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1. Introduction

Let G be a connected almost simple algebraic group with a Dynkin automorphism σ. 
One can associate with it another almost simple algebraic group Gσ (see Section 2.2). We 
investigate the relation between the tensor invariant spaces of G and Gσ in this paper.

In fact we can identify the dominant weights of Gσ and the σ-invariant dominant 
weights of G. Let λ = (λ1, . . . , λn) be a sequence of dominant weights of Gσ. Denote by 
Vλi

(respectively Wλi
) the irreducible representation of G (respectively Gσ) of highest 

weight λi. We are interested in the pair of tensor invariant spaces

V G
λ := (Vλ1 ⊗ . . .⊗ Vλn

)G, WGσ

λ := (Wλ1 ⊗ . . .⊗Wλn
)Gσ . (1)

1.1. Main results

We present two main results relating V G
λ and WGσ

λ .

1.1.1. Twining formula
Let λ be a dominant weight of Gσ. The Dynkin automorphism σ uniquely determines 

an action σ on the representation Vλ of G by keeping the highest weight vectors invariant. 
Let μ be a weight of Gσ. The twining character formula asserts that the trace of σ on 
the weight space Vλ(μ) is equal to the dimension of Wλ(μ).
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The twining character formula is originally due to Jantzen [11]. Since then, there 
has been many different proofs appearing in the literature (e.g. [6,26,27,20,10]). One of 
these approaches uses natural bases of the representations that are compatible with the 
action σ. It was achieved via canonical basis in [20], and via MV cycles in [10]. Due to 
the works of Lusztig [22], Berenstein–Zelevinsky [2] and Kamnitzer [13], canonical basis 
and MV cycles can be parameterized by many different but equivalent combinatorial 
objects, i.e., Lusztig’s data, BZ patterns, and MV polytopes. These parameterizations
are crucially used in the proofs of [20] and [10].

The first result of the present paper provides an analogue of the twining formula in 
the setting of tensor invariant spaces. Note that the Dynkin automorphism σ determines 
an action σ on V G

λ . Our first main theorem is as follows.

Theorem 1.1. The trace of σ on the space V G
λ is equal to the dimension of WGσ

λ :

trace (σ : V G
λ → V G

λ ) = dim WGσ

λ . (2)

Theorem 1.1 is proved in Section 5.1. We remark here that Theorem 1.1 implies similar 
twining formulas for more general multiplicity spaces.

1.1.2. Saturation property
We say that a reductive group G has saturation factor k if

• for any dominant weights λ1, λ2, · · · , λm such that 
∑m

i=1 λi is in the root lattice of 
G, if (VNλ1 ⊗ VNλ2 ⊗ · · · ⊗ VNλm

)G �= 0 for some positive integer N , then (Vkλ1 ⊗
Vkλ2 ⊗ · · · ⊗ Vkλn

)G �= 0.

Kapovich–Millson [16] proved that every almost simple group has saturation property 
but with a wild factor. There is a general saturation conjecture asserting that every 
simply-laced group has saturation factor 1 [15]. When G = SLn, it was first proved by 
Knutson–Tao [17] using honeycombs. A different proof was due to Derksen–Weyman [3]. 
When G = Spin(8), it was proved by Kapovich–Kumar–Millson [14]. It is still open for 
simply-laced groups of other types. For a more thorough survey on saturation problems, 
see [19, Section 8].

The second result of this paper shows that the saturation property of G implies the 
saturation property of Gσ.

Theorem 1.2. If G has saturation factor k, then Gσ has saturation factor cσk, where

cσ =

⎧⎨
⎩

2 if G is not of type A2n and σ is of order 2,
3 if σ is of order 3,
4 if σ is of order 2 and G is of type A2n.

(3)

Theorem 1.2 is proved in Section 5.2.
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Non-simply-laced groups are expected to have saturation factor 2. For such groups not 
of type G2, if we assume the saturation conjecture of simply-laced groups, then it follows 
from Theorem 1.2. In particular, the works of Knutson–Tao and Derksen–Weyman imply 
that

Corollary 1.3. The spin group Spin(2n + 1) has saturation factor 2.

Proof. By Example 2.1 in Section 2.2, if G = SL2n and σ is nontrivial, then Gσ =
Spin(2n + 1). Theorem 1.2 implies that Spin(2n + 1) has saturation factor 2. �

The idea that the saturation property of a big group implies the saturation property of 
the intimately related small group was also adopted by Belkale–Kumar [1], in which they 
showed that Knutson–Tao’s theorem implies that the saturation factors of SO(2n + 1)
and Sp(2n) are 2. However, the techniques used by them are very different from ours.

1.2. Main methods

The main methods of this paper are the geometric Satake correspondence [21,7,25]
and the work of Goncharov–Shen [8] on parameterizations of bases of tensor invariant 
spaces.

Let G∨ be the Langlands dual group of G. Let K := C((t)) and let O := C[[t]]. We 
consider the affine Grassmannian of the Langlands dual group

GrG∨ := G∨(K)/G∨(O).

The geometric Satake correspondence provides a connection between the geometry of 
the affine Grassmannian of G∨ and the representation theory of G. As a consequence, 
the top components of certain cyclic convolution variety of G∨ provides a basis of the 
corresponding tensor invariant space of G (Lemma 4.6). Following Fontaine–Kamnitzer–
Kuperberg [5], we call it the Satake basis of G.

Another main tool is certain tropical points introduced by Goncharov–Shen [8]. The 
tropical points are obtained via the tropicalization of the configuration space of deco-
rated flags of G. We call these tropical points G-laminations, whose definition is recalled 
in Sections 3.2–3.5. One of the main results of Goncharov–Shen is that there exists a 
canonical bijection between G-laminations and the Satake basis of G∨ (Theorem 4.2). 
When G = PGL2, the G-laminations are exactly the integral laminations on a polygon 
[4, Section 12]. When G = GLn, the G-laminations encapsulate the hives [8, Section 3].
In this sense the result of Goncharov–Shen generalizes the work of Kamnitzer [12] that 
hives parameterize the Satake bases of tensor invariant spaces of GLn.

We emphasize that Theorem 1.2 is proved by essentially using combinatorial properties 
of G-laminations. The geometric Satake correspondence is only used to establish that 
the cardinality of the set of G∨-laminations equals the tensor product multiplicity.
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1.3. Strategies

Let λ be a tuple of dominant weights of Gσ. Denote by Bλ,G the Satake basis of V G
λ

Denote by Cλ,G∨ the set of the G∨-laminations that parameterize Bλ,G. Denote by Bλ,Gσ

and Cλ,(Gσ)∨ the corresponding sets for the small group Gσ.
The Satake basis Bλ,G has remarkable properties. One of them is that, there exists 

a Dynkin automorphism σ of G such that the induced action on V G
λ interchanges the 

elements in the Satake basis Bλ,G (Proposition 4.8). Thus the trace of σ on V G
λ equals 

the number of σ-invariant elements in Bλ,G.
The Dynkin automorphism σ of G gives rise to a Dynkin automorphism σ∨ of G∨. The 

latter induces an automorphism σ∨ on the set of G∨-laminations (see Section 3.4). The-
orem 4.4 and Proposition 4.8 assert that the σ∨-action on G∨-laminations is compatible 
with the σ-action on the Satake basis of G, i.e., the following diagram commutes:

Cλ,G∨

σ∨

� Bλ,G

σ

Cλ,G∨
� Bλ,G

(4)

Therefore the σ∨-invariant G∨-laminations are in bijection with the σ-invariant elements 
in the Satake basis of G.

Theorem 3.25 is one of the main technical results for proving Theorem 1.1. It as-
serts that the σ∨-invariant G∨-laminations are in one-to-one correspondence with the 
(Gσ)∨-laminations, i.e., there exists a canonical bijection

(Cλ,G∨)σ
∨ � Cλ,(Gσ)∨ . (5)

Combining (4) and (5), the σ-invariant elements in Bλ,G are in bijection with the elements 
in Bλ,Gσ

. Theorem 1.1 follows as a direct consequence.
Theorem 3.29 provides a summation map

Σ : Cλ,G∨ −→ (Ccσ·λ,G∨)σ
∨ � Ccσ·λ,(Gσ)∨ , (6)

where cσ is the number appearing in Theorem 1.2. If the set Cλ,G∨ is nonempty, then 
the set Ccσ·λ,(Gσ)∨ is also nonempty. In this way we prove Theorem 1.2 (see Section 5.2).

1.4. Other applications

Along our proofs of Theorems 1.1, 1.2, we get several interesting numerical results of 
representation theory related to G and Gσ.

Proposition 1.4. With the same setting as in Theorem 1.1 and Theorem 1.2, we have
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1. dimV G
λ ≥ dimWGσ

λ .
2. If dimV G

λ = 1, then dimWGσ

λ = 1.
3. If dimV G

λ �= 0, then dimWGσ

cσ·λ �= 0.

Proof. The first and the second results follow from Theorem 3.25. The third result follows 
from Theorem 3.29. �

Recall a conjecture by W. Fulton asserting that for a triple λ = (λ1, λ2, λ3) of domi-
nant weights of GLn, if dimV GLn

λ = 1, then dimV GLn

Nλ = 1 for all N ∈ N. The conjecture 
was proved by Knutson–Tao–Woodward [18] using honeycomb models. Combining it 
with Proposition 1.4 (2), we get the following result.

Proposition 1.5. Let λ = (λ1, λ2, λ3) be a triple of σ-invariant dominant weights of SLn. 
If dimV SLn

λ = 1, then for all N ∈ N we have

{
dim(WNλ)Spin(n+1) = 1 if n is even
dim(WNλ)Sp(n−1) = 1 if n is odd

, (7)

where Sp(n − 1) is the symplectic group.

2. Basics of reductive groups

Let G be a connected almost simple group with a Dynkin automorphism σ. In this 
section, we introduce two different groups Gσ and Gσ related to G.

2.1. Dynkin automorphisms of G

Let G be a connected almost simple algebraic group over C. Let T be a maximal torus 
in G and let B be a Borel subgroup containing T . Denote by X∨ and X the lattices of 
cocharacters and characters of T . We associate a root datum (X∨, X, α∨

i , αi, i ∈ I) with
(G, B, T ) together with a perfect pairing

〈 , 〉 : X∨ ×X → Z.

Here I is the index set of simple coroots {α∨
i } and simple roots {αi}. We have the Cartan 

matrix (aij) :=
(
〈α∨

i , αj〉
)
.

A diagram automorphism σ of the root datum (X∨, X, α∨
i , αi, i ∈ I) consists of auto-

morphisms of X∨ and of X, and a permutation of I (without confusion, all of them are 
denoted by σ) such that

1. 〈σ(λ∨), σ(μ)〉 = 〈λ∨, μ〉 for any λ∨ ∈ X∨ and μ ∈ X.
2. σ(αi) = ασ(i) and σ(α∨

i ) = α∨ .
σ(i)
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Let xi : C → G and yi : C → G be root subgroups associated with the simple roots 
αi and −αi. The datum (T, B, xi, yi; i ∈ I) is called a pinning of G if it gives rise to a 
homomorphism γi : SL2 → G for each i ∈ I such that

γi(
(

1 a

0 1

)
) = xi(a), γi(

(
1 0
a 1

)
) = yi(a), γi(

(
a 0
0 a−1

)
) = α∨

i (a). (8)

Let σ be an automorphism of G that preserves B and T . It induces a diagram automor-
phism of the root datum (X∨, X, αi, α∨

i ; i ∈ I), which is still denoted by σ. We call σ a 
Dynkin automorphism of G if it preserves a pinning of G, i.e.,

σ
(
xi(a)

)
= xσ(i)(a), σ

(
yi(a)

)
= yσ(i)(a), σ

(
α∨
i (a)

)
= α∨

σ(i)(a), ∀i ∈ I.

By the isomorphism theorem of the theory of reductive groups (e.g. [29, Section 9]), 
every diagram automorphism arises from a Dynkin automorphism of G.

2.2. The associated group Gσ

Every diagram automorphism σ of a root datum (X∨, X, α∨
i , αi, i ∈ I) gives rise to 

the following datum:

1. Let Xσ be the lattice of σ-fixed elements in X. Let X∨
σ := HomZ(Xσ, Z).

2. Let Iσ be the set of orbits of σ on I. For each element η ∈ Iσ, we set

αη :=
{∑

i∈η αi if aij = 0 for any two elements i, j in η

2
∑

i∈η αi if η = {i, j} and aij = −1.

Note that it covers all possible cases of η.
3. The embedding of Xσ into X induces a natural map θ : X∨ → X∨

σ . Let α∨
η := θ(α∨

i )
with i in η. Clearly α∨

η does not depend on the choice of i.

By [11, p. 29], (X∨
σ , Xσ, α∨

η , αη, η ∈ Iσ) is a root datum. It determines a reductive group 
Gσ. If G is simply-connected, then so is Gσ. Here is a table of G and Gσ for nontrivial σ
[24, 6.4]:

1. If G = A2n−1 and σ is of order 2, then Gσ = Bn, n ≥ 2.
2. If G = A2n and σ is of order 2, then Gσ = Cn, n ≥ 1.
3. If G = Dn and σ is of order 2, then Gσ = Cn−1, n ≥ 4.
4. If G = D4 and σ is of order 3, then Gσ = G2.
5. If G = E6 and σ is of order 2, then Gσ = F4.

Example 2.1. Let G = SL2n. We consider the automorphism

σ : G −→ G, g �−→ σ(g) := w · (gt)−1 · w−1,
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where gt is the transposition of g and w = (wij) is a matrix with entries

wij :=
{

(−1)j if i + j = 2n + 1
0 otherwise

.

The automorphism σ is a Dynkin automorphism on G. In this case, Gσ = Spin(2n + 1).

2.3. The fixed point group Gσ

Let us fix a pinning (T, B, xi, yi; i ∈ I) of G. Let σ be a Dynkin automorphism of G
that preserves the pinning. Let Gσ be the identity component of the σ-fixed points of G. 
Let T σ and Bσ be the identity components of the σ-fixed points of T and B respectively.

Recall the set Iσ of orbits of σ on I. For each orbit η ∈ Iσ, there are two cases:

1. If aij = 0 for any i, j ∈ η, then we set

xη(a) :=
∏
i∈η

xi(a), yη(a) :=
∏
i∈η

yi(a), α∨
η :=

∑
i∈η

α∨
i .

2. If η = {i, j} and aij = −1, then we set

xη(a) := xi(a)xj(2a)xi(a), yη(a) := yi(
a

2 )yj(a)yi(
a

2 ), α∨
η := 2(α∨

i + α∨
j ).

Note that the definition of xη and yη does not depend on the ordering of elements in η.

Lemma 2.2. The datum (T σ, Bσ, xη, yη; η ∈ Iσ) gives a pinning of Gσ.

Proof. The first case is clear. The second case is due to a computation of SL3. �
Remark 2.3. Let G∨ be the Langlands dual group of G. By considering the diagram 
automorphism σ on the dual root datum of (X∨, X, α∨

i , αi; i ∈ I), we get a Dynkin auto-
morphism σ∨ of G∨. Let (G∨)σ∨ be the identity component of the σ∨-fixed points of G∨. 
Note that the cocharacters of (G∨)σ∨ are identified with the σ∨-invariant cocharacters 
of G∨. So (G∨)σ∨ is the Langlands dual group of Gσ (see [20]).

Weyl groups of G and Gσ

Let si (i ∈ I) be the simple reflections generating the Weyl group W of G. Set 
si := yi(1)xi(−1)yi(1). The elements si satisfy the braid relations. So we can associate 
with each w ∈ W its representative w in such a way that for any reduced decomposition 
w = si1 · · · sik one has w = si1 · · · sik . Let w0 be the longest element of the Weyl group. 
Set sG := w2

0. Note that sG is a central element in G. Moreover s2
G = 1.
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The Weyl group W σ of Gσ can be naturally embedded into W with generators

sη =
{∏

i∈η si, if aij = 0, ∀i, j ∈ η;
sisjsi, if η = {i, j}, aij = −1. (9)

The longest element w0 of W coincides with the longest element of W σ. We state the 
following well-known fact for future use.

Lemma 2.4. Each reduced decomposition sη1 · · · sηm
of w0 in W σ determines a reduced 

decomposition of w0 in W with sηi
expressed by (9), once we fix an ordering of elements 

in each η.

Example 2.5. If the pair (G, Gσ) is of Cartan–Killing type (A4, B2), then

w0 = sη1sη2sη1sη2 = s1s4 · s2s3s2 · s1s4 · s2s3s2.

We set ŝη := yη(1)xη(−1)yη(1) for η ∈ Iσ. There is another representative sη of sη
obtained by its decomposition in W . A direct calculation shows that ŝη = hηsη, where 
hη = α∨

i (2)α∨
j (2) if η = {i, j}, aij = −1, and hη = 1 otherwise. We associate with w0 a 

representative ŵ0 via a reduced decomposition of w0 in W σ. Then

ŵ0 = h · w0, where h :=
{ 1 if G �= A2n∏n

k=1(α∨
k (2)α∨

2n+1−k(2))k if G = A2n.
(10)

Note that sG = sGσ := ŵ2
0.

3. Configuration space of decorated flags and its tropicalization

In this section, let us assume that G is defined over Q. Let us fix a pinning 
(T, B, xi, yi; i ∈ I) of G. Let σ be a Dynkin automorphism of G that preserves the 
pinning.

3.1. Positive spaces and their tropical points

Below we briefly introduce the category of positive spaces and the tropicalization 
functor.

Positive spaces
A positive rational function on a split algebraic torus T is a nonzero rational function 

on T which in a coordinate system, given by a set of characters of T , can be presented 
as a ratio of two polynomials with positive integral coefficients. Denote by Q+(T ) the 
set of positive functions on T .

A positive structure on an irreducible space (i.e., variety/stack) Y is a birational map 
γ from T to Y. A rational function f on Y is called positive if f ◦γ ∈ Q+(T ). Denote by 
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Q+(Y) the set of positive functions on Y. Two positive structures on Y are equivalent if 
they determine the same set Q+(Y). Such a pair (Y, Q+(Y)) is called a positive space.

Let (Y, Q+(Y)) and (Z, Q+(Z)) be a pair of positive spaces. A rational map φ : Y → Z
is called a positive map if f ◦ φ ∈ Q+(Y) for all f ∈ Q+(Z).

Tropicalization
Let 

(
Y, Q+(Y)

)
be a positive space. A tropical point of Y is a map l : Q+(Y) → Z

such that

∀f, g ∈ Q+(Y), l(f + g) = min{l(f), l(g)}, l(fg) = l(f) + l(g).

Denote by Y(Zt) the set of tropical points of Y. Tautologically, each f ∈ Q+(Y) deter-
mines a Z-valued function f t of Y(Zt) such that f t(l) := l(f).

The following lemma is an easy exercise.

Lemma 3.1. Let φ : Y → Z be a positive map. There exists a unique map φt : Y(Zt) →
Z(Zt), called the tropicalization of φ, such that (f ◦ φ)t = f t ◦ φt for all f ∈ Q+(Z).

The following lemma is standard. It shows that the tropicalization is a functor from 
the category of positive spaces to the category of the sets of tropical points.

Lemma 3.2. Let φ : X → Y and ψ : Y → Z be two positive maps. Then (ψ ◦φ)t = ψt ◦φt.

Let f, g ∈ Q+(Y). We say f < g if g − f is still a positive function on Y.

Lemma 3.3. Let f, g ∈ Q+(Y). If there exists a positive integer N such that f < g < Nf , 
then f t = gt.

Proof. If h := g − f ∈ Q+(Y), then gt = min{ht, f t} ≤ f t. Therefore (Nf)t ≤ gt ≤ f t. 
Note that (Nf)t = f t. Therefore gt = f t. �
Example 3.4. Denote by X∗(T ) and X∗(T ) the lattices of cocharacters and characters 
of a split algebraic torus T . There is a perfect pairing

〈 , 〉 : X∗(T ) ×X∗(T ) → Z.

Each f ∈ Q+(T ) can be presented as

f =
∑

α∈X∗(T ) cαX
α∑

α∈X∗(T ) dαX
α
, cα, dα ∈ N = {0, 1, 2, · · ·}.

Here Xα is the regular function on T associated with α and cα, dα are zero for all but 
finitely many α. Each cocharacter l ∈ X∗(T ) determines a tropical point of T such that

l(f) := min 〈l, α〉 − min 〈l, α〉.

α | cα �=0 α | dα �=0
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It is easy to show that all tropical points of T can be defined this way. Therefore the set 
T (Zt) is canonically identified with X∗(T ). We treat them as the same set in this paper.

Lemma 3.5. If f ∈ Q+(T ) is a regular function1 on T , then f t is convex, i.e.,

f t(l1 + l2) ≥ f t(l1) + f t(l2), ∀l1, l2 ∈ X∗(T ).

Proof. The function f is a Laurent polynomial on T :

f =
∑

α∈X∗(T )

cαX
α, cα ∈ Z.

It is easy to show that f t(l) = minα|cα �=0〈l, α〉. The convexity follows. �
Lemma 3.6. Let φ : T1 → T2 be a positive map between two split algebraic tori. If φ is 
regular, then φt : X∗(T1) → X∗(T2) is linear.

Proof. Let us write the map φ in coordinates:

φ : T1 −→ T2, x := (x1, . . . , xn) �−→ (φ1(x), . . . , φm(x)).

If φ is a regular map, then every φi(x) is invertible. Therefore φi(x) must be monomials 
of x1, . . . , xn with nontrivial coefficients. So its tropicalization is linear. �

If the space Y admits a positive structure defined by a birational map γ : T → Y, 
then γt is a bijection from T (Zt) to Y(Zt). For l ∈ Y(Zt), its pre-image β(l) := (γt)−1(l)
is called the coordinate of l in T (Zt). Note that T (Zt) = X∗(T ) is an abelian group, it 
induces an extra operation +γ on Y(Zt) such that

β(l +γ l′) = β(l) + β(l′), l, l′ ∈ Y(Zt). (11)

3.2. Lusztig’s positive atlas of U∗

Let U = [B, B] be the maximal unipotent subgroup inside B. Let B− be the Borel 
subgroup such that B ∩B− = T . Let U∗ = U ∩B−w0B

−.
Let w0 = si1si2 . . . siN be a reduced decomposition in W . The sequence i = (i1, . . . , iN )

is called a reduced word for w0 in W . There is an open embedding

γi : GN
m ↪−→ U∗, (a1, . . . , aN ) �−→ xi1(a1) . . . xiN (aN ). (12)

1 For example, f = 1+X3

1+X = 1 − X + X2 is such a function on Gm.
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The birational map γi defines a positive structure of U∗. It is shown in [23] that all the 
reduced words for w0 give rise to the equivalent positive structures on U∗, which we call 
Lusztig’s positive atlas.

Note that the Dynkin automorphism σ preserves B and B−. So it preserves U∗.

Lemma 3.7. The automorphism σ : U∗−→U∗ is a positive map.

Proof. Let i = (i1, . . . , iN ) be a reduced word for w0. Then σ(i) = (σ(i1), . . . , σ(iN )) is 
also a reduced word for w0. For each u = xi1(a1) . . . xiN (aN ) ∈ U∗, we have

σ(u) = xσ(i1)(a1) . . . xσ(iN )(aN ) ∈ U∗.

Since the positive structures given by i and σ(i) are equivalent, the lemma follows. �
The tropicalization of σ is a bijection

σt : U∗(Zt) ∼−→ U∗(Zt). (13)

Denote by 
(
U∗(Zt)

)σ the set of σt-fixed points. Below we give a characterization of the 
σt-fixed points.

Let j = (η1, . . . , ηn) be a reduced word for w0 in W σ. It determines a reduced word 
i = (i1, i2, . . . , iN ) for w0 in W (Lemma 2.4). The tropicalization of (12) is a bijection

γt
i : ZN =−→ U∗(Zt).

Denote by (m1, . . . , mN ) the pre-image of l ∈ U∗(Zt) in ZN , which is called the tropical 
coordinate of l provided by γi.

The following lemma is a manifestation of Proposition 3.5 in [10].

Lemma 3.8. A tropical point l is σt-invariant if and only if

m1 = m2 = . . . = mrη1
, mrη1+1 = mrη1+2 = . . . = mrη1+rη2

, . . . ,

where rη is the cardinality of the orbit η.

Proof. First we prove the case when G is of type A2 and σ is of order 2. In this case, 
the set I = {1, 2}, and σ(1) = 2, σ(2) = 1. So i = (1, 2, 1) is a reduced word of w0 in W . 
If u = x1(a)x2(b)x1(c), then

σ(u) = x2(a)x1(b)x2(c) = x1(
bc

a + c
)x2(a + c)x1(

ab

a + c
).

Let (m1, m2, m3) be the coordinate of l. So the coordinate of σt(l) is
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(m2 + m3 − min{m1,m3},min{m1,m3},m1 + m2 − min{m1,m3}). (14)

Note that l = σt(l) if and only if m1 = m2 = m3. The lemma follows.
The general case can be reduced to the above case and the case when G is of type 

A1 × · · · ×A1. The latter case follows by a similar but easier argument. �
Let Uσ be the identity component of the σ-fixed points of U . The reduced word j of 

w0 in W σ determines a positive structure of Uσ
∗ :

γj : Gn
m ↪−→ Uσ

∗ , (a1, . . . , an) �−→ xη1(a1) . . . xηn
(an).

Lemma 3.9. The natural embedding ı : Uσ
∗ ↪→ U∗ is a positive map. The tropicalization 

of ı identifies the set Uσ
∗ (Zt) with (U∗(Zt))σ.

Proof. Recall the construction of the pinning of Gσ in Section 2.3. It provides an explicit 
expression of the map ı using the coordinates provided by γj and γi. Then the positivity 
of ı is clear. Then second part follows directly from Lemma 3.8. �
The additive Whittaker character χ

The pinning of G determines an additive character χ of U such that

χ(xi(a)) = a, ∀i ∈ I; χ(u1u2) = χ(u1) + χ(u2), ∀u1, u2 ∈ U. (15)

The following lemma is clear.

Lemma 3.10. The restriction of χ on U∗ is a positive function. The function χ is invariant 
under the automorphism σ, i.e., χ ◦ σ = χ.

Denote by χσ the additive Whittaker character of Uσ such that χσ(xη(a)) = a for 
η ∈ Iσ, and χσ(u1u2) = χσ(u1) + χσ(u2) for u1, u2 ∈ Uσ. The restriction of χσ on Uσ

∗ is 
a positive function.

Lemma 3.11. We have χt
σ = χt ◦ ıt.

Proof. It is easy to check that χ ◦ ı(xη(a)) = κηχσ(xη(a)), where

κη =

⎧⎪⎪⎨
⎪⎪⎩

1 if η = {i}.
2 if η = {i, j}, and aij = 0.
3 if η = {i, j, k}, and aij = ajk = aik = 0.
4 if η = {i, j}, and aij = −1.

Hence in any case, χσ ≤ χ ◦ ı ≤ 4χσ. By Lemma 3.3, χt
σ = (χ ◦ ı)t. By Lemma 3.2, 

(χ ◦ ı)t = χt ◦ ıt. It concludes the proof of our lemma. �
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3.3. Configuration space of decorated flags

Let A := G/U . The elements of A are called decorated flags. The group G acts on A
on the left. For each A ∈ A, the stabilizer stabG(A) is a maximal unipotent subgroup 
of G. Let π be the natural projection from A to the flag variety B such that π(A) is the 
Borel subgroup containing stabG(A). It is easy to show that for each B ∈ B, its fiber 
π−1(B) is a T -torsor.

We consider the configuration space

Confn(A) := G\An. (16)

We say a pair (B1, B2) ∈ B2 is generic if B1 ∩B2 is a maximal torus of G. We consider 
the following open subspace of Confn(A):

Conf×n (A) := {G\(A1, . . . , An) | (π(Ai), π(Ai+1)) is generic for each i ∈ Z/n}. (17)

Below we introduce a positive structure on Conf×n (A), following [4, Section 8]. We also 
refer the readers to [8, Section 6] for more details.

We consider the space

R := G\{(B1, A,B2) | (π(A), B1), (π(A), B2) are generic} ⊂ G\(A× B2). (18)

Denote by R∗ the open subspace of R with requiring the pair (B1, B2) is also generic. 
Abusing notation, denote by U the decorated flag corresponding to the coset of the 
identity in A.

Lemma 3.12. (See [4, Section 8].) There is an isomorphism ed : Conf×2 (A) ∼−→ T such 
that

(A1, A2) = (U, ed(A1, A2)w0 · U).

There is an isomorphism an : R ∼−→ U such that

(B1, A,B2) = (B−, U,an(B1, A,B2) ·B−).

The restriction of an on R∗ is an isomorphism from R∗ to U∗.

Lemma–Construction 3.13. (See [4, Section 8].) There is a natural open embedding2

p : Tn−1 × Un−2
∗ ↪−→ Conf×n (A), (h2, . . . , hn, u2, . . . , un−1) �−→ (A1, . . . , An) (19)

such that

2 In fact, the images of p consist of configurations (A1, . . . , An) ∈ Conf×n (A) such that the pairs 
(π(A1), π(Ai)) are also generic for i = 2, . . . , n.
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Fig. 1. The invariants assigned to Conf×5 (A).

• hi = ed(Ai−1, Ai), i ∈ {2, . . . , n};
• uj = an(π(A1), Aj , π(Aj+1)), j ∈ {2, . . . , n − 1}.

Let Pn be a convex n-gon. Let us assign to each vertex of Pn a decorated flag Ai so that 
A1, . . . , An sit clockwise in the polygon. Then hi, uj are variables assigned to the edges 
and angles of Pn. See Fig. 1.

The positive structure on U∗ is defined via Lusztig’s atlas. Note that T is a split 
algebraic group and therefore admits a natural positive structure. So Tn−1×Un−2

∗ admits 
a positive structure. From now on, we fix a positive structure on Conf×n (A) such that the 
map p and its inverse p−1 are both positive maps.

Fock and Goncharov [4, Definition 2.5] defined the twisted cyclic shift map

r : Conf×n (A) −→ Conf×n (A), (A1, . . . , An) �−→ (sG ·An, A1, . . . , An−1). (20)

They showed that

Theorem 3.14. (See [4, Corollary 8.1].) The twisted cyclic shift map (20) is a positive 
map.

Corollary 3.15. The following map is a regular positive map:

Ed : Conf×n (A) −→ Tn, (21)

(A1, . . . , An) �−→
(
ed(sG ·An, A1), ed(A1, A2), . . . , ed(An−1, An)

)
.

Proof. The positivity of the first factor follows from Theorem 3.14. The rest is clear. �
Recall the additive Whittaker character χ of U in Section 3.2.
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Definition 3.16. (See [8, Section 2.1.4].) The potential W is a regular function of Conf×n (A)
such that

W(A1, . . . , An) :=
∑

i∈Z/n

χ
(
an(π(Ai−1), Ai, π(Ai+1))

)
.

Corollary 3.17. The potential W is a positive function.

Proof. Note that an(π(A1), A2, π(A3)
)

is a part of the map (19). By Lemma 3.10, χ is a 
positive function on U∗. So the summand χ

(
an(π(A1), A2, π(A3)

)
is a positive function. 

The central element sG is contained in the intersection of Borel subgroups. Therefore

an(B1, sG ·A,B2) = an(B1, A,B2).

Using Theorem 3.14, the rest summands are positive functions. �
3.4. The automorphism σ of Conf×n (A)

The automorphism σ of G preserves U . Thus it descends to an automorphism of A. 
Similarly, it descends to an automorphism of B. Recall the projection π from A to B. 
Clearly σ commutes with the projection π(σ(A)) = σ(π(A)) for A ∈ A.

Abusing notation, we consider the automorphism

σ : Conf×n (A) ∼−→ Conf×n (A), (A1, . . . , An) −→ (σ(A1), . . . , σ(An)). (22)

Lemma 3.18. The map σ commutes with the invariants in Lemma 3.12:

ed(σ(A1), σ(A2)) = σ(ed(A1, A2)), (23)

an(σ(B1), σ(A), σ(B2)) = σ(an(B1, A,B2)). (24)

Proof. Let A1 = U and let A2 = ed(A1, A2)w0 · U . Note that σ preserves U and w0. 
Therefore σ(A1) = U and σ(A2) = σ(ed(A1, A2))w0 · U . The first identity follows. The 
second identity follows by the same argument. �
Lemma 3.19. The automorphism (22) is a positive map.

Proof. Recall the birational map p in (19). By Lemma 3.18, we have the isomorphism

p−1 ◦ σ ◦ p : Tn−1 × Un−2
∗

∼−→ Tn−1 × Un−2
∗ , (25)

(h2, . . . , hn, u2, . . . , un−1) �−→ (σ(h2), . . . , σ(hn), σ(u2), . . . , σ(un−1)).

By Lemma 3.7, it is a positive map. Since p and p−1 are both positive maps, the auto-
morphism σ is positive. �
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Lemma 3.20. The automorphism (22) preserves the potential W, i.e.,

W
(
σ(A1, . . . , An)

)
= W(A1, . . . , An). (26)

Proof. It follows from Lemma 3.18 and the fact that χ(σ(u)) = χ(u). �
By Example 3.4, the set T (Zt) is canonically identified with the lattice X∨ of cochar-

acters of T . Let λ = (λ1, . . . , λn) ∈ (X∨)n. We set σ(λ) := (σ(λ1), . . . , σ(λn)).

Definition 3.21. We define the following set of tropical points:

Cλ,G := {l ∈ Conf×n (A)(Zt) | Edt(l) = λ, Wt(l) ≥ 0}. (27)

We call a tropical point l ∈ Cλ,G a G-lamination of weight λ.

Lemma 3.22. The tropicalization of (22) gives rise to a bijection

σt : Cλ,G
∼−→ Cσ(λ),G. (28)

Remark 3.23. For λ = σ(λ), denote by (Cλ,G)σ the set of fixed points under (28).

Proof. Let l ∈ Conf×n (A)(Zt). It suffices to prove that

Wt(σt(l)) = Wt(l), Edt(σt(l)) = σ(Edt(l)). (29)

The first identity is due to Lemma 3.20. The second identity is due to (23). �
3.5. The embedding ı from Conf×n (Aσ) to Conf×n (A)

Let Aσ := Gσ/Uσ. By the same construction as (19), the pinning of Gσ in Lemma 2.2
determines an open embedding

pσ : (T σ)n−1 × (Uσ
∗ )n−2 ↪−→ Conf×n (Aσ). (30)

It induces a positive structure on the latter space.
There is a natural embedding from Aσ to A. It induces a natural embedding

ι : Conf×n (Aσ) ↪−→ Conf×n (A). (31)

Proposition 3.24. The embedding (31) is a positive map. The tropicalization of (31) gives 
a bijection from Conf×n (Aσ)(Zt) to the set of σt-fixed points of Conf×n (A)(Zt).
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Proof. We consider the following composition map:

j : (T σ)n−1 × (Uσ
∗ )n−2 pσ

−→ Conf×n (Aσ) ι−→ Conf×n (A) p−1

−→ Tn−1 × Un−2. (32)

Precisely it is given by

(
h2, . . . , hn, u2, . . . , un−1

)
�−→

(
h2h, . . . , hnh, u2, . . . , un−1

)
,

where h is the element in T described in (10). The element h appears because we use 
ŵ0 instead of w0 to define the isomorphism from Conf×2 (Aσ) to T σ. Clearly (32) is a 
positive map. Therefore (31) is a positive map.

Let us tropicalize the map (32). Note that h does not contribute to the tropicalization. 
Therefore we get an injection

jt : (T σ(Zt))n−1 × (Uσ
∗ (Zt))n−2 −→ (T (Zt))n−1 × (U∗(Zt))n−2

(λ2, . . . , λn, l2, . . . , ln−1) �−→ (λ2, . . . , λn, ı
t(l2), . . . , ıt(ln−1)).

By Lemma 3.9, the image of jt is precisely the set of σt-fixed points. Thus the map ιt is 
a bijection from Conf×n (Aσ)(Zt) to the set of σt-fixed points of Conf×n (Aσ)(Zt). �

Similarly, we have the following positive map/function:

Edσ : Conf×n (Aσ) −→ (T σ)n, Wσ : Conf×n (Aσ) −→ A1. (33)

Let λ = (λ1, . . . , λn) ∈ (T σ(Zt))n ⊂ (T (Zt))n. Then σ(λ) = λ. We set

Cλ,Gσ := {l ∈ Conf×n (Aσ)(Zt) | Edt
σ(l) = λ, Wt

σ(l) ≥ 0}. (34)

Theorem 3.25. The tropicalization of (31) gives rise to a canonical bijection between 
σ-invariant G-laminations and Gσ-laminations,

ιt : Cλ,Gσ
∼−→

(
Cλ,G

)σ
. (35)

Proof. It follows from Proposition 3.24 and the identities

Wt
σ = Wt ◦ ιt, Edt

σ = Edt ◦ ιt. (36)

The first identity in (36) is due to Lemma 3.11. The second identity follows similarly. �
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3.6. Summation of tropical points

Let λ ∈ X∨. We set

S(λ) :=

⎧⎨
⎩

λ + σ(λ); if G is not of type A2n and σ is of order 2,
λ + σ(λ) + σ(σ(λ)) if σ is of order 3,
λ + σ(λ) + σ

(
λ + σ(λ)

)
if σ is of order 2 and G is of type A2n.

(37)

It is easy to show that S(λ) is σ-invariant. In particular, if λ is σ-invariant, then S(λ) =
cσλ, where cσ is described in (3).

Let us fix a reduced word i for w0 in W induced by a reduced word j for w0 in W σ. 
By (11), the Lusztig atlas γi determines an operation on U∗(Zt), which we denote by +i

for short. Let l ∈ U∗(Zt). We set

Si(l) :=

⎧⎨
⎩

l +i σ
t(l); if G is not of type A2n and σ is of order 2,

l +i σ
t(l) +i σ

t ◦ σt(l) if σ is of order 3,
l +i σ

t(l) +i σ
t
(
l +i σ

t(l)
)

if σ is of order 2 and G is of type A2n.

(38)

Lemma 3.26. We have Si(l) ∈
(
U∗(Zt)

)σ.

Proof. We prove the case when G is of type A2 and σ is of order 2. The other cases 
follow by a similar but easier argument.

Note that i = (1, 2, 1) is a reduced word of w0 in W . Let (m1, m2, m3) be the coordinate 
of l provided by γi. The coordinate of σt(l) is given by (14). Thus the coordinate of 
l +i σ

t(l) is (n, m, n), where

n = m1 + m2 + m3 − min{m1,m3}, m = m2 + min{m1,m3}.

Using (14) again, the coordinate of σt
(
l +i σ

t(l)
)

is (m, n, m). The coordinate of Si(l) is

(m + n,m + n,m + n) = (m1 + 2m2 + m3,m1 + 2m2 + m3,m1 + 2m2 + m3).

By Lemma 3.8, Si(l) is σt-invariant. �
Let T := Tn−1 × (GN

m)n−2. There is a chain of open embedding

Φi : T = Tn−1 × (GN
m)n−2 id×γn−2

i

↪−→ Tn−1 × (U∗)n−2 p
↪−→ Conf×n (A).

Its tropicalization is a chain of bijections

Φt
i : T (Zt) =−→

(
T (Zt)

)n−1 × (U∗(Zt))n−2 =−→ Conf×n (A)(Zt). (39)

By (11), Φt
i induces an operation on Conf×n (A)(Zt), which is denoted by +i for short.
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Lemma 3.27. Let l, l′ ∈ Confn(A)(Zt). We have

Wt(l +i l
′) ≥ Wt(l) + Wt(l′), (40)

Edt(l +i l
′) = Edt(l) + Edt(l′). (41)

Proof. Note that W ◦ Φi is a regular function of T . The inequality (40) follows from 
Lemma 3.5. Note that Ed ◦ Φi is a regular map from the torus T to the torus Tn. The 
identity (41) follows from Lemma 3.6. �
Lemma–Construction 3.28. Let l ∈ Confn(A)(Zt). We set

Σi(l) :=

⎧⎨
⎩

l +i σ
t(l); if G is not of type A2n and σ is of order 2,

l +i σ
t(l) +i σ

t ◦ σt(l) if σ is of order 3,
l +i σ

t(l) +i σ
t
(
l + σt(l)

)
if σ is of order 2 and G is of type A2n.

Then Σi(l) is σt-invariant.

Proof. Note that the second bijection of (39) is given by the tropicalization of (19)

pt :
(
T (Zt)

)n−1 ×
(
U∗(Zt)

)n−2 =−→ Confn(A)(Zt).

For l ∈ Confn(A)(Zt), we consider its pre-image

β(l) := (pt)−1(l) = (λ2, . . . , λn, l2, . . . , ln−1) ∈
(
T (Zt)

)n−1 ×
(
U∗(Zt)

)n−2
.

Using (37)–(38), we get

β
(
Σi(l)

)
=

(
S(λ2), . . . , S(λn), Si(l2), . . . , Si(ln−1)

)
.

By Lemma 3.18, we have

β
(
σt(Σi(l))

)
=

(
σt(S(λ2)), . . . , σt(S(λn)), σt(Si(l2)), . . . , σt(Si(ln−1))

)
.

By Lemma 3.26, we have β
(
Σi(l)

)
= β

(
σt(Σi(l))

)
. Therefore Σi(l) is σt-invariant. �

Theorem 3.29. If Cλ,G is nonempty, then (CS(λ),G)σ is nonempty.

Proof. If Cλ,G is nonempty, then we pick an element l ∈ Cλ,G. It suffices to show that 
Σi(l) ∈

(
CS(λ),G

)σ. By Lemma 3.22 and Lemma 3.27, we get

Wt(Σi(l)) ≥ cσWt(l) ≥ 0, Edt(Σi(l)) = S(Edt(l)) = S(λ).

So Σi(l) ∈ CS(λ),G. By Lemma 3.28, Σi(l) is σt-invariant. �
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Remark 3.30. When λ is a triple of dominants weights, it should also be possible to prove 
Theorem 3.29 by using Berenstein–Zelevinsky patterns or Mirković–Vilonen polytopes. 
But it seems to us that the combinatorics involved could be very tedious.

4. Affine Grassmannian and Satake basis

4.1. Top components of cyclic convolution variety

Let GrG := G(K)/G(O) be the affine Grassmannian of G. We consider the action of 
the maximal torus T on GrG. The fixed points of T (O) on GrG consist of [λ] = tλ ·G(O), 
where λ is a coweight of G and tλ ∈ T (K).

Let X∨
+ denote the cone of dominant coweights of G. For L1, L2 ∈ GrG, there exists 

a unique λ ∈ X∨
+ such that G(K) · (L1, L2) = G(K) · ([0], [λ]). We write d(L1, L2) := λ, 

which we call the distance from L1 to L2.
Let λ = (λ1, . . . , λn) ∈ (X∨

+)n. We consider the cyclic convolution variety

GrG,c(λ) := {(L1, L2, . . . , Ln) | Ln = [0]; d(Li−1, Li) = λi for i ∈ Z/n}. (42)

The variety GrG,c(λ) is of (complex) dimension

ht(λ) := 〈ρ, λ1 + λ2 + . . . + λn〉,

where ρ is the half sum of positive roots of G. Denote by Tλ,G the set of irreducible 
components of GrG,c(λ) of dimension ht(λ).

Note that the Dynkin automorphism σ of G preserves G(O). So it descends to an 
automorphism of GrG. Clearly σ commutes with the distance map:

d(σ(L1), σ(L2)) = σ(d(L1, L2)), ∀L1, L2 ∈ GrG. (43)

Therefore we get a natural bijection

σ : GrG,c(λ)
∼−→ GrG,c(σ(λ)), (L1, L2, . . . , Ln) �−→ (σ(L1), σ(L2), . . . , σ(Ln)).

It induces a bijection on the set of top components

σ : Tλ,G
∼−→ Tσ(λ),G. (44)

4.2. Parameterization of top components

First we briefly recall the constructible functions in [8, Section 2.2.5].
Let R be a reductive group over C. Let X be a rational space over C. We assume that 

there is a rational left algebraic action of R on X . Let C(X ) be the function field of X . 
Denote by ◦ the induced right action of R on C(X ):

∀g ∈ R, ∀F ∈ C(X ),
(
F ◦ g

)
(x) := F (g · x).
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Let K(X ) be the field of rational functions of X with K-coefficients. The valuation of 
K× induces a natural valuation map

val : K(X )× −→ Z.

Here R(K) acts on K(X ) on the right. Each F ∈ K(X )× gives rise to a Z-valued function

DF : R(K) −→ Z, g �−→ val(F ◦ g). (45)

The action of the subgroup R(O) preserves the valuation of K(X )× [8, Lemma 2.21]. So 
DF descends to a function from R(K)/R(O) to Z which we also denotes by DF .

Assume that there is an automorphism τ of R and an isomorphism τ of X such that

τ(g · x) = τ(g) · τ(x), ∀g ∈ R, ∀x ∈ X . (46)

We define a field isomorphism τ : C(X ) ∼−→ C(X ) such that

∀F ∈ C(X ), τ(F )(x) := F (τ−1(x)). (47)

It is easy to check that

∀g ∈ R, ∀F ∈ C(X ), τ(F ◦ g) = τ(F ) ◦ τ(g). (48)

Lemma 4.1. We have Dτ(F )(τ(g)) = DF (g).

Proof. Note that τ preserves the valuation of K(X )×. Therefore

Dτ(F )(τ(g)) = val
(
τ(F ) ◦ τ(g)

)
= val

(
τ(F ◦ g)

)
= val

(
F ◦ g

)
= DF (g). �

Now let X := An and let R := Gn. The group Gn acts on An on the left. Note that 
the set Q+

(
Conf×n (A)

)
of positive functions of Conf×n (A) is contained in K(An)×. Each 

F ∈ Q+
(
Confn(A)

)
induces a function

DF : R(K)/R(O) = GrnG −→ Z,

which we call a constructible function on GrnG.

Theorem 4.2. (See [8, Theorems 2.20, 2.23].) There is a canonical bijection

κ : Cλ,G −→ Tλ,G, l �−→ κ(l), (49)

such that for each F ∈ Q+
(
Confn(A)

)
, the generic value of the constructible function 

DF on the component κ(l) is equal to F t(l).
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Remark 4.3. Let l, l′ ∈ Confn(A)(Zt). By the definition of tropical points, we have

l = l′ ⇐⇒ F t(l) = F t(l′), ∀F ∈ Q+
(
Confn(A)

)
.

Therefore to identify two top components in Tλ,G, it suffices to show that the generic 
values of all constructible functions on both components are equal.

Recall the bijections (28) and (44).

Theorem 4.4. The following diagram commutes:

Cλ,G
κ

σt

Tλ,G

σ

Cσ(λ),G
κ Tσ(λ),G

.

Proof. Let σ be the automorphism of Gn such that σ(g1, . . . , gn) := (σ(g1), . . . , σ(gn)). 
Let σ be the isomorphism of An such that σ(A1, . . . , An) := (σ(A1), . . . , σ(An)). Note 
that σ(g ·A) = σ(g) · σ(A). So σ agrees with τ map in (46).

Let F ∈ Q+
(
Conf×n (A)

)
and let (L1, . . . , Ln) ∈ GrG,c(λ). By Lemma 4.1, we have

DF (σ(L1), . . . , σ(Ln)) = Dσ−1(F )(L1, . . . , Ln).

Let l ∈ Cλ,G. Then the generic value of DF on σ(κ(l)) is equal to the generic value 
of Dσ−1(F ) on κ(l). By Theorem 4.2 and (47), the latter is 

(
σ−1(F )

)t(l) = F t(σt(l)), 
which is the generic value of DF on the component κ(σt(l)). By Remark 4.3, σ(κ(l)) and 
κ(σt(l)) are the same component. �

Let λ = σ(λ). Denote by (Tλ,G)σ the set of σ-stable top components of Grc(λ).

Corollary 4.5. There is a natural bijection between (Tλ,G)σ and Tλ,Gσ .

Proof. It follows from the following sequence of bijections:

(Tλ,G)σ � (Cλ,G)σ � Cλ,Gσ � Tλ,Gσ .

The first bijection is due to Theorem 4.4. The second bijection is due to Theorem 3.25. 
The third bijection is due to Theorem 4.2. �
4.3. Geometric Satake correspondence and Satake basis

Let PervG(O)(GrG) be the category of G(O)-equivariant perverse sheaves. Let 
Rep(G∨) be the category of finite dimensional representations of G∨. The geometric 
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Satake correspondence (e.g. [25, Theorem 14.1]) asserts that there is an equivalence of 
tensor categories

H : PervG∨(O)(GrG) � Rep(G∨),

where H is given by the hypercohomology of perverse sheaves. The tensor category struc-
ture on PervG(O)(GrG) can be defined via the convolution product (e.g. [25, Section 4]).

Let λ = (λ1, λ2, · · · , λn) be a sequence of dominant coweights of G. We define the 
convolution variety

GrG,λ := {(L1, L2, . . . , Ln) | d([0], L1) = λ1; d(Li−1, Li) = λi for i = 2, . . . , n}. (50)

Denote by GrG,λ the closure of GrG,λ in (GrG)n. Let ICλ be the IC sheaf supported on 
GrG,λ. There is a natural projection

p : (GrG)n → GrG, p(L1, L2, · · · , Ln) = Ln. (51)

The convolution products of perverse sheaves in PervG(O)(GrG) are defined such that

ICλ1 ∗ ICλ2 ∗ · · · ∗ ICλn
= p∗(ICλ), (52)

where p∗ is the pushforward of sheaves in the derived setting. Note that the cyclic 
convolution variety GrG,c(λ) is the fiber

GrG,c(λ) = p−1([0]) ∩ GrG,λ.

Recall that ht(λ) = 〈ρ, 
∑n

i=1 λi〉. We have

dim GrG,λ = 2ht(λ), dim GrG,c(λ) = ht(λ).

The following lemma is well known (cf. [9, Prop. 3.1]).

Lemma 4.6. There is a canonical isomorphism α : V G∨

λ � Htop(GrG,c(λ), C), where 
Htop(GrG,c(λ), C) is the top Borel–Moore homology of GrG,c(λ). As a consequence, the 
set of top components of GrG,c(λ) provides a basis of V G∨

λ .

Let σ be a Dynkin automorphism of G. Note that σ preserves G(O). Thus it de-
scends to an action σ on GrG. By pulling back sheaves, we get an auto-functor σ∗ of 
PervG(O)(GrG). By the Tannakian formalism, there is an automorphism σ̃ of G∨, such 
that the following diagram commutes:

PervG(O)(GrG) H

σ∗

Rep(G∨)

(σ̃)∗

PervG(O)(GrG) H Rep(G∨)

,
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where (σ̃)∗ is the composition functor (ρ, V ) �→ (ρ ◦ σ̃, V ) for any representation (ρ, V )
of G∨.

The following lemma asserts that σ̃ is a Dynkin automorphism of G∨.

Lemma 4.7. (See [10, Theorem 4.2].) The automorphism σ̃ on G∨ is a Dynkin automor-
phism arising from the automorphism σ on the root datum (X∨, X, α∨

i , αi; i ∈ I).

Abusing notations, denote by σ̃ the actions on Vλi
, Vλ and V G∨

λ induced by the 
automorphism σ̃ on G∨.

Let σ� be the action on V G∨

λ induced by the interchange map on the components of 
GrG,c(λ) via the natural isomorphism α : V G∨

λ � Htop(GrG,c(λ), C) as in Lemma 4.6.

Proposition 4.8. The actions of σ̃ and σ� on V G∨

λ coincide.

Proof. We consider the natural isomorphisms φi : σ∗ICλi
� ICλi

which are compatible 
with the interchange action on cycles (see [10, Section 4]). Applying the hypercohomology 
H, we get automorphisms H(φi) : Vλi

� Vλi
. Lemma 4.1 in [10] shows that H(φi)

coincides with the action σ̃ on Vλi
.

Recall that the convolution product in PervG(O)(GrG) can also be constructed as the 
fusion product of sheaves via Beilinson–Drinfeld Grassmannian [25, Section 5]. From this 
point of view, it is easy to see that the isomorphisms φi give rise to an isomorphism

φ : σ∗(ICλ1 ∗ ICλ2 ∗ · · · ∗ ICλn
) � ICλ1 ∗ ICλ2 ∗ · · · ∗ ICλn

.

Applying the functor H, we get

H(φ) : Vλ1 ⊗ Vλ2 ⊗ · · · ⊗ Vλn
� Vλ1 ⊗ Vλ2 ⊗ · · · ⊗ Vλn

.

By the proof in [25, Proposition 6.1] that H is a tensor functor, we see that H(φ) coincides 
with the diagonal automorphism H(φ1) ⊗H(φ2) ⊗· · ·⊗H(φn). Hence H(φ) coincides with 
the automorphism σ̃ on Vλ := Vλ1 ⊗ Vλ2 ⊗ · · · ⊗ Vλn

.
Let i0 : pt → GrG be the embedding such that i0(pt) = [0]. It is well known that

H0((i0)!p∗ICλ) � Htop(GrG,c(λ),C),

where (i0)! is the right adjoint functor of the pushforward functor (i0)∗, and H0 is the 
degree zero cohomology of complex of vector spaces.

From the counit of the adjunction between (i0)∗ and i!0, there exists a natural mor-
phism

ι : (i0)∗(i0)!p∗ICλ → p∗ICλ. (53)

Applying the hypercohomology H, in view of Lemma 4.6 we get the natural inclusion 
V G∨

λ ↪→ Vλ.
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Recall that ICλ1∗ICλ2∗· · ·∗ICλn
= p∗(ICλ). Then H(p∗ICλ) is naturally identified with 

the intersection cohomology of GrG,λ. There is a unique isomorphism φ̃ : σ∗ICλ � ICλ, 
induced from the interchange action on cycles classes. By natural constructions of φ
and φ̃, the following diagram commutes:

p∗σ
∗ICλ

θ

p∗(φ̃)
p∗ICλ

σ∗p∗ICλ

φ

, (54)

where θ is given by the base-change isomorphism. Note that H(θ) is the identity map on 
H(p∗ICλ) and (i0)!(θ) is the identity map on (i0)!(p∗ICλ). Therefore H(p∗(φ̃)) = H(φ)
and (i0)!(p∗(φ̃)) = (i0)!(φ). By the functoriality of the counit (i0)∗(i0)! → id, we have 
the following commutative diagram:

(i0)∗(i0)!(p∗σ∗ICλ)

ι

(i0)∗(i0)!p∗(φ̃)
(i0)∗(i0)!(p∗ICλ)

ι

p∗σ∗ICλ

p∗(φ̃)
p∗ICλ

(55)

Applying the hypercohomology H to this commutative diagram, we can see that the 
restriction of H(φ) = H(p∗φ̃) on V G∨

λ coincides with the automorphism

V G∨

λ � H0((i0)!p∗ICλ

) (i0)!(p∗φ̃)
H0((i0)!p∗ICλ

)
� V G

λ
.

The map (i0)!(p∗φ̃) interchanges the homology classes given by the top components of 
GrG,c(λ) in Htop(GrG,c(λ), C). Hence the proposition follows. �
5. Proof of main results

5.1. Proof of Theorem 1.1

Let σ be the given Dynkin automorphism of G. It induces an automorphism σ of 
the root datum (X∨, X, α∨

i , αi; i ∈ I). Further, we get an associated automorphism σ∨

of the dual datum (X, X∨, αi, α∨
i ; i ∈ I). Abusing notation, denote by σ∨ the Dynkin 

automorphism of G∨ arising from the diagram automorphism σ∨.
As explained as in Section 4.3, by Tannakian formalism, the Dynkin automorphism 

σ∨ on G∨ induces a Dynkin automorphism σ̃ on G, which is compatible with the Satake
basis (Proposition 4.8).
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Lemma 5.1. Let σ1 and σ2 be Dynkin automorphisms of G that induce the same diagram 
automorphism of root datum of G. Denote by σ1 and σ2 the induced actions on V G

λ

respectively. We have

trace (σ1 : V G
λ → V G

λ ) = trace (σ2 : V G
λ → V G

λ ).

Proof. Assume that σ1 preserves a pinning (B, T, xi, yi; i ∈ I) and σ2 preserves another 
pinning (B, T, x′

i, y
′
i; i ∈ I). Let ψ be the automorphism of G such that its restriction on 

T is an identity map and ψ(xi(a)) = x′
i(a), ψ(yi(a)) = y′i(a). By isomorphism theorem 

of reductive groups, ψ is an inner automorphism of G. Clearly σ2 = ψ ◦ σ1 ◦ ψ−1. Note 
that the induced actions ψ and ψ−1 on Vλ preserve V G

λ . Hence the lemma follows. �
By Lemma 5.1, the Dynkin automorphism σ of G can be replaced by the automor-

phism σ̃. By Proposition 4.8, the trace of σ on V G
λ is equal to the number of σ∨-stable 

top components of GrG∨,c(λ). By Lemma 4.6, the dimension of WGσ

λ is equal to the 
number of the top components of Gr(Gσ)∨,c(λ). Note that (Gσ)∨ is isomorphic to the 
identity component group of the σ∨-fixed points in G∨ (Remark 2.3). To summarize, we 
have the following sequence:

trace(σ : V G
λ → V G

λ ) Proposition 4.8= #(Tλ,G∨)σ
∨ Corollary 4.5= #Tλ,(Gσ)∨

Lemma4.6= dimWGσ

λ .

Theorem 1.1 is proved.

5.2. Proof of Theorem 1.2

By Theorem 4.2 and Lemma 4.6, the dimension of the tensor invariant space V G
λ

equals the cardinality of the set Cλ,G∨ . Therefore G has saturation factor k if and only 
if

• for any sequence λ = (λ1, . . . , λn) of dominant weights of G such that 
∑n

i=1 λi is 
in the root lattice of G, if CNλ,G∨ is nonempty for some positive integer N , then 
Ckλ,G∨ is nonempty.

Now we prove Theorem 1.2. Let λ = (λ1, λ2, · · · , λn) be a sequence of dominant 
weights of Gσ such that 

∑n
i=1 λi is in the root lattice of Gσ. Assume that there is a 

positive integer N such that CNλ,(Gσ)∨ is nonempty. It remains to show that Ckcσ·λ,(Gσ)∨

is nonempty.
Note that (Gσ)∨ is the identity component of the σ∨-fixed points of G∨. Theorem 3.25

implies that (CNλ,G∨)σ∨ is nonempty. Therefore CNλ,G∨ is nonempty. By the assump-
tion that G has saturation factor k, we know that Ckλ,G∨ is nonempty. Theorem 3.29
implies that (Ckcσ·λ,G∨)σ∨ is nonempty. Using Theorem 3.25 again, the set Ckcσ·λ,G∨

σ
is 

nonempty. To summarize, we have the following sequence:
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CNλ,(Gσ)∨ �= ∅ Theorem3.25⇐⇒ (CNλ,G∨)σ
∨ �= ∅ =⇒ CNλ,G∨ �= ∅ Assumption=⇒ Ckλ,G∨ �= ∅

Theorem3.29=⇒ (Ckcσ·λ,G∨)σ
∨ �= ∅ Theorem3.25⇐⇒ Ckcσ·λ,(Gσ)∨ �= ∅.

Theorem 1.2 is proved.
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