈Γ(q)

ΥT (γ1γ0) =
∑

ρ∈ ̂PSL2(q)

Mρ(T, q; γ0),

where ρ ranges over irreducible unitary representations of the finite group

PSL2(q), and Mρ is the contribution coming from ρ. The first term in (2.7)

comes from ρ = 1, that is, the trivial representation; the other ρ’s come from

the new spectrum, and (2.7) is obtained by controlling these terms in totality

by the spectral gap.

Instead of estimating the error terms in absolute value, we will want to capi-

talize on the full decomposition (3.1). So we insert it into the analogue of (2.24),

capture the condition f(y · γ0) ≡ 0(q) by abelian harmonic analysis, and carry

out the γ0 ∈ PSL2(q) sum on each irreducible. Expanding out the terms, one
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faces the following problem, which seems to be new (see the somewhat related

questions arising in [SA87, Kat93]): Given an irreducible unitary representation

(ρ, V ) of a finite non-abelian group, e.g., PSL2(Fq), an additive character ψ on

Fq, and a polynomial f on ( a b
c d ) ∈ PSL2, capture cancellation in the matrix co-

efficients of ρ against the character of the polynomial; that is, give a non-trivial

estimate for a sum of the form∑
γ∈PSL2(Fq)

〈ρ(γ).v, w〉 · ψ(f(γ)),

for v, w ∈ V . While the initial aim of the project was somewhat sophisticated,

after computing several explicit examples of the above type, we stumbled upon

a completely elementary observation that had been previously overlooked. Its

effect, in our applications, is to make the γ0 sum in the analogue of (2.24)

have length qε, rather than q, leading to a level of distribution twice as large

as before. So while the above general problem is still interesting and may have

other applications, in the end it is of no consequence to our current results.

3.2. The Observation. The key new observation is that one can use a larger

group than Γy(q) in capturing the condition (2.21). To this end, we introduce

the group Γ〈y〉(q) which stabilizes the linear span of y mod q. That is, we define

Γ〈y〉(q) :={γ ∈ Γ : y · γ ∈ 〈y〉 (mod q)}
={γ ∈ Γ : ∃a ∈ (Z/qZ)× with y · γ ≡ ay(mod q)}.

Clearly

Γ(q) � Γ〈y〉(q) � Γ.

Note that, because the functions f in all the Examples A–D are homogeneous,

we have

f(y · γ1γ0) ≡ adeg(f)f(y · γ0) (mod q), for some a ∈ (Z/qZ)×,

whenever γ1 ∈ Γ〈y〉(q). Hence we can replace (2.23) by the fact that

(3.2) f(y · γ1γ0) ≡ 0(mod q) if and only if f(y · γ0) ≡ 0(mod q).

Remark 3.3: We emphasize here that it is not the cone Q = 0 which takes ad-

vantage of this homogeneity (since we also consider other level sets, see (1.14)),

but rather the sieve, which only asks for the distribution of an(T ) on multiples

of q, see (2.13). If for other applications one wants to capture residue classes

other than 0(mod q), then the homogeneity of f will not help.
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Beyond this simple observation, we proceed exactly as described in §2.

3.3. The Proofs.

Theorem 3.4: Theorem 2.14 holds exactly as stated, but with (2.15) replaced

by

(3.5) |Aq| = ω(q) · |A|+O(T θ (qT )o(1)).

Remark 3.6: The only difference to notice is that the error term in (3.8) is

essentially T θ, rather than qT θ in (2.15); that is, we have recovered a power of

q which was lost in the previous approach. This explains our comment in §1.4.
Sketch of Proof. We start with the same definition of an(T ) as in (2.9). Re-

placing the decomposition (2.22) with

(3.7) Γ ∼= Γ〈y〉(q)× (Γ〈y〉(q)\Γ),

we now write

(3.8)

|Aq| =
∑

γ0∈Γ〈y〉(q)\Γ

∑
γ1∈Γ〈y〉(q)

ΥT (γ1γ0) · 1{f(y·γ1γ0)≡0(mod q)}

(3.2)
=

∑
γ0∈Γ〈y〉(q)\Γ

1{f(y·γ0)≡0(mod q)}

[ ∑
γ1∈Γ〈y〉(q)

ΥT (γ1γ0)

]

(2.7)
=

∑
γ0∈Γ〈y〉(q)\Γ

f(y·γ0)≡0(mod q)

[ 1

[Γ : Γ〈y〉(q)]
|A|+O(T θ)

]

=
C(Γ〈y〉(q); f)
[Γ : Γ〈y〉(q)]

|A|+O(C(Γ〈y〉(q); f) · T θ),

where we applied (2.7) with Ξ(q) = Γ〈y〉(q), and used the definition (2.26). Note

we are allowed to use Ξ(q) = Γ〈y〉(q) in (2.26); indeed, the observation (3.2)

says precisely that f(y · γ0) ≡ 0(mod q) (as a condition on γ0) is left-Γ〈y〉(q)
invariant.

The new “local density” function

(3.9) ω(q) :=
C(Γ〈y〉(q); f)
[Γ : Γ〈y〉(q)]

is then actually the same as that in (2.27). Indeed, just fix q and take T → ∞,

comparing (3.8) with (2.25). Thus the sieve dimensions are the same as before.
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On the other hand, the index [Γ : Γ〈y〉(q)] is now of size q1+o(1) instead of

(2.28). Thus comparing (3.9) to Lemma 2.30 gives

(3.10) C(Γ〈y〉(q); f) < qo(1)

instead of (2.29). Inserting (3.10) into (3.8) gives (3.5), as claimed.

Then we obtain the same Corollary 2.34 but with the exponent of distribution

(3.11) α =
δ − θ

deg(f)
,

instead of (2.36). That is, the effect of the simple observation (3.2) is to double

the exponent of distribution.

With all the other ingredients in place, it remains to estimate the new values

of R.

3.3.1. Example A. As before, we start by taking δ = 1 with Gamburd’s θ = 5/6

spectral gap. The sieve dimension and degree are both κ = deg(f) = 1. Insert-

ing these values into (3.11) gives the exponent of distribution

α =
1− 5/6

1
=

1

6
.

Linear sieve methods then produce the value R = 7, with room to allow δ a

little below 1; see Remark 1.12.

3.3.2. Example B. Again we take δ = 1, θ = 5/6, and deg(f) = 2. The

exponent of distribution is

α =
1− 5/6

2
=

1

12

for this dimension κ = 4 problem. Optimizing the function m(ζ) in (2.50) gives

m(0.295) = 24.99, or R = 25.

3.3.3. Example C. We set δ = 1, with θ = 5/6 and deg(f) = 3. The exponent

of distribution is then

α =
1− 5/6

3
=

1

18

for a sieve of dimension κ = 5. Optimizing m(ζ) gives m(0.25) = 36.3, or

R = 37. This completes the proof of Theorem 1.10.
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3.3.4. Example D. Unconditionally, we have δ = 1, and the Kim–Sarnak gap

θ = 39/64 with deg(f) = 3. The exponent of distribution is then

α =
1− 39/64

3
≈ 1

7.7
.

The sieve dimension is κ = 3, and optimizing m(ζ) gives m(0.33) = 15.9, or

R = 16.

Assuming the Selberg Eigenvalue Conjecture, we can take θ = 1/2 with

exponent

α =
1− 1/2

3
=

1

6
.

Now optimizing m(ζ) gives m(0.4) = 13.7, or R = 14.

This completes the proof of Theorem 1.19.
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