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Abstract In this paper we investigate somemethods on calculating the spaces of gen-
eralized semi-invariant distributions on p-adic spaces. Using homological methods,
we give a criterion of automatic extension of (generalized) semi-invariant distribu-
tions. Based on themeromorphic continuations of Igusa zeta integrals, we give another
criteria with purely algebraic geometric conditions, on the extension of generalized
semi-invariant distributions.
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1 Introduction

Following Bernstein-Zelevinsky [6], we define an �-space to be a topological space
which is Hausdorff, locally compact, totally disconnected and secondly countable. An
�-group is a topological group whose underlying topological space is an �-space. Let
G be an �-group acting continuously on an �-space X . We may ask a general question
about how to describe all semi-invariant distributions on X with respect to the action
of G, that is, to determine the space

D(X)χ := HomG(S(X), χ) (1)

for a fixed character χ : G → C
× (all characters of �-groups are assumed to be locally

constant in this paper). Here S(X) denotes the space of Bruhat-Schwartz functions
on X , namely, the space of compactly supported, locally constant complex valued
functions on X . Here and as usual, when no confusion is possible, we do not distinguish
a representation with its underlying (complex) vector space. In particular, we do not
distinguish a character with the representation attached to it on the one-dimensional
vector space C. We call an element of (1) a χ -invariant distribution on X . Many
problems on number theory and representation theory of p-adic groups end up to the
problems on semi-invariant distributions of this kind. There are quite a lot of techniques
on the vanishing of invariant distributions. It seems to us that the constructions of semi-
invariant distributions are still not fully developed.
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Generalized semi-invariant distributions on p-adic spaces 1729

We suggest in this paper that, to describe all semi-invariant distributions on the �-
spaces, it would be more achievable to first consider some more general distributions.
They are the generalized semi-invariant distributions as in the following definition.

Definition 1.1 Let V be a (non-necessary smooth) representation of G. A vector
v ∈ V is called a generalized invariant vector if there is a k ∈ N such that

(g0 − 1)(g1 − 1) . . . (gk − 1).v = 0 for all g0, g1, . . . , gk ∈ G.

A generalized χ -invariant distribution on X is defined to be a generalized invariant
vector in the representation HomC(S(X), χ) of G.

Here and as usual, the group G acts on HomC(S(X), χ) as in the Eq. (5) of Sect.
2.2. The set of non-negative integers is denoted by N.

When X is a G-homogeneous space (to be more precise, this means that the action
ofG on X is transitive, and for every x ∈ X , the orbit mapG → X, g �→ g.x is open),
the space (1) is at most one-dimensional. We introduce the following definition.

Definition 1.2 When X is a homogeneous space of G, we say that X is χ -admissible
if the space (1) is non-zero.

We are mainly concerned with �-spaces and �-groups of algebraic geometric origin.
Throughout the paper, we fix a non-archimedean local field F of characteristic zero.

Definition 1.3 Assume that G = G(F) for some linear algebraic group G defined
over F. Let X be an algebraic variety over F, with an algebraic action of G. We say
that a G-orbit O ⊂ X(F) is weakly χ -admissible if the homogeneous space G/G◦

x (F)

is χ -admissible, where x ∈ O , and G◦
x denotes the identity connected component of

the stabilizer Gx of x in G.

The above definition is certainly independent of the choice of x ∈ O . As usual, by
an algebraic variety over F, we mean a scheme over F which is separated, reduced,
and of finite type. A linear algebraic group over F is a group scheme over F which is
an affine variety as a scheme.

The first main result we obtain in this paper is the following automatic extension
theorem for semi-invariant distributions and generalized semi-invariant distributions.

Theorem 1.4 Let G be a linear algebraic group defined over F, acting algebraically
on an algebraic variety X over F. Let χ be a character of G(F), and let U be a G-
stable open subvariety of X. Assume that every G(F)-orbit in (X\U)(F) is not weakly
χ -admissible. Then every χ -invariant distribution on U(F) uniquely extends to a χ -
invariant distribution onX(F), and every generalizedχ -invariant distribution onU(F)

uniquely extends to a generalized χ -invariant distribution on X(F).

In Theorem 1.4, if we replace “weakly χ -admissible” by “χ -admissible”, then
the uniqueness assertion of the theorem remains true, by the localization principle of
Bernstein-Zelevinsky [6, Theorem 6.9]. In particular it implies that if everyG(F)-orbit
in X(F) is not χ -admissible, then there is no nonzero generalized χ -invariant distri-
bution on X(F). But the extendability may fail in general, as shown in the following
example. Let G = {±1} � F×, which acts on X := {(x, y) ∈ F2 | xy = 0} by

(1, a).(x, y) := (ax, a−1y) and (−1, a).(x, y) := (a−1y, ax),
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for all a ∈ F× and (x, y) ∈ X . Let χ be the non-trivial quadratic character of G which
is trivial of F×. Then the orbit {(0, 0)} is weakly χ -admissible, but not χ -admissible. It
is well known that a non-zero χ -invariant distribution on X\{(0, 0)} does not extends
to a χ -invariant distribution on X .

The idea of generalized semi-invariant distributions can even be dated back to the
famous Tate’s thesis. It has rooted in the dimension one property of the space of
semi-invariant distributions on F with respect to the multiplicative action of F×. Let
χ denote a character of F× for the moment. As a simple application of Theorem 1.4,
we know that

dim HomF×(S(F), χ) = 1 (2)

when χ is non-trivial. However, Theorem 1.4 is no longer applicable when χ is trivial.
Instead, when χ is trivial, we consider the meromorphic continuation of the zeta
integral

∫
F
φ(x)|x |sdx, φ ∈ S(F).

This zeta integral has simple pole at s = −1. Taking all coefficients of the Laurent
expansion of the zeta integral at s = −1, we actually get all generalized χ -invariant
distributions on F. By considering the natural action of F× on this space of all gener-
alized χ -invariant distributions, one concludes that (2) also holds when χ is trivial.

A key observation of the above argument is that generalized invariant distributions
on F× extends to generalized invariant distributions on F. The second main result of
this paper is the following generalization of this observation.

Theorem 1.5 LetG be a linear algebraic group over F. Let X be an algebraic variety
over F so thatG acts algebraically on it with an open orbit U ⊂ X. Assume that there
is a semi-invariant regular function f on X, with the following properties:

• f does not vanish onU, and X f \U has codimension≥ 2 in X f , where X f denotes
the complement in X of the zero locus of f ;

• the variety X f has Gorenstein rational singularities.

Let χ be a character of G(F) which is trivial on N(F), where N denotes the unipotent
radical of G. Then every generalized χ -invariant distribution on U(F) extends to a
generalized χ -invariant distribution on X(F).

Here a regular function f on X being semi-invariant means that, there exists an
algebraic character ν of G over F such that

f (g.x) = ν(g) f (x), for all g ∈ G(F̄) and x ∈ X(F̄), (3)

where F̄ denotes an algebraic closure of F.

123



Generalized semi-invariant distributions on p-adic spaces 1731

Remark (a) LetG be a linear algebraic group over F, acting algebraically on an alge-
braic varietyY over F.We say thatY isG-homogeneous, orY is aG-homogeneous
space, if the action of G(F̄) on Y(F̄) is transitive. In general, a subvariety Z of Y
is called a G-orbit if it is G-stable and G-homogeneous.

(b) We say that a subvariety Z of an algebraic variety Y has codimension ≥ r (r ∈ N)
if

r + dimx Z ≤ dimx Y for all x ∈ Z.

(c) The notion of Gorenstein rational singularity is reviewed in Sect. 6.7.
(d) A variant of Theorem 1.5 is stated in Theorem 6.34, where X f is only required to

have rational singularities, but we additionally assume that there exists a nonzero
semi-invariant algebraic volume form on U .

In order to prove Theorem 1.5, as in the case of Tate’s thesis we need to employ the
theory of zeta integrals. For each generalized χ -invariant distribution μ on U(F), it
turns out that μ is a definable measure (Definition 5.9) and it is locally finite on X f (F)

(Theorem 6.31). We attach a zeta integral

Zμ, f (φ, s) :=
∫
X f (F)

φ(x)| f (x)|s dμ(x),

for every φ ∈ S(X(F)). The meromorphic continuation of Zμ, f is a consequence of
a general fact of Igusa zeta integrals on semi-algebraic spaces, which is proved in
Theorem 5.13.

The structure of the paper is as follows. In Sect. 2, we introduce the basics of
generalized homomorphisms and generalized extensions, and we prove a vanishing
theorem of generalized extensions (Theorem 2.12). In Sect. 3, we prove a localization
principle for extensions in the settings of equivariant �-sheaves (Theorem 3.2). Section
4 is devoted to a proof of our first main theorem. We first establish the generalized
version of Frobenius reciprocity and Shapiro Lemma. Then by results in Sects. 2 and
3, we prove a higher version of automatic extension theorem (Theorem 4.10), which
contains Theorem 1.4 as a special case.

In Sect. 5, we introduce p-adic semi-algebraic spaces and the measure theory on
them. We prove the meromorphic continuation of Igusa zeta integral on general semi-
algebraic spaces (Theorem 5.13) after the works of Denef, Cluckers et al. In Sect. 6,
we prove the second main theorem as follows. We first prove that any generalized
semi-invariant distribution on algebraic homogeneous spaces is a definable measure
(Theorem 6.16, Proposition 6.22), in the sense of Definition 5.9. Then we prove that it
is locally finite (Theorem 6.31) if the boundary has Gorenstein rational singularities.
In the end Theorem 1.5 follows from Theorem 5.13.

As an illustration, we determine all generalized semi-invariant distributions on
matrix spaces in Sect. 7. In this examplewe employ intensively the automatic extension
theorem and meromorphic continuations of distributions.
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2 Generalized homomorphisms and generalized extensions

2.1 The space of generalized invariant vectors

Let G be an �-group as in the Introduction. By a representation of G, we mean a com-
plex vector space together with a linear action of G on it. A vector in a representation
of G is said to be smooth if it is fixed by an open subgroup of G. A representation of
G is said to be smooth if all its vectors are smooth.

Let V be a representations of G. Define a sequence

VG,0 ⊂ VG,1 ⊂ VG,2 ⊂ · · ·

of subrepresentations of V by

VG,k := {v ∈ V | (g0 − 1)(g1 − 1) · · · (gk − 1).v = 0 for all g0,

g1, . . . , gk ∈ G}. (4)

Put

VG,∞ :=
⋃
k∈N

VG,k .

A vector of VG,∞ is called a generalized G-invariant vector in V .

Definition 2.1 A representation of G is said to be locally unipotent if it is smooth and
all its vectors are generalized G-invariant.

At least when V is a smooth representation, it is elementary to see that every
compact subgroup of G acts trivially on VG,∞. Define G◦ to be the subgroup of G
generated by all compact subgroups of G, which is an open normal subgroup of G
(similar notation will be used without further explanation for other �-groups). Put

�G := G/G◦.

Then when V is smooth, VG,∞ descends to a locally unipotent representation of �G .
Recall from the Introduction that F is a non-archimedean local field of characteristic

zero.

Proposition 2.2 (see [3, Chapter II, Proposition 22]) Assume that G = G(F) for
some connected linear algebraic group G defined over F. Then �G is a free abelian
group whose rank equals the dimensional of the maximal central split torus of a Levi
component of G.

2.2 Generalized homomorphisms

Let V1, V2 be two smooth representations of G. Then HomC(V1, V2) is naturally a
representation of G:
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Generalized semi-invariant distributions on p-adic spaces 1733

g.φ(v) := g.(φ(g−1.v)), φ ∈ HomC(V1, V2), v ∈ V1. (5)

For each k = 0, 1, 2, . . . ,∞, put

HomG,k(V1, V2) := (HomC(V1, V2))
G,k .

We call a vector in HomG,∞(V1, V2) a generalized homomorphism from V1 to V2.

Lemma 2.3 For each open compact subgroup K of G, one has that

HomG,∞(V1, V2) ⊂ HomK (V1, V2).

In particular, every generalized homomorphism from V1 to V2 is a smooth vector of
HomC(V1, V2).

Proof Write

V1 =
⊕
i∈I

V1,i

as a direct sum of finite dimensional representations of K . Then one has that

HomG,∞(V1, V2)

⊂ HomK ,∞(V1, V2)

⊂
∏
i∈I

HomK ,∞(V1,i , V2)

=
∏
i∈I

HomK (V1,i , V2) (since HomC(V1,i , V2) is a smooth representation of K )

= HomK (V1, V2).


�
By Lemma 2.3, we know that HomG,k(V1, V2) is a locally unipotent representation

of �G (k = 0, 1, 2, . . . ,∞). The following lemma is obvious.

Lemma 2.4 One has that

HomG,∞(V1, V2) = 0 if and only if HomG(V1, V2) = 0.

The following lemma is routine to check. We omit the details.

Lemma 2.5 (a) Let V1, V2, V3 be smooth representations of G. Let k1, k2 ∈
{0, 1, 2, . . . ,∞}. Then

φ2 ◦ φ1 ∈ HomG,k1+k2(V1, V3)

for all φ1 ∈ HomG,k1(V1, V2) and φ2 ∈ HomG,k2(V2, V3).
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1734 J. Hong, B. Sun

(b) Let V1, V2, V ′
1, V

′
2 be smooth representations of G. Let k1, k2 ∈ {0, 1, 2, . . . ,∞}.

Then

φ1 ⊗ φ2 ∈ HomG,k1+k2(V1 ⊗ V2, V
′
1 ⊗ V ′

2)

for all φ1 ∈ HomG,k1(V1, V
′
1) and φ2 ∈ HomG,k2(V2, V

′
2).

2.3 Generalized homomorphisms and homomorphisms

Denote by C[�G ] the group algebra of �G . Denote by IG the augmentation ideal of
C[�G], namely,

IG :=
⎧⎨
⎩
∑
g∈�G

ag g ∈ C[�G ] |
∑
g∈�G

ag = 0

⎫⎬
⎭ .

For each k ∈ N, put

JG,k := C[�G ]/(IG)k+1.

We view it as a locally unipotent representation of G through left translations. The
following lemma is routine to check.

Lemma 2.6 Let k ∈ N. For each smooth representation V of G, the map

HomG(JG,k, V ) → VG,k, φ �→ φ(1)

is a well-defined isomorphism of locally unipotent representations of G. Here
HomG(JG,k, V ) is viewed as a smooth representation of G by

(g.φ)(x) := φ(x ḡ), g ∈ G, φ ∈ HomG(JG,k, V ), x ∈ JG,k,

where ḡ denotes the image of g under the natural map G → JG,k .

More generally, we have the following lemma.

Lemma 2.7 Let k ∈ N. For all smooth representations V1 and V2 of G, the map

HomG(JG,k ⊗ V1, V2) → HomG,k(V1, V2), φ �→ φ|V1
is a well-defined isomorphism of locally unipotent representations of G. Here V1 is
identified with the subspace 1⊗ V1 of JG,k ⊗ V1, and HomG(JG,k ⊗ V1, V2) is viewed
as a smooth representation of G by

(g.φ)(x ⊗ v) := φ(x ḡ ⊗ v), g ∈ G, φ ∈ HomG(JG,k, V ), x ∈ JG,k, v ∈ V1,

where ḡ denotes the image of g under the natural map G → JG,k .
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Generalized semi-invariant distributions on p-adic spaces 1735

Proof We have the G-equivariant identifications

HomG,k(V1, V2) = HomC(V1, V2)
G,k

= HomG(JG,k,HomC(V1, V2))

= HomG(JG,k ⊗ V1, V2).

Therefore the lemma follows. 
�
Lemma 2.6 implies that

VG,∞ = lim−→
k

HomG(JG,k, V ),

for all smooth representations V of G. Likewise, Lemma 2.7 implies that

HomG,∞(V1, V2) = lim−→
k

HomG(JG,k ⊗ V1, V2),

for all smooth representations V1 and V2 of G.

2.4 Schwartz inductions

Webriefly recall theSchwartz inductions in this subsection. Let H be a closed subgroup
of G. Let V0 be a smooth representation of H . Define the un-normalized Schwartz
induction indGHV0 to be the space of all V0-valued locally constant functions φ on G
such that

• φ(hg) = h.φ(g), for all h ∈ H, g ∈ G; and
• φ has compact support modulo (the left translations of) H .

It is a smooth representation of G under right translations. The following lemma is
well known and easy to check.

Lemma 2.8 Let V be a smooth representation of G. Then the linear map

V ⊗ indGHV0 → indGH (V |H ⊗ V0),
v ⊗ φ �→ (g �→ g.v ⊗ φ(g))

(6)

is a well defined isomorphism of smooth representations of G.

2.5 Generalized extensions

Denote byM(G) the category of smooth representations of G (the morphisms of this
category are G-intertwining linear maps). By a projective smooth representation of
G, we mean a projective object of the category M(G).

Lemma 2.9 Let V1, V2 be two smooth representations of G. If V1 or V2 is projective,
then V1 ⊗ V2 is projective.
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1736 J. Hong, B. Sun

Proof This iswell known.We sketch a proof for the convenience of the reader.Without
loss of generality, assume that V2 is projective. Note that V2 is isomorphic to a quotient
of indG{1}V2. Since it is projective, it is isomorphic to a direct summand of indG{1}V2.
Therefore V1 ⊗ V2 is isomorphic to a direct summand of

V1 ⊗
(
indG{1}V2

) ∼= indG{1}(V1 ⊗ V2) (by Lemma 2.7).

By [7, TheoremA.4], indG{1}(V1⊗V2) is projective. ThereforeV1⊗V2 is also projective.

�

Lemma 2.10 Let V1 and V2 be two smooth representations of G. Let P• → V1 be a
projective resolution of V1, and let V2 → I • be an injective resolution of V2. Then
for each i ∈ Z, the i-th cohomology of the complex HomG,k(P•, V2) and the i-th
cohomology of the complex HomG,k(V1, I •) are both canonically isomorphic to

{
ExtiG(JG,k ⊗ V1, V2), for k ∈ N;
lim−→r

ExtiG(JG,r ⊗ V1, V2), for k = ∞.

Proof First we assume that k ∈ N. Then

HomG,k(P•, V2) = HomG(JG,k ⊗ P•, V2), (by Lemma 2.6). (7)

ByLemma2.9, JG,k⊗P• → JG,k⊗V1 is a projective resolution of JG,k⊗V1. Therefore
the i-th cohomology of the complex (7) is canonically isomorphic to ExtiG(JG,k ⊗
V1, V2). On the other hand, it is obvious that the i-th cohomology of the complex

HomG,k(V1, I
•) = HomG,k(JG,k ⊗ V1, I

•) (8)

is canonically isomorphic to ExtiG(JG,k ⊗ V1, V2).
The Lemma for k = ∞ then follows since taking cohomology commutes with

taking direct limits. 
�
Denote by Mu(�G) the category of all locally unipotent representations of �G .

For each k = 0, 1, 2, . . . ,∞, we have a bi-functor

HomG,k(· , ·) : M(G)op × M(G) → Mu(�G).

In view of Lemma 2.10, write

ExtiG,k(· , ·) : M(G)op × M(G) → Mu(�G)

for its i-th left derived bi-functor (i ∈ Z).
Let � be a directed set, i.e. � is a partially ordered set with a partial order ≤

and for any γ, γ ′ ∈ �, there exists γ ′′ ∈ �, such that γ ≤ γ ′′ and γ ′ ≤ γ ′′. We
can view � as a category where morphisms come from the partial order. Let �o be
the opposite category of �. Let C be an abelian category. A directed (resp. directed
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inverse) system of objects in C is a functor from � (resp. �o) to C. We can write such a
system as {Vγ }γ∈� , where Vγ ∈ C and for any γ ≤ γ ′ in � we associate a morphism
φγγ ′ : Vγ → Vγ ′ (resp. φγγ ′ : Vγ ′ → Vγ ). We call a directed (directed inverse)
system {Vγ }γ∈� injective (resp. surjective ) if for any γ ≤ γ ′ the morphism φγγ ′ is
injective (resp. surjective).

Lemma 2.11 Let V be a smooth representation of G, and let {Vγ }γ∈� be an injective
directed system of smooth representations of G where� is a countable directed set. Let
k ∈ N. If for all i ∈ Z and γ ∈ �, ExtiG,k(Vγ , V ) = 0, then ExtiG,k(lim−→γ

Vγ , V ) = 0

for all i ∈ Z.

Proof In view of Lemma 2.10, ExtiG,k(lim−→γ
Vγ , V ) can be computed as i-th coho-

mology of HomG,k(lim−→γ
Vγ , I •), where I • = {· · · → 0 → I 0 → I 1 → · · · } is an

injective resolution of V . We have the following isomorphisms,

HomG,k(lim−→
γ

Vγ , I •) � HomG(JG,k ⊗ (lim−→
γ

Vγ ), I •)

� lim←−
γ

HomG(JG,k ⊗ Vγ , I •)

� lim←−
γ

HomG,k(Vγ , I •),

where the first and the third isomorphisms follow from Lemma 2.7, and the second
isomorphism is a general property of Hom functor. Therefore it suffices to show that
the inverse limit of the system of complexes {HomG,k(Vγ , I •)}γ∈� is acyclic.

Let X•
γ = {· · · → 0 → X0

γ → X1
γ → · · · } be the cochain complex

HomG,k(Vγ , I •). We get a directed inverse system of cochain complexes {X•
γ }γ∈� .

The directed inverse system {Xi
γ }γ∈� is surjective for each i since I i is an injective

module and φγγ ′ : Vγ → Vγ ′ is an injective morphism. By assumption on the vanish-
ing of ExtiG,k(Vγ , V ) for any i and γ , we get an acyclic complex of surjective directed
inverse systems,

· · · → 0 → {X0
γ }γ∈�

{d0γ }−−→ {X1
γ }γ∈�

{d1γ }−−→ · · · .

Let Keriγ be the kernel of diγ and let Imi
γ be the image of diγ . For every i , we have

Keriγ = Imi−1
γ . Note that Ker1γ = X0

γ and we have short exact sequences

0 → Keriγ → Xi
γ → Keri+1

γ → 0.

By induction it is easy to see that for all i the directed inverse system {Keriγ }γ∈�

is surjective. Hence for all i we have the following short exact sequences (see [12,
Lemma 10.85.4])

0 → lim←−
γ

Keriγ → lim←−
γ

Xi
γ → lim←−

γ

Keri+1
γ → 0.
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Combining all these short exact sequences, we conclude that the complex lim←−γ
X•

γ is

acyclic. 
�

2.6 A vanishing theorem of generalized extensions

The main result of this subsection is the following theorem.

Theorem 2.12 Assume that G = G(F) for some connected linear algebraic groupG
defined over F. Let V1 and V2 be two smooth representations of G. Assume that there
are two distinct characters χ1 and χ2 of G such that both V1 ⊗ χ−1

1 and V2 ⊗ χ−1
2

are locally unipotent as representations of G, then

ExtiG,k(V1, V2) = 0, i ∈ Z, k = 0, 1, 2, . . . ,∞.

We remark that Theorem 2.12 fails without the connectedness assumption on G.
Instead, we will use the following corollary in the disconnected case.

Corollary 2.13 LetG bean �-groupwhich containsG(F)as anopennormal subgroup
of finite index, whereG is a connected linear algebraic group defined overF. Let V1 and
V2 be two smooth representations of G. Assume that there are two distinct characters
χ1 and χ2 of G(F) such that both (V1)|G(F) ⊗ χ−1

1 and (V2)|G(F) ⊗ χ−1
2 are locally

unipotent as representations of G(F), then

ExtiG,k(V1, V2) = 0, i ∈ Z, k = 0, 1, 2, . . . ,∞.

Proof Note that the tensor product of two locally unipotent representations is also a
locally unipotent representation. By Lemma 2.10, it suffices to prove the corollary for
k = 0. Let P• be a projective resolution of V1. Then (P•)|G(F) is a projective resolution
of (V1)|G(F). By Theorem 2.12, the complex HomG(F)(P•, V2) is acyclic. Therefore
the complex HomG(P•, V2), which equals the complex (HomG(F)(P•, V2))G/G(F) of
the G/G(F)-invariant vectors, is also acyclic. This proves the corollary. 
�

The rest of this subsection is devoted to a proof of Theorem 2.12.

Lemma 2.14 Let V1 and V2 be two smooth representations of an �-group G. Then for
each character χ of G, there is an isomorphism

ExtiG,k(V1, V2)
∼= ExtiG,k(V1 ⊗ χ, V2 ⊗ χ), i ∈ Z, k = 0, 1, 2, . . . ,∞

of locally unipotent representations of �G.

Proof Take an injective resolution

0 → V2 → I0 → I1 → I2 → · · ·

of V2. Then

0 → V2 ⊗ χ → I0 ⊗ χ → I1 ⊗ χ → I2 ⊗ χ → · · ·
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is an injective resolution of V2 ⊗ χ . Therefore the lemma follows. 
�
The following Lemma is well known and is an easy consequence of Lemma 2.9.

Lemma 2.15 Let V1, V2 be two smooth representations of an �-group G. Then for all
i ∈ Z,

ExtiG(V1, V
∨
2 ) ∼= Hi (G, V1 ⊗ V2)

∗.

In particular,

Hi (G, V )∗ ∼= ExtiG(V, C),

for all smooth representation V of G.

Here and henceforth, a superscript “∨” indicates the smooth contragredient of a
smooth representation, a superscript “∗” indicates the space of all linear functionals,
and “Hi” indicates the i-th homology group.

Lemma 2.16 LetU be a unipotent linear algebraic group over F, and put U := U(F).
Let χ be a character of U. Then for each i ∈ Z,

Hi (U, χ) = 0 if i �= 0 or χ is non-trivial.

Proof By [3, Proposition 10, Section 3.3], the coinvariant functor V �→ VU from the
category M(U ) to the category of complex vector spaces is exact. This implies the
lemma. 
�
Similar to Lemma 2.16, we have the following lemma for semisimple groups.

Lemma 2.17 Let S be a connected semisimple linear algebraic group over F, and
put S := S(F). Let χ be a character of S. Then for each i ∈ Z,

Hi (S, χ) = 0 if i �= 0 or χ is non-trivial.

Proof In view of Lemma 2.15, this is implied by [7, Theorem A.13]. 
�
The following lemma is a variant of Hoschild-Serre spectral sequence, see [7,

Proposition A.9].

Lemma 2.18 Let H be a closed normal subgroup of an �-group G. Let V and W be
smooth representations of G, with H acting trivially on W. Then there is a spectral
sequence

E p,q
2 = Ext pG/H (Hq(H, V ),W ) ⇒ Ext p+q

G (V,W ).

Generalizing Lemma 2.17, we have the following lemma for reductive groups.
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Lemma 2.19 Let L be a connected reductive linear algebraic group over F, and put
L := L(F). Let χ be a character of L◦. Then for each i ∈ Z,

Hi (L
◦, χ) = 0 if i �= 0 or χ is non-trivial.

Proof Write S for the derived subgroup of L, and put S := S(F). Lemma 2.15 and
Lemma 2.18 imply that

Hi (L
◦, χ)∗ ∼= ExtiL◦/S(H0(S, χ), C). (9)

If i �= 0, then the right hand side of (9) vanishes since L◦/S is compact. The lemma
is obvious for i = 0. 
�
Lemma 2.20 Let (X,OX ) be a ringed space. Let F1 and F2 be two OX -modules. If
the supports of F1 and F2 are disjoint, then

ExtiOX
(F1,F2) = 0, i ∈ Z.

Proof By the construction of injective resolutions as in [15, Chapter III, Proposition
2.2], we know that there is an injective resolution F2 → I• such that the support of
Ii is contained in that of F2 (i ∈ Z). Therefore the lemma follows. 
�
Lemma 2.21 Let � be a finitely generated free abelian group. Let V1 and V2 be two
representations of �. Assume that there are two distinct characters χ1 and χ2 of �

such that both V1 ⊗ χ−1
1 and V2 ⊗ χ−1

2 are locally unipotent as representations of �,
then

Exti�(V1, V2) = 0, i ∈ Z.

Proof Write C[�] for the complex group algebra attached to �. Then both V1 and V2
are C[�]-modules, and we have that

Exti�(V1, V2) = Exti
C[�](V1, V2), i ∈ Z.

Denote by C̃[�] the structure sheaf of the scheme Spec(C[�]), and denote by Ṽ1 and
Ṽ2 the quasi-coherent C̃[�]-modules attached to V1 and V2, respectively. Note that
there exists a filtration 0 = V 0

1 ⊂ V 1
1 ⊂ V 2

1 ⊂ · · · of the representation V1 of � such
that

⋃
k≥1 V

k
1 = V1 and V k

1 /V k−1
1 is a direct sum of copies of χ1 for every k ≥ 1.

Using Lemma 2.11, we are reduced to show that for all k

Exti�(V k
1 , V2) = 0, i ∈ Z.

For any vector space W , we always have

Exti�(W ⊗ χ1, V2) = W ∗ ⊗ Exti�(χ1, V2)
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for every i , where W ∗ is the dual vector space of W . By induction on k, we assume
without loss of generality that V1 = χ1. Then we have that (see [15, Chapter III,
exercise 6.7])

Exti
C[�](V1, V2) = Exti

C̃[�](Ṽ1, Ṽ2), i ∈ Z.

Since χ1 �= χ2, the supports of Ṽ1 and Ṽ2 are disjoint. Therefore the lemma follows
by Lemma 2.20. 
�
Lemma 2.22 Let L be a connected reductive linear algebraic group over F, and put
L := L(F). Let χ be a non-trivial character of L, and let V be a locally unipotent
representation of L. Then

ExtiL(χ, V ) = 0, for all i ∈ Z.

Proof Note that L◦ acts trivially on V . Lemmas 2.18 and 2.19 imply that

ExtiL(χ, V ) ∼= ExtiL/L◦(H0(L
◦, χ), V ), for all i ∈ Z.

If χ |L◦ is non-trivial, then the above space vanishes. Now assume that χ |L◦ is trivial.
Then H0(L◦, χ) is a non-trivial one-dimensional representation of L/L◦. The lemma
then follows by Lemma 2.21. 
�

Nowwe come to the proof of Theorem2.12.UsingLemma2.14,we assumewithout
loss of generality that χ2 is trivial. Then χ1 is non-trivial. As in the proof of Corollary
2.13, it suffices to prove Theorem 2.12 for k = 0. As in the proof of Lemma 2.21, we
may use Lemma 2.11 to further assume that V1 = χ1. Then what we need to prove is
that

ExtiG(χ1, V2) = 0, i ∈ Z (10)

for all non-trivial character χ1 of G, and all locally unipotent representation V2 of G.
Denote by N the unipotent radical of G, and put N := N(F). Note that N acts

trivially on V2 since N ⊂ G◦. If χ1 is non-trivial on N , then Lemma 2.18 and Lemma
2.16 imply that (10) holds. Now assume that χ1 is trivial on N . Then Lemma 2.18 and
Lemma 2.16 imply that

ExtiG(χ1, V2) ∼= ExtiG/N (χ1, V2), i ∈ Z,

which vanishes by Lemma 2.22. This finishes the proof of Theorem 2.12.

3 A localization principle for extensions

3.1 Equivariant �-sheaves and the localization principle

Let X be an �-space. We define an �-sheaf on X to be a sheaf of complex vector spaces
on X . For any �-sheaf F on X , let �c(F) denote the space of all global sections of
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F with compact support. In particular, S(X) = �c(CX ), where CX denotes the sheaf
of locally constant C-valued functions on X . For each x ∈ X , denote by Fx the stalk
of F at x ; and for each s ∈ �c(F), denote by sx ∈ Fx the germ of s at x . The set⊔

x∈X Fx carries a unique topology such that for all s ∈ �c(F), the map

X →
⊔
x∈X

Fx , x �→ sx

is an open embedding. Then �c(F) is naturally identified with the space of all com-
pactly supported continuous sections of the map

⊔
x∈X Fx → X .

Let G be an �-group which acts continuously on an �-space X .

Definition 3.1 (cf. [6, Section 1.17]) A G-equivariant �-sheaf on X is an �-sheaf F
on X , together with a continuous group action

G ×
⊔
x∈X

Fx →
⊔
x∈X

Fx

such that for all x ∈ X , the action of each g ∈ G restricts to a linear map Fx → Fg.x .

Given a G-equivariant �-sheafF on X , the space �c(F) is a smooth representation
of G so that

(g.s)g.x = g.sx for all g ∈ G, x ∈ X, s ∈ �c(F).

For each G-stable locally closed subset Z of X , the restriction F |Z is clearly a G-
equivariant �-sheaf on Z .

The main purpose of this section is to prove the following localization principle for
extensions.

Theorem 3.2 Let F be a G-equivariant �-sheaf on X. Let Y be an �-space with a
continuous map π : X → Y so that π(g.x) = π(x), for all x ∈ X and g ∈ G. Let V1,
V2 be two smooth representations of G, and let i ∈ Z. Assume that

ExtiG
(
�c(F |Xy ) ⊗ V1, V

∨
2

) = 0 for all y ∈ Y,

where Xy := π−1(y). Then

ExtiG(�c(F) ⊗ V1, V
∨
2 ) = 0.

By Lemma 2.10, Theorem 3.2 has the following obvious consequence.

Corollary 3.3 Let F and π : X → Y be as in Theorem 3.2. Let χ be a character of
G. Let k ∈ N, and let i ∈ Z. Assume that

ExtiG,k(�c(F |Xy ), χ) = 0 for all y ∈ Y,

123



Generalized semi-invariant distributions on p-adic spaces 1743

where Xy := π−1(y). Then

ExtiG,k(�c(F), χ) = 0.

3.2 A projective generator

Write H(G) for the Hecke algebra ofG, namely H(G) := S(G) dg, for a left invariant
Haar measure dg on G. Denote by CG,X the sheaf of H(G)-valued locally constant
functions on X . It is a G-equivariant �-sheave under the diagonal action of G on
H(G)×X . HereG acts on H(G) by the left translations, and the obvious identification

⊔
x∈X

(CG,X )x = H(G) × X

is used.
Denote by ShG(X) the abelian category of G-equivariant �-sheaves on X (a mor-

phism in this category is a sheaf homomorphism F → F ′ so that the induced map⊔
x∈X Fx → ⊔

x∈X F ′
x is G-equivariant). Denote by MX (G) the category of all

smooth representations V of G equipped with a non-degenerate S(X)-module struc-
ture on it such that

g.(φv) = (g.φ)(g.v), for all g ∈ G, φ ∈ S(X), v ∈ V .

Here the S(X)-module structure is non-degenerate means that

S(X) · V = V .

By [6, Proposition 1.14], �c establishes an equivalence between the category of �-
sheaves on X and the category of non-degenerate S(X)-modules. This implies the
following equivariant version of the localization theorem.

Proposition 3.1 The functor

�c : ShG(X) → MX (G) (11)

is an equivalence of categories.

Lemma 3.4 For each �-space X, the sheaf CX is a projective object in the category
of �-sheaves on X.

Proof By the equivalence of categories, we only need to show thatS(X) is a projective
object in the category of non-degenerate S(X)-modules. It is elementary and well
known that X is a countable disjoint union of open compact subsets:

X =
⊔
i∈I

Xi .

Then S(X) = ⊕
i∈I S(Xi ) and the lemma easily follows. 
�
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When X has only one element, the following proposition is proved by Blanc [5].
See also [7, Theorem A.4].

Proposition 3.5 The G-equivariant �-sheaf CG,X is a projective generator in
ShG(X), that is, it is a projective object of ShG(X), and for each G-equivariant
�-sheaf F on X, there exist an epimorphism

⊕
i∈I CG,X → F in ShG(X) for some

index set I .

Proof By Proposition 3.1, we only need to show that S(X) ⊗ H(G) is a projective
generator in MX (G). Here G acts on S(X) ⊗ H(G) diagonally, and S(X) acts on
S(X) ⊗ H(G) through the multiplication on S(X).

For every V ∈ MX (G), the linear map

S(X) ⊗ H(G) ⊗ V → V, φ ⊗ η ⊗ v �→ φ · (η.v),

is an epimorphism inMX (G), where G and S(X) act on S(X) ⊗H(G) ⊗ V through
their action on S(X) ⊗ H(G). This proves the second assertion of the proposition.

Now we show that S(X) ⊗ H(G) is projective. Fix an element η0 ∈ S(G) so that

∫
G

η0(g) dr g = 1,

where dr g denotes a fixed right invariant Haar measure G.
Let

S(X) ⊗ H(G)

F

U
P

V 0

be a diagram inMX (G) so that the map P is surjective. Lemma 3.4 implies that there
exists a S(X)-module homomorphism F ′ : S(X) ⊗ H(G) → U which is a lifting of
F , that is, P ◦ F ′ = F . Define a linear map

F ′′ : S(X) ⊗ H(G) → U, φ ⊗ ω �→
∫
G
g−1.F ′(g.φ ⊗ (η0 · (g.ω))) dr g.

Then it is routine to check that F ′′ is a well-define morphism in MX (G) which lifts
F . This finishes the proof. 
�
Corollary 3.6 The functor �c : ShG(X) → M(G) is exact and maps projective
objects to projective objects.

Proof The functor is exact since (11) is an equivalence of categories. Proposition 3.5
implies that every projective object in ShG(X) is isomorphic to a direct summand of⊕

i∈I CG,X for some index set I . Lemma 2.8 implies that as representations of G,
�c(CG,X ) = S(X) ⊗ H(G) is isomorphic to a direct sum of copies of H(G). As a
special case of Proposition 3.5, we know that H(G) is a projective object in M(G).
This proves that the functor �c maps projective objects to projective objects. 
�
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Corollary 3.7 Let Z ⊂ X be a G-stable locally closed subset of X. Then the functor

ShG(X) → ShG(Z), F �→ F |Z

is exact and maps projective objects to projective objects.

Proof Since CG,X |Z = CG,Z , the corollary follows by the argument as in the proof
of Corollary 3.6. 
�

3.3 The proof of Theorem 3.2

Let F be a G-equivariant �-sheaf on X as in Theorem 3.2. For each smooth represen-
tation V of G, F ⊗ V is clearly a G-equivariant �-sheaf on X . Moreover, we have
that

�c(F ⊗ V ) = �c(F) ⊗ V (12)

as a smooth representation of G.
Let Y and π : X → Y be as in Theorem 3.2. Note that �c(F) is a C∞(X)-module,

whereC∞(X) denotes the algebra of allC-valued locally constant functions on X . The
pull-back through π yields an algebra homomorphism S(Y ) → C∞(X). Using this
homomorphism, we view �c(F) as a non-degenerate S(Y )-module. For each smooth
representation V of G, recall that its co-invariant space is defined to be

VG := V

span{g.v − v | g ∈ G, v ∈ V } .

For each non-degenerate S(Y )-module M and each y ∈ Y , denote by My the stalk at
y of the �-sheaf M̃ on Y associated to M . To be explicit,

My := M ⊗S(Y ) Cy,

where Cy denotes the ring C with the evaluation map S(Y ) → C at y.
The following proposition is proved in [6, Proposition 2.36].

Proposition 3.8 The coinvariant space (�c(F))G is a non-degenerate S(Y )-module.
Moreover, for each y ∈ Y , one has a natural vector space isomorphism

((�c(F))G)y ∼= (�c(F |Xy ))G (Xy := π−1(y)).

Nowwe come to the proof of Theorem 3.2. In view of Lemma 2.15 and the equality
(12), replacing F by F ⊗ V1 ⊗ V2, we only need to show that

Hi (G, �c(F)) = 0, (13)
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under the assumption that

Hi (G, �c(F |Xy )) = 0 for all y ∈ Y. (14)

Take a projective resolution P• → F of F in the category ShG(X). By Corol-
larys 3.6 and 3.7, for all y ∈ Y , �c(P•|Xy ) → �c(F |Xy ) is a projective resolution
of �c(F |Xy ) in the category M(G). By the assumption of (14), the complex
(�c(P•|Xy ))G is exact at degree i . Applying Proposition 3.8, we know that the com-
plex ((�c(P•))G)y is exact at degree i . Therefore (�c(P•))G is exact at degree i as a
complex of non-degenerate S(Y )-modules. (Recall that the category of �-sheaves on
Y is equivalent to the category of non-degenerate S(Y )-modules.) This proves (13)
since by Corollary 3.6, �c(P•) → �c(F) is a projective resolution of �c(F) in the
category M(G).

4 A theorem of automatic extensions

4.1 Frobenius reciprocity and Shapiro’s lemma

Let H be a closed subgroup of an �-group G. Then there is a unique character δH\G
of H such that

HomG

(
indGH δ−1

H\G , C

)
�= 0. (15)

Here indGH indicate the un-normalized Schwartz induction as in Sect. 2.4. The space
(15) is then one-dimensional.

Let V be a smooth representation of G and let V0 be a smooth representation of H .
Recall the following well-known Frobenius reciprocity.

Lemma 4.1 Fix a generator of the space (15). Then there is a canonical linear iso-
morphism

HomG

(
indGHV0, V

∨) ∼= HomH
(
δH\G ⊗ V0, (V |H )∨

)
.

Combining Lemmas 2.7, 2.8 and 4.1, we get the following proposition.

Proposition 4.2 Fix a generator of the space (15). Then there is a canonical linear
isomorphism

HomG,k

(
indGHV0, V

∨) ∼= HomH
(
δH\G ⊗ JG,k ⊗ V0, (V |H )∨

)
.

It is well known that Schwartz inductions preserve projectiveness, as in the follow-
ing lemma.

Lemma 4.3 If V0 is projective as a smooth representations of H, then the smooth
representation indGHV0 of G is also projective.
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Proof As in the proof of Lemma 2.9, V0 is isomorphic to a direct summand of indH{1}V0.
Therefore indGHV0 is isomorphic to a direct summand of

indGH

(
indH{1}V0

) ∼= indG{1}V0.

By [7, Theorem A.4], indG{1}V0 is projective. Therefore indGHV0 is also projective. 
�
We have the following Shapiro’s lemma for generalized extensions.

Proposition 4.4 Fix a generator of the space (15). Then there is a canonical linear
isomorphism

ExtiG,k

(
indGHV0, V

∨) ∼= ExtiH
(
δH\G ⊗ JG,k ⊗ V0, (V |H )∨

)
, k ∈ N, i ∈ Z.

Proof Take a projective resolution P• → V0 of V0. Since “ind” is an exact func-
tor, by Lemma 4.3, indGH P• → indGHV0 is also a projective resolution. Then
ExtiG,k(ind

G
HV0, V

∨) equals the i-th cohomology of the complex

HomG,k

(
indGH P•, V∨) .

The later is isomorphic to the complex

HomH
(
δH\G ⊗ JG,k ⊗ P•, VH

∨)

by Proposition 4.2. By Lemma 2.9, δH\G ⊗ JG,k ⊗ P• → δH\G ⊗ JG,k ⊗ V0 is also a
projective resolution in the category M(H). Therefore the proposition follows. 
�

4.2 The case of homogeneous spaces

Let χ be a character of G. Note that there exists a natural isomorphism S(G/H) �
indGHC as representations of G via the following map

φ �→
{
g �→ φ(g−1)

}
,

for anyφ ∈ S(G/H). Hence as a special case of Proposition 4.4,we have the following
proposition.

Proposition 4.5 There is a linear isomorphism

ExtiG,k

(
S(G/H), χ) ∼= ExtiH (δH\G ⊗ JG,k, χ

)
, k ∈ N; i ∈ Z.

Recall from the induction thatG/H is said to beχ -admissible ifHomG(S(G/H), χ)

�= 0. Proposition 4.5 implies that

G/H is χ -admissible ⇐⇒ χ |H = δH\G . (16)
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Theorem 4.6 Assume that H contains H(F) as an open normal subgroup of finite
index, whereH is a connected linear algebraic group defined over F. If G/H(F) is not
χ -admissible, then

ExtiG,k (S(G/H), χ) = 0, k = 0, 1, 2, . . . ,∞; i ∈ Z.

Proof When k is finite, this is a direct consequence of Proposition 4.5 and Corollary
2.13. Then for k = ∞, the theorem follows by Lemma 2.10. 
�

4.3 The automatic extension theorem

LetG be a linear algebraic group over F, acting algebraically on an algebraic variety Z
over F.We say that Z is homogeneous if the action ofG(F̄) onZ(F̄) is transitive, where
F̄ denotes an algebraic closure of F. The following result on homogeneous spaces over
p-adic fields is well known.

Lemma 4.7 [21, Section 6.4, Corollary 2 and Section 3.1, Corollary 2] If Z is homo-
geneous, then Z(F) has only finitely many G(F)-orbits, and every G(F)-orbit is open
in Z(F).

In general, recall the following result which is due to Rosenlicht [23]. See also [22,
Theorem 4.4, p. 187].

Proposition 4.8 There exists a G-stable open dense subvariety U of Z, a variety V
over F, and a G-invariant morphism f : U → V of algebraic varieties over F such
that for all F-rational point y ∈ V, the subvariety f −1(y) ofU is homogeneous (under
the action of G).

Let χ be a character of G(F) as in Theorem 1.4. Recall the notion of weakly
χ -admissible from Definition 1.3.

Theorem 4.9 Assume that everyG(F)-orbit inZ(F) is not weaklyχ -admissible. Then

ExtiG(F),k(S(Z(F)), χ) = 0, for all k = 0, 1, 2, . . . ,∞; i ∈ Z.

Proof UsingLemma2.10,we assume that k is finite.UsingProposition 4.8 inductively,
and using the long exact sequences for extensions,we assumewithout loss of generality
that Z equals the variety U of Proposition 4.8. Then the morphism f of Proposition
4.8 yields a G(F)-invariant continuous map

f0 : U(F) → V(F).

By Corollary 3.3, we only need to show that

ExtiG(F),k(S( f −1
0 (y)), χ) = 0.

for all y ∈ V(F). This is obviously implied by Lemma 4.7 and Theorem 4.6. 
�
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Generalized semi-invariant distributions on p-adic spaces 1749

We remark that Theorem 4.9 fails if the condition “not weakly χ -admissible” is
replaced by the weaker condition “not χ -admissible”, even when G is connected and
reductive, and Z is G-homogeneous.

As inTheorem1.4, letX be an algebraic variety over F onwhichG acts algebraically,
and let U be a G-stable open subvariety of X. Using the long exact sequence for
generalized extensions, Theorem4.9 clearly implies the following automatic extension
theorem, which contains Theorem 1.4 as a special case.

Theorem 4.10 Assume that everyG(F)-orbit in (X\U)(F) is notweaklyχ -admissible.
Then for every k = 0, 1, 2, . . . ,∞ and every i ∈ Z, the restriction map

ExtiG(F),k(S(X(F)), χ) → ExtiG(F),k(S(U(F)), χ)

is a linear isomorphism.

5 Semialgebraic spaces and meromorphic continuations

For the proof of Theorem 1.5, we describe a general form of the rationality of Igusa’s
zeta integral, in the setting of semialgebraic geometry over p-adic fields. For the
basics of p-adic semialgebraic geometry, we refer the readers to the following papers
[8–10,13,14,20].

5.1 Semialgebraic spaces

Recall that a subset of Fn (n ∈ N) is said to be semialgebraic if it is a finite Boolean
combination of sets of the form

{
x ∈ Fn | f (x) = yk for somey ∈ F×} ,

where f : Fn → F is a polynomial function, and k is a positive integer. Given a
semialgebraic subset X of Fn and Y of Fm (m ∈ N), a map from X to Y is said to be
semialgebraic if its graph is a semialgebraic subset of Fn+m .

Let X be a set.We denote byAX the set of all triples (U,U ′, φ),U is a semialgebraic
subset of Fn for some n ∈ N, U ′ is a subset of X , and φ : U → U ′ is a bijection.

Definition 5.1 A semialgebraic structure over F on a set X is a subset A of AX with
the following properties:

(a) every two elements (U1,U ′
1, φ1) and (U2,U ′

2, φ2) ofA are semialgebraically com-
patible, namely, the bijection

φ−1
2 ◦ φ1 : φ−1

1 (U ′
1 ∩U ′

2) → φ−1
2 (U ′

1 ∩U ′
2)

has semialgebraic domain and codomain, and is semialgebraic;
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1750 J. Hong, B. Sun

(b) there are finitely many elements (Ui ,U ′
i , φi ) of A, i = 1, 2, . . . , r (r ∈ N), such

that

X = U ′
1 ∪U ′

2 ∪ · · · ∪U ′
r ;

(c) for every element of AX , if it is semialgebraically compatible with all elements of
A, then itself is an element of A.

A semialgebraic space over F (or a semialgebraic space for brevity) is defined to be
a set together with a semialgebraic structure (over F) on it. By a semialgebraic chart
of a semialgebraic space, we mean an element of the semialgebraic structure.

The following lemma is routine to check.

Lemma 5.2 With the notation as in Definition 5.1, let

A0 = {(Ui ,U
′
i , φi ) | i = 1, 2, . . . , r}

be a finite subset of AX whose elements are pairwise semialgebraically compatible
with each other. If

X = U ′
1 ∪U ′

2 ∪ · · · ∪U ′
r ,

then the set of all elements in AX which are semialgebraically compatible with all
elements of A0 is a semialgebraic structure on X.

By Lemma 5.2, it is clear that the product of two semialgebraic spaces is naturally
a semialgebraic space.

Definition 5.3 A subset S of a semialgebraic space X is said to be semialgebraic if
φ−1(S ∩ U ′) is semialgebraic for every semialgebraic chart (U,U ′, φ) of X . A map
from a semialgebraic space X to a semialgebraic space Y is said to be semialgebraic
if its graph is semialgebraic in X × Y .

It is clear that every semialgebraic subset of a semialgebraic space is naturally a
semialgebraic space. Recall the following famous result of Macintyre [20].

Lemma 5.4 Let f : X → Y be a semialgebraic map of semialgebraic spaces. Then
for each semialgebraic subset S of X, f (S) is a semialgebraic subset of Y .

It is well-known and easy to see that Lemma 5.4 implies that the composition of
two semialgebraic maps is semialgebraic, and the inverse image of a semialgebraic set
under a semialgebraic map is semialgebraic. All semialgebraic spaces form a category
whose morphisms are semialgebraic maps.

Definition 5.5 The dimension dim X of a semialgebraic space X is defined to be the
largest non-negative integer n such that there is a semialgebraic subset of X which is
isomorphic to a non-empty open semialgebraic subset of Fn as a semialgebraic space.
By convention, the dimension of the empty set is defined to be −∞.

The following proposition asserts that infinite semialgebraic spaces are classified
by their dimensions.
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Proposition 5.6 [9, Theorem 2] Every infinite semialgebraic space X has positive
dimension and is isomorphic to Fdim X .

By a semialgebraic function on a semialgebraic space, we mean a semialgebraic
map from it to F.

Definition 5.7 AC-valued function on a semialgebraic space X is said to be definable
of order ≤ 0 if it belongs to the C-algebra generated by the functions of the form

1S, | f |s0F ,

where s0 ∈ C, 1S denotes the characteristic function of a semialgebraic subset S of X ,
and f is a nowhere vanishing semialgebraic function on X . It is said to be definable
of order ≤ k (k ≥ 1) if it is a linear combination of the functions of the form

φ · (val ◦ g1) · (val ◦ g2) · · · (val ◦ gk),

where φ is a definable function on X of order ≤ 0, and g1, g2, . . . , gk are nowhere
vanishing semialgebraic functions on X .

Here | · |F denotes the normalized absolute value on F, and val : F× → Z denotes
the normalized valuation on F.

5.2 Definable measures

Let us review some basic measure theory. Let X be a measurable space, that is, it is
a set with a σ -algebra � on it, namely, � is a non-empty set of subsets of X which
is closed under taking countable union and taking complement. An element of � is
called a measurable subset of X . A non-negative measure on X is defined to be a map
ν : � → [0,∞] which is countably additive, namely,

ν

( ∞⊔
i=1

Si

)
=

∞∑
i=1

ν(Si ) for all pairwise disjoint elements S1, S2, S3, · · · of �.

A complex function φ on X is said to be measurable if for each open subset U of C,
φ−1(U ) ∈ �. Write M(X) for the space of all measurable functions on X . We say
that two elements of M(X) are equal to each other almost everywhere with respect to
ν if they are equal outside a set S ∈ � with ν(S) = 0.

Definition 5.8 A measure μ on X is a pair (ν, f ), where ν is a non-negative measure
on X , and f is an element of

{φ ∈ M(X) | |φ| equals 1 almost everywhere with respect to ν}
{φ ∈ M(X) | φ equals 0 almost everywhere with respect to ν} .

Here the denominator is a vector space, and the numerator is a subset of M(X) which
is stable under translations by the denominator. Therefore the above quotient makes
sense.
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The non-negative measure ν of Definition 5.8 is called the total variation of μ =
(ν, f ), and is denoted by |μ|. For each measurable function φ on X , we say that the
integral

∫
X φμ converges if

∫
X |φ|ν < ∞. In this case, the integration
∫
X

φ μ :=
∫
X

φ f ν

is a well-defined complex number. For each Y ∈ �, Y is a measurable space with the
σ -algebra �Y := {S ∈ � | S ⊂ Y }. We define the restriction μ|Y of μ to Y in the
obvious way. For each measurable function φ on X , the multiplication φμ is defined
to be the measure (|φ|ν,

φ
|φ| f ) on X .

Note that every semialgebraic space is naturally a measurable space: the σ -algebra
is generated by all the semialgebraic subsets.

Definition 5.9 Let X be a semialgebraic space. A measure μ on X is said to be
definable of order ≤ k (k ∈ N) if there is a family { fi : Si → Xi }i=1,2,...,r (r ∈ N) of
isomorphisms of semialgebraic spaces such that

• Si is a semialgebraic subset of Fni , for some ni ∈ N (i = 1, 2, . . . , r );
• {Xi }i=1,2,...,r is a cover of X by its semialgebraic subsets;
• for each i = 1, 2, . . . , r , the restriction ofμ to Si via fi has the form φiμSi , where

μSi denotes the restriction to Si of a Haar measure of Fni , and φi is a definable
function on Si of order ≤ k.

Write R for the ring of integers in F. Fix a uniformizer � ∈ R. For each integer
k ≥ 1, put

Rk :=
∞⊔
r=0

� r (1 + � kR).

Then Rk is a semialgebraic set, since Rk = {x ∈ F|x �= 0, and ac(x) ≡ 1 mod � k}
(see [13, Lemma 2.1(4)]), where ac(x) is the annular component of x , i.e. ac(x) =
x�−ord(x).We say that a semialgebraic function f on (Rk)

n (n ∈ N) is ordermonomial
if there are integers d1, d2, . . . , dn and an element β ∈ F such that

| f (x1, x2, . . . , xn)|F = |βxd11 xd22 . . . xdnn |F for all (x1, x2, . . . , xn) ∈ (Rk)
n .

The following theorem of rectilinearization with good Jacobians is proved in [10,
Theorem 7].

Proposition 5.10 Let X be a semi-algebraic set in Fn (n ∈ N), and let { f j } j=1,...,r
(r ∈ N) be a family of semialgebraic functions on X. Then there exists a family

{φi : (Rki )
ni → Fn}i=1,2,...,t (t ∈ N, ki ≥ 1, ni ∈ N)

of injective semialgebraic maps such that

• {φi ((Rki )
ni )}i=1,2,...,t forms a partition of X;
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• the restriction of f j to (Rki )
ni through φi is order monomial ( j = 1, 2, . . . , r ,

i = 1, 2, . . . , t); and
• for each i = 1, 2, . . . , t , if ni = n, then φi is continuously differentiable and their
Jacobian is order monomial.

We say that a measureμ on (Rk)
n is simple of order≤ k if it is a linear combination

of measures of the form

P(val(x1), val(x2), . . . , val(xn))u
val(x1)
1 uval(x2)2 . . . uval(xn)n μ(Rk )

n ,

where P is a (complex) polynomial of degree ≤ k, u1, u2, . . . , un ∈ C
×, and μ(Rk )

n

is the restriction of a Haar measure on Fn to (Rk)
n . Clearly if a measure μ on (Rk)

n

is simple of order ≤ k, then μ is definable of order ≤ k.

Lemma 5.11 Every semialgebraic set of dimension < n in Fn has measure 0 with
respect to a Haar measure on Fn.

Proof Let S ⊂ Fn be a non-empty semialgebraic set. Then there is a semialgebraic
open subset S◦ of S such that S◦ is a locally closed and locally analytic submanifold
of Fn , and dim(S\S◦) < dim S (see [14] and [8, Section 1.2]). Note that the measure
of S◦ is 0. Therefore the lemma follows by induction on dim S. 
�

Proposition 5.10 and Lemma 5.11 easily imply the following proposition.

Proposition 5.12 Let X be a semialgebraic space. Let {μi }i=1,2,...,r (r ∈ N) be a fam-
ily of definable measures on X. Let { f j } j=1,2,...,s (s ∈ N) be a family of semialgebraic
functions on X. Assume that μi has order ≤ di (i = 1, 2, . . . , r , di ∈ N). Then there
is a family {φk : (Rmk )

nk → Xk}k=1,2,...,t (t ∈ N, mk ≥ 1, nk ∈ N) of isomorphisms
of semialgebraic spaces such that

• {Xk}k=1,2,...,t is a partition of X by its semialgebraic subsets;
• the restriction of μi to (Rmk )

nk via φk is simple of order ≤ di , and the restriction
of f j to (Rmk )

nk via φk is order monomial, for all k = 1, 2, . . . , t; i = 1, 2, . . . , r;
j = 1, 2, . . . , s.

5.3 Igusa zeta integrals

Write qF for the cardinality of the residue field R/�R. In this subsection, we prove
the following general form of the convergence and rationality of Igusa zeta integrals.

Theorem 5.13 Letμ be a definable measure of order≤ k (k ∈ N) on a semialgebraic
space X. Let f be a nowhere vanishing bounded semialgebraic function on X such
that

|μ|(X f,ε) < ∞ for all ε > 0,

where X f,ε := {x ∈ X | | f (x)|F > ε}. Then the integral

Zμ( f, s) :=
∫
X
| f |sF μ (s ∈ C)
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converges when the real part of s is sufficiently large. Moreover, there exists a mero-
morphic function

M(s) = P(q−s
F , qsF)

(1 − a1q
−s
F )n1(1 − a2q

−s
F )n2 · · · · · (1 − arq

−s
F )nr

on C, where

• r ∈ N, a1, a2, . . . , ar are pairwise distinct non-zero complex numbers;
• n1, n2, . . . , nr ∈ {1, 2, . . . , dim X + k};
• P is a two variable polynomial with complex coefficients,

such that ifZμ( f, s) is absolutely convergent for s = s0 ∈ C, then M(s) is holomorphic
at s0, and Zμ( f, s0) = M(s0).

For each k ∈ N, writeAk(Z
n) (n ∈ N) for the space of all complex functions which

are linear combinations of the functions of the form

x �→ χ(x)P(x),

where χ is a character of Z
n , and P is a polynomial of degree ≤ k.

By Proposition 5.12, in order to prove Theorem 5.13, we assume without loss of
generality that X = (Rm)n (m ≥ 1, n ∈ N), μ is simple of order ≤ k, and f is order
monomial. Then μ is the multiple of μX with a function

(x1, x2, . . . , xn) �→ φ(val(x1), val(x2), . . . , val(xn)),

where μX denotes the restriction of the normalized Haar measure μ on Rn (i.e.
μ(Rn) = 1) to X , and φ ∈ Ak(Z

n). Since f is non-zero, bounded, and order mono-
mial, we have that

| f (x1, x2, . . . , xn)|F = qcF|xd11 xd22 . . . xdnn |F for all (x1, x2, . . . , xn) ∈ (Rm)n,

for some c ∈ Z and d1, d2, . . . , dn ∈ N. Then

Zμ( f, s)

= qcs−mn
F

∑
x=(x1,x2,...,xn)∈Nn

q−x1
F q−x2

F · · · · · q−xn
F φ(x)q−sd1x1

F q−sd2x2
F · · · · · q−sdn xn

F .

Therefore Theorem 5.13 is implied by the following Proposition, which will be proved
in the next subsection.

Proposition 5.14 Let χ be a character on Z
n of the form

(x1, x2, . . . , xn) �→ q−d1x1
F q−d2x2

F · · · · · q−dnxn
F ,
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where d1, d2, . . . , dn ∈ N. Let φ ∈ Ak(Z
n) (k ∈ N). Assume that

∑
x∈Nn ,|χ(x)|>ε

|φ(x)| < ∞ for all ε > 0. (17)

Then the summation

Zφ(χ, s) :=
∑
x∈Nn

φ(x)χ(x)s (s ∈ C)

absolutely converges when the real part of s is sufficiently large. Moreover, there exists
a meromorphic function

M(s) = P(q−s
F )

(1 − a1q
−s
F )n1(1 − a2q

−s
F )n2 · · · · · (1 − arq

−s
F )nr

on C, where

• r ∈ N, a1, a2, . . . , ar are pairwise distinct non-zero complex numbers;
• n1, n2, . . . , nr ∈ {0, 1, 2, . . . , n + k};
• P is a polynomial with complex coefficients,

such that if Zφ(χ, s) is absolutely convergent for s = s0 ∈ C, then M(s) is holomor-
phic at s0, and Zφ(χ, s0) = M(s0).

5.4 Proof of Proposition 5.14

Write A(Zn) := ⋃∞
k=0 Ak(Z

n). We view the space C(Zn) of C-valued functions on
Z
n as a representation of Z

n under translations:

(x0.φ)(x) := φ(x + x0), x, x0 ∈ Z
n, φ ∈ C(Zn).

Lemma 5.15 The space of Z
n-finite vectors in C(Zn) equals to A(Zn).

Proof Let C(Zn) f be the space of all Z
n-finite vectors. With respect to the action of

Z
n , we can decompose C(Zn) f into the direct sum of generalized eigenspaces,

C(Zn) f =
⊕
χ

C(Zn)χ .

Here χ is taken over all characters of Z
n , and C(Zn)χ consists of functions φ such

that for some N > 0,

(x1 − χ(x1))(x2 − χ(x2)) · · · (xN − χ(xN )).φ = 0 for all x1, x2, . . . , xN ∈ Z
n .

Then the space χ−1C(Zn)χ exactly consists of the generalized invariant functions
on Z

n . It is well-known that the space of generalized invariant functions on Z
n with
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respect to the translations action coincide with the space of polynomials on Z
n . This

finishes the proof of the lemma. 
�
Define A◦(Zn) to be the subspace of A(Zn) spanned by functions of the form

(x1, x2, . . . , xn) �→ ux11 ux22 · · · · · uxnn P(x1, x2, . . . , xn),

where u1, u2, . . . , un are non-zero complex numbers of absolute value < 1, and P is
a polynomial.

Lemma 5.16 Let χ be a character on Z
n of the form

(x1, x2, . . . , xn) �→ ux11 ux22 · · · · · uxnn ,

where u1, u2, . . . , ut are complex numbers of absolute value 1, and ut+1, ut+2, . . . , un
are complex numbers of absolute value < 1 (0 ≤ t ≤ n). Let φ ∈ A(Zn). Then

∑
x∈Nn ,|χ(x)|>ε

|φ(x)| < ∞ for all ε > 0 (18)

if and only if φ ∈ A◦(Zt ) ⊗ A(Zn−t ).

Proof It is easy to see that (18) holds if and only if

∑
x∈Nt

|φ(x, x ′)| < ∞ for all x ′ ∈ N
n−t . (19)

Write A for the space of all φ ∈ A(Zn) such that for some x0 ∈ Z
t and x ′

0 ∈ Z
n−t ,

∑
x∈x0+Nt

|φ(x, x ′)| < ∞ for all x ′ ∈ x ′
0 + N

n−t . (20)

The space A is a Z
n-subrepresentation of A(Zn) containing A◦(Zt ) ⊗ A(Zn−t ).

Note that every onedimensionalZn-subrepresentationof A is contained inA◦(Zt )⊗
A(Zn−t ). We also note that A◦(Zt ) ⊗ A(Zn−t ) is closed under the multiplication
by polynomials on Z

n . It implies that A ⊂ A◦(Zt ) ⊗ A(Zn−t ), by considering the
generalized eigenspace decomposition of A(Zn) under the action of Z

n . Hence the
space A is exactly identical to A◦(Zt ) ⊗ A(Zn−t ).

On the other hand, it is obvious that for all φ ∈ A◦(Zt ) ⊗ A(Zn−t ), (20) holds for
all x0 ∈ Z

t and x ′
0 ∈ Z

n−t , in particular (19) holds. This proves the lemma. 
�
The following lemma is easy to check and we omit the details.

Lemma 5.17 Let u be a non-zero complex number of absolute value < 1. Then

∑
x∈N

(
x
k

)
ux = uk

(1 − u)k+1 for all k ∈ N.
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Now we come to the proof of Proposition 5.14. Without loss of generality, assume
that d1, d2, . . . dt are all 0, and dt+1, dt+2, . . . , dn are all positive (0 ≤ t ≤ n). By
Lemma 5.16, the Assumption (17) implies that φ ∈ A◦(Zt ) ⊗A(Zn−t ). Lemma 5.16
also implies that Zφ(χ, s) is absolutely convergent if and only if

φχ s ∈ A◦(Zn) = A◦(Zt ) ⊗ A◦(Zn−t ), (21)

where χ s denotes the character

Z
n → C

×, (x1, x2, . . . , xn) �→ q−sdt+1xt+1
F q−sdt+2xt+2

F · · · · · q−sdn xn
F .

It is clear that (21) holds when the real part of s is large. This proves the first assertion
of the proposition. Now assume that (21) holds. Without loss of generality, we further
assume that

φ(x1, x2, . . . , xn) =
(
x1
k1

)(
x2
k2

)
· · · · ·

(
xn
kn

)
qα1x1
F qα2x2

F · · · · · qαn xn
F ,

for all x1, x2, . . . , xn ∈ Z
n , where αi ∈ C, ki ∈ N (i = 1, 2, . . . , n) and k1 + k2 +

· · · + kn ≤ k. Using Lemma 5.17, it is now easy to see that the summation Zφ(χ, s)
has the desired property.

5.5 Semialgebraic �-spaces and meromorphic continuations of distributions

Definition 5.18 A semialgebraic �-space (over F) is a Hausdorff topological space X
which is at the same time a semialgebraic space (over F), with the following property:
there is a finite family of semialgebraic charts {(Ui ,U ′

i , φi )}i=1,2,...,r (r ∈ N) of X
such that

• for all i = 1, 2, . . . , r , Ui is locally closed in Fni for some ni ∈ N, U ′
i is open in

X , and φi is a homeomorphism; and
• X = U ′

1 ∪U ′
2 ∪ · · · ∪U ′

r .

It is clear that every semialgebraic �-space is an �-space; the product of two semi-
algebraic �-spaces is still a semialgebraic �-space; and a locally closed semialgebraic
subset of a semialgebraic �-space is a semialgebraic �-space. All semialgebraic �-
spaces form a category whose morphisms are semialgebraic continuous maps. For
each algebraic variety X over F, X(F) is obviously a semialgebraic �-space. Note that
every semialgebraic �-space is naturally ameasurable space, with the σ -algebra gener-
ated by all the open sets, which coincides with the one generated by all semialgebraic
sets. An element of this σ -algebra is called a Borel subset of the semialgebraic �-space.

Recall the following Riesz representation theorem.

Theorem 5.19 Let X be a locally compact Hausdorff topological space which is
locally secondly countable, namely, every point of X has a neighborhood which is
secondly countable as a topological space. Then the map
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{locally finite measures on X} → {continuous linear functionals onCc(X)},
μ �→ (φ �→ ∫

X φμ)

is bijective.

Here Cc(X) denotes the space of all compactly supported continuous functions on X ,
with the usual inductive topology. A measure μ on X is said to be locally finite if

|μ|(K ) < ∞ for every compact subset K of X.

Recall that every locally finite measure on X is regular, as X is assumed to be locally
secondly countable (see [11, Proposition 7.2.3]).

If X is an �-space, then S(X) is a dense subspace of Cc(X). Write D(X) :=
Hom(S(X), C) for the space of distributions on X . By Theorem 5.19, we have an
embedding

{locally finite measure on X} ↪→ D(X).

Using this embedding, we view every locally finite measure on X as a distribution on
it.

Now let X be a semialgebraic �-space and let f be a continuous semialgebraic
function on X . Write X f := {x ∈ X | f (x) �= 0}, which is also a semialgebraic
�-space. Let μ be a locally finite definable measure on X f of order ≤ k (k ∈ N).
Let φ ∈ S(X). Note that φ is definable of order ≤ 0. Theorem 5.13 implies that the
integral

Zμ, f (φ, s) :=
∫
X f

| f |sFφμ

defines a meromorphic function on C. Moreover, for each a0 ∈ C
×, Zμ, f (φ, s) is a

rational function of 1 − a0q
−s
F . Therefore we have the Laurent expansion

Zμ, f (φ, s) =
∑
i∈Z

Zμ, f,a0,i (φ)
(
1 − a0q

−s
F

)i
.

We are interested in the distribution Zμ, f,a0,i on X . Note that Zμ, f,a0,i = 0 when
i < −(dim X + k).

5.6 The invariance property of Zμ, f,a0,i

Let G be an abstract group which acts as automorphisms of the semialgebraic �-space
X . For every g ∈ G, and every distribution η on X (or on someG-stable locally closed
subset of X ), write g ∗ η for the push forward of η through the action of g. It is clear
that for every distribution η on X , η ∈ HomG,k(S(X), χ) if and only if

(
(g0 − χ(g−1

0 ))(g1 − χ(g−1
1 )) · · · (gk − χ(g−1

k ))
)

∗ η = 0,

for all g0, g1, . . . , gk ∈ G.
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Now assume that there is a locally constant homomorphism χ f : G → Z such that

| f (g.x)|F = q
χ f (g)
F | f (x)|F, g ∈ G, x ∈ X, (22)

and there is a character χμ on G such that

μ ∈ HomG,k′(S(X f ), χμ), for some k′ ∈ N.

Proposition 5.20 Let a0 ∈ C. Let i0 be an integer so that Zμ, f,a0,i = 0 for all i < i0.
Then

Zμ, f,a0,i ∈ HomG,k′+i−i0(S(X), χμa
χ f
0 ) for all i ≥ i0.

Proof For each locally finite definable measure μ′ on X f , write Zμ′(s) for the follow-
ing distribution on X :

φ �→ Zμ′, f (φ, s) :=
∫
X f

| f |sFφμ′.

For each i ∈ Z, write Zμ′,i for the i-th coefficients of the Laurent expansion of Zμ′(s)
as a rational function of 1 − a0q

−s
F . It is a distribution on X .

The invariance property of | f |F implies that

(
g − χμ(g−1)q

−χ f (g)s
F

)
∗ Zμ(s) = q

−χ f (g)s
F Z(g−χμ(g−1))∗μ, for all g ∈ G.

Comparing the Laurent expansions of the two sides of the above equality, we know
that

(
g − χμ(g−1)a

−χ f (g)
0 )

)
∗ Zμ,i − a

−χ f (g)
0 Z(g−χμ(g−1))∗μ,i

is a linear combination of distributions of the form g′ ∗Zμ,i ′ , where i ′ < i and g′ ∈ G.
Then the proposition follows by induction on k′ + i − i0. 
�
Corollary 5.21 Let χ be a character of G. Then every generalized χ -invariant locally
finite definable measure on X f extends to a generalized χ -invariant distribution on
X.

Proof Write μ for the measure of the proposition. The distribution Zμ, f,1,0 on X
extends μ and is generalized χ -invariant. 
�

6 Generalized invariant functions and definable measures

6.1 Generalized functions on homogeneous spaces

LetG be an �-group and let X be a homogeneous space of it. We say that a distribution
η on X is smooth if for every x ∈ X , there is an open compact subgroup K of G such

123



1760 J. Hong, B. Sun

that η|K .x is K -invariant. Denote byD∞
c (X) the space of all smooth distributions on X

with compact support. A generalized function on X is defined to be a linear functional
on D∞

c (X). The space of all generalized functions on X is denoted by C−∞(X). As
before, the space of all distributions on X is denoted by D(X).

The following lemma is elementary and we omit its proof.

Lemma 6.1 Let η be a smooth distribution on X which has non-zero restriction to all
non-empty open subset of X. Then the map

C−∞(X) → D(X),

f �→ f η := (φ �→ f (φη))

is a linear isomorphism.

Using the following injective linear map, we view every locally constant function
on X as a generalized function on X :

C∞(X) → C−∞(X),

f �→ (η �→ η(1η f )),

where C∞(X) is the space of locally constant functions on X , and 1η denotes the
characteristic function of the support of η.

Lemma 6.2 Let K be an open compact subgroup of G. Then every K -invariant gen-
eralized function on X is a locally constant function on X.

Proof Without loss of generality, assume that G = K . Then in view of Lemma 6.1,
the lemma follows easily by the existence and uniqueness of K -invariant distributions
on X . 
�

6.2 Characters on algebraic homogeneous spaces

Let G be a linear algebraic group over F, with an algebraic subgroup H of it. Denote
by N the unipotent radical of G. Write G := G(F), H := H(F) and N := N(F).

In this subsection, we prove the following proposition.

Proposition 6.3 Assume that G is connected. Let χ be a character on G which is
trivial on N and has finite order when restricted to H. Then χ has the form

|β1|s1F · |β2|s2F · · · · · |βt |stF · χf ,

where t ∈ N, β1, β2, . . . , βt are algebraic characters on G which are trivial on H,
s1, s2, . . . , st ∈ C, and χf is a finite order character on G.

The following lemma is obvious.

Lemma 6.4 Let A be a split algebraic torus over F. Then every character on A(F)

has the form

|β1|s1F · |β2|s2F · · · · · |βt |stF · χf ,
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where t ∈ N, β1, β2, . . . , βt are algebraic characters on A, s1, s2, . . . , st ∈ C, and χf
is a finite order character on A.

Generalizing Lemma 6.4, we have the following lemma.

Lemma 6.5 Let A be a split algebraic torus over F, with an algebraic subgroup S of
it. Let χ be a character on A(F) which has finite order when restricted to S(F). Then
χ has the form

|β1|s1F · |β2|s2F · · · · · |βt |stF · χf ,

where t ∈ N, β1, β2, . . . , βt are algebraic characters on A/S, s1, s2, . . . , st ∈ C, and
χf is a finite order character on A(F).

Proof Denote by S0 the identity connected component of S, which is also a split
algebraic torus. Then there is an algebraic subtorus S′ of A such that A = S0 ×F S′.
By Lemma 6.4, χ |S′(F) has the form

|β1|s1F · |β2|s2F · · · · · |βt |stF · χ ′
f ,

where t ∈ N, β1, β2, . . . , βt are algebraic characters on S′, s1, s2, . . . , st ∈ C, and
χ ′
f is a finite order character on S′(F). The group A/S is obviously identified with

a quotient group of S′, and there is a positive integer m such that βm
1 , βm

2 , . . . , βm
t

descends to algebraic characters on A/S. Then we have that that

χ = χ |S0(F) ⊗
(
|βm

1 |s1/mF · |βm
2 |s2/mF · · · · · |βm

t |st/mF · χ ′
f

)
.

This proves the lemma. 
�
Lemma 6.6 For each surjective algebraic homomorphism G → G′ of linear alge-
braic groups over F, the image of the induced group homomorphism G(F) → G′(F)

has finite index in G′(F).

Proof This is a direct consequence of Lemma 4.7. 
�
Lemma 6.7 Assume that G is connected. Let A be the largest central split torus in a
Levi component L of G. Let χ be a character on G which is trivial on N. Then χ has
finite order if and only if its restriction to A(F) has finite order.

Proof The “only if” part of the lemma is trivial. We prove the “if” part. Assume
that χ |A(F) has finite order. Let S denote the simply connected covering of the derived
subgroup of L, letT denote themaximal anisotropic central torus in L. Then by Lemma
6.6, the image of the multiplication map

ϕ : (S(F) × T(F) × A(F)) � N → G = G(F) (23)

has finite index in G. Therefore it suffices to show that χ ◦ ϕ has finite order. This
holds because S(F) is a perfect group, T(F) is compact, χ |A(F) has finite order, and
χ |N is trivial. 
�

123



1762 J. Hong, B. Sun

We are now ready to prove Proposition 6.3.

Proof Assume that G is connected and let A be as in Lemma 6.7. Let χ be as in
Proposition 6.3. WriteG′ for the largest quotient ofG which is a split algebraic torus.
Consider the commutative diagram

A
ϕ−−−−→ G

ϕ′
−−−−→ G′

�⏐⏐
�⏐⏐

�⏐⏐
S := (ϕ′ ◦ ϕ)−1(H′) −−−−→ ϕ′−1(H′) = H · ker ϕ′ −−−−→ H′ := ϕ′(H),

where ϕ denotes the inclusion homomorphism, ϕ′ denotes the quotient homomor-
phism, and the vertical arrows are inclusion homomorphisms. As in the proof of
Lemma 6.7, we know that χ has finite order when restricted to (ϕ′−1(H′))(F). In
particular, χ |S(F) has finite order. By Lemma 6.5, there are algebraic characters
β1, β2, . . . , βt (t ∈ N) on A/S and s1, s2, . . . , st ∈ C so that the character

χ |S(F) · (|β1|s1F · |β2|s2F · · · · · |βt |stF
)−1

,

on S(F) has finite order. Since A/S = G′/H′ = G/(H · ker ϕ′), we may view
β1, β2, . . . , βt as algebraic characters on G which are trivial on H. Therefore Propo-
sition 6.3 follows by Lemma 6.7. 
�
Proposition 6.8 Assume that G is connected. Let χ ′ : G → C be a locally constant
group homomorphism which is trivial on H. Then χ ′ is a linear combination of the
characters of the form val ◦ α, where α is an algebraic characters on G which are
trivial on H.

Proof Note that C has no nontrivial finite subgroup. This implies that χ ′|N is trivial.
Then the proposition is proved by the same argument of the proof of Proposition 6.3


�

6.3 Generalized invariant functions on algebraic homogeneous spaces

We continue with the notation of the last subsection. Put X := G/H .
This subsection is to prove the following proposition.

Proposition 6.9 Assume that G is connected. Let χ be a character on G which is
trivial on N. Then every non-zero element ofHomG,k(D∞

c (X), χ) (k ∈ N) is a smooth
function on X of the form

P(val ◦ α1, val ◦ α2, . . . , val ◦ αr ) · |β1|s1F · |β2|s2F · · · · · |βt |stF · χf ,

where r, t ∈ N,α1, α2, . . . , αr andβ1, β2, . . . , βt are algebraic characters onGwhich
are trivial on H, s1, s2, . . . , st ∈ C, P is a polynomial of degree ≤ k, and χf is a finite
order character on G which is trivial on H such that
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χ = |β1|s1F · |β2|s2F · · · · · |βt |stF · χf .

First we have the following lemma.

Lemma 6.10 Letχ be a character on G which is trivial on an open compact subgroup
K of G. Then every element f ∈ HomG,k(D∞

c (X), χ) (k ∈ N) is a K -invariant smooth
function on X.

Proof Lemma 2.3 implies that f is K -invariant. Therefore f is a smooth function by
Lemma 6.2. 
�
Lemma 6.11 Let χ be a character on G. If the space HomG,∞(D∞

c (X), χ) is non-
zero, then χ |H is trivial.

Proof Assume that HomG,∞(D∞
c (X), χ) �= 0. Then HomG(D∞

c (X), χ) �= 0. By
Lemma 6.10, we have a non-zero smooth function f on X such that

f (g.x) = χ(g) f (x), for all g ∈ G, x ∈ X.

This implies that χ |H is trivial. 
�
For each free abelian group� of finite rank, we view the spaceC(�) of all complex

functions on � as a representation of � by left translations:

g. f (x) := f (−g + x), g, x ∈ �, f ∈ C(�).

Lemma 6.12 Let � be a free abelian group of finite rank, with a subgroup �0 of it.
Then every element in C(�)�,k ∩ C(�)�0 (k ∈ N) has the form

P(λ1, λ2, . . . , λr )

where r ∈ N, λ1, λ2, . . . , λr are group homomorphisms from �/�0 to C, and P is a
polynomial of degree ≤ k.

Proof Lemma 5.15 easily implies that

C(�)�,k = {polymonial functions on� of degree ≤ k}, (k ∈ N).

Then it is elementary to see that the lemma holds. 
�
Lemma 6.13 Assume thatG is connected. Then every element f ofHomG,k(D∞

c (X),

C) (k ∈ N) is a smooth function on X of the form

P(val ◦ α1, val ◦ α2, . . . , val ◦ αr )

where r ∈ N, α1, α2, . . . , αr are algebraic characters on G which are trivial on H,
and P is a polynomial of degree ≤ k.
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Proof By Lemma 6.10, f is a G◦-invariant function on X . We identify it with a
function on �G which is [H ]-invariant, where [H ] denotes the image of H under the
quotient homomorphism G → �G . Then

f ∈ C(�G)�G ,k ∩ C(�G)[H ].

Therefore the lemma follows by combining Lemma 6.12 and Proposition 6.8. 
�
Nowwe prove Proposition 6.9. Let f be a non-zero element ofHomG,k(D∞

c (X), χ)

(k ∈ N). We view χ as a function on X since χ |H is trivial by Lemma 6.11. Then

χ−1 · f ∈ HomG,k(D
∞
c (X), C).

Therefore Proposition 6.9 follows by combining Lemma 6.13 and Proposition 6.3.

6.4 Nash manifolds and volume forms

Definition 6.14 A Nash manifold (over F) is a locally analytic manifold X over F
which is at the same time a semialgebraic space (over F) with the following property:
there is a finite family of semialgebraic charts {(Ui ,U ′

i , φi )}i=1,2,...,r (r ∈ N) of X
such that

• for all i = 1, 2, . . . , r ,Ui is an open semialgebraic subset in Fni for some ni ≥ 0,
U ′
i is open in X , and φi is a locally analytic diffeomorphism; and

• X = U ′
1 ∪U ′

2 ∪ · · · ∪U ′
r .

All Nash manifolds form a category whose morphisms are Nash maps (namely,
locally analytic semialgebraic maps). Every Nash manifold is clearly a semialgebraic
�-space. Let X be a Nash manifold. Then the tangent bundle

T(X) =
⊔
x∈X

Tx (X)

and the cotangent bundle

T∗(X) =
⊔
x∈X

T∗
x (X)

are both naturally Nash manifolds. Therefore

∧top T∗(X) :=
⊔
x∈X

∧dim Tx (X)T∗
x (X) (24)

is also aNashmanifold. Consequently, for eachm ≥ 1, the line bundle (∧topT∗(X))⊗m

is also a Nash manifold. By a Nash m-volume form on X , we mean a Nash section
of the bundle (∧topT∗(X))⊗m over X . Fix a Haar measure μF on F. Attach to a Nash
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m-volume form ω on X , we have a non-negative locally finite measure |ω|
1
m
F on X as

usual: in local coordinate, if

ω = f (x1, x2, . . . , xn)(dx1 ∧ dx2 ∧ · · · ∧ dxn)
⊗m,

then

|ω|
1
m
F = | f (x1, x2, . . . , xn)|

1
m
F dμF(x1) ⊗ dμF(x2) ⊗ · · · ⊗ dμF(xn).

The following lemma is clear.

Lemma 6.15 For each Nash m-volume form ω on X (m ≥ 1), the measure |ω|1/mF is
locally finite and definable of order ≤ 0.

As usual, write OY for the structure sheaf of an algebraic variety Y over F. Let X
be a smooth algebraic variety over F. Let �X := �X/F denote the sheaf of algebraic
differential forms on X. Similar to (24), we define ∧top�X, which is a locally free
OX-module of rank 1. By an algebraicm-volume form onX, we mean a global section
of the sheaf (∧top�X)⊗m over X. The notion of algebraic 1-volume form exactly
coincides with the usual notion of algebraic volume form.

Given an algebraic m-volume form ω on X, a Nash m-volume form on the Nash

manifold X(F) is obviously associated to it. We define |ω|
1
m
F to be the non-negative

locally finite measure on X(F) attach to this Nash m-volume form.

6.5 Generalized invariant distributions on algebraic homogeneous spaces

We continue with the notation of Sects. 6.2 and 6.3. Then X = G/H is naturally a
Nash manifold since it is a semialgebraic open subset of (G/H)(F). In this subsection,
we prove the following theorem.

Theorem 6.16 Assume thatG is connected. Let χ be a character on G which is trivial
on N. Assume that χ is admissible on X. Then every element of HomG,k(S(X), χ)

(k ∈ N) is a measure on X and is of the form

P(val ◦ α1, val ◦ α2, . . . , val ◦ αr ) · |β1|s1F · |β2|s2F · · · · · |βt |stF · χf · (|ω|1/mF )|X ,

where r, t ∈ N,α1, α2, . . . , αr andβ1, β2, . . . , βt are algebraic characters onGwhich
are trivial on H, s1, s2, . . . , st ∈ C, P is a polynomial of degree ≤ k, χf is a finite
order character on G which is trivial on H, m ≥ 1, and ω is an algebraic m-volume
form onG/H which is δ-invariant for some algebraic character δ ofG defined over F
with the property that

χ = |β1|s1F · |β2|s2F · · · · · |βt |stF · χf · |δ|
1
m
F .

Here the algebraic m-volume form ω on G/H is δ-invariant means that

g.ωF̄ = δ(g−1)ωF̄, for all g ∈ G(F̄),
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whereωF̄ denotes the base extension to F̄ ofω.We also say that an algebraicm-volume
form ω is semi-invariant if it is δ-invariant for some algebraic character δ ofG defined
over F.

For the proof of Theorem 6.16, in the rest of this subsection, we assume that G is
connected. We start with the following lemma.

Lemma 6.17 Let δ be an algebraic character on H (defined over F). If the character
|δ|F : H → C

× extends to a character on G, then δm extends to an algebraic character
on G for some positive integer m.

Proof We first assume that H is also connected. Write �G and �H for the groups of
algebraic characters of G and H, respectively. They are free abelian groups of finite
rank.We identify the group of positive characters onG with�G⊗ZR via the following
isomorphism:

�G ⊗Z R → {positive characters onG}, δ ⊗ a �→ |δ|aF.
Likewise we identify the group of positive characters on H with �H ⊗Z R. Then we
have a commutative diagram

�G −−−−→ �G ⊗Z R

α1

⏐⏐ 
⏐⏐ α2

�H −−−−→ �H ⊗Z R,

where α1 denotes the map of restrictions of algebraic characters, and α2 denotes the
map of restrictions of positive characters.

Now let δ ∈ �H and assume that |δ|F extends to a character onG. Then |δ|F extends
to a positive character onG, that is, it belongs to the image of α2. Then it is elementary
that

|δ|F ∈ α2(�G ⊗Z Q).

Therefore |δm |F ∈ α2(�G) for some positive integer m. Then δm ∈ α1(�G) and the
lemma is proved in the case when H is connected.

Now we drop the assumption that H is connected. Let δ ∈ �H and assume that |δ|F
extends to a character on G as before. We have proved that there exists an algebraic
character δ′ on G such that

δ′|H0 = (δ|H0)
m

for some positive integer m, where H0 denotes the identity connected component of
H. Then

δ′d |H = δmd ,

where d denotes the cardinality of the group (H/H0)(F̄), and F̄ denotes an algebraic
closure of F. This finishes the proof of the Lemma. 
�
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Lemma 6.18 Assume that X is χ -admissible for some character χ on G. Then there
is an algebraic character δ ofG and a positive integer m such that there is a non-zero
algebraic m-volume form ω on G/H which is δ-invariant.

Proof Let�G denote the algebraic modular character ofG, namely the determinant of
the adjoint representation ofG on the Lie algebra Lie(G). Likewise let �H denote the
algebraic modular character of H. Put �G/H := �G|H

�H
, which is an algebraic character

on H. Recall the character δH\G on H from Sect. 4.1. Note that

δH\G = |�G/H|F. (25)

Assume that X isχ -admissible for some characterχ onG. By (16), the character δH\G
extends to a character onG. Then lemma6.17 implies that the algebraic character�m

G/H
extends to an algebraic character δ onG, for some positive integerm. Then the lemma
follows by the algebraic version of Frobenius reciprocity. 
�

Now we come to the proof of Theorem 6.16. Let η ∈ HomG,k(S(X), χ). We
assume that η is non-zero. Then X is χ -admissible. By Lemma 6.18, there is an
algebraic character δ on G, a positive integer m, and a non-zero algebraic m-volume
form ω on G/H which is δ-invariant. By Lemma 6.1, there is a unique generalized
function f ∈ C−∞(X) such that η = f |ω|1/mF . Then

f ∈ HomG,k

(
D∞
c (X), χ |δ|

−1
m
F

)
.

Therefore Theorem 6.16 follows by Proposition 6.9.

6.6 Definability of generalized invariant distributions

First we have the following elementary lemma.

Lemma 6.19 Every finite index subgroup of F× is semialgebraic. Consequently, every
finite order character on F× is definable of order ≤ 0.

Proof Every subgroup of F× of finite index m ≥ 1 contains (F×)m . Since (F×)m is a
semialgebraic subgroup of F× of finite index, the lemma follows. 
�

Recall the following semi-algebraic selection theorem of [24]. See also [14, Appen-
dix].

Lemma 6.20 Every surjective semialgebraicmapof semialgebraic spaces has a semi-
algebraic section.

We continue with the notation of the last subsection, but drop the assumption that
G is connected. Generalizing Lemma 6.19, we have the following lemma.

Lemma 6.21 Every finite order character χf on G is definable of order ≤ 0.
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Proof Recall the multiplication map

ϕ : (S(F) × T(F) × A(F)) � N → G = G(F)

from (23). Since the image of ϕ is a semialgebraic subgroup of G of finite index. By
Lemma 6.20, it suffices to show that the finite order character χ ′

f := χf ◦ϕ is definable
of order ≤ 0. This is true because χ ′

f has trivial restriction to S(F) and N , (χ ′
f)|T(F) is

a Bruhat-Schwartz function, and by Lemma 6.19, (χ ′
f)|A(F) is definable of order ≤ 0.


�
Proposition 6.22 Let χ be a character on G which is trivial on N. Then every element
of HomG,k(S(X), χ) (k ∈ N) is a definable measure on X of order ≤ k.

Proof Without loss of generality, assume that G is connected. Then the proposition
follows by Theorem 6.16 and Lemma 6.21. 
�

6.7 Locally finiteness of some algebraic measures

For each algebraic variety X over F, write Xsm for the smooth part of X, which is an
open subvariety of X. Recall that a strong resolution of singularities of X is a smooth
algebraic variety X̃ (over F) together with a proper birational morphism π : X̃ → X
such that π : π−1(Xsm) → Xsm is an isomorphism. The famous theorem of Hironaka
says that X always has a strong resolution of singularities.

Recall the following definition.

Definition 6.23 We say that an algebraic variety X over F has rational singularities if
it is normal, and there exists a strong resolution of singularities π : X̃ → X of X such
that the higher derived direct images vanish, that is,Riπ∗(OX̃) = 0 for all i > 0. Here
Riπ∗ denotes the i-th derived functor of the push-forward functor of sheaves via π .

We will use the following property of algebraic varieties with rational singularities.

Lemma 6.24 Let X be an algebraic variety over F with rational singularities. Let
U be a smooth open subvariety of X whose complement has codimension ≥ 2. Let
π : X̃ → X be a strong resolution of singularities. Then for each algebraic volume
formω onU, there is an algebraic volume form ω̃ on X̃ so that its restriction toπ−1(U)

is identical to ω via the isomorphism π : π−1(U) → U.

Proof See [19, P.50, Proposition] or [2, Proposition 1.4]. 
�
Given a measurable space X with a measurable subset Y of it, for each measure μ

on Y , we write μ|X for the measure on X which is obtained from μ by the extension
by zero.

Proposition 6.25 (cf. [1, Lemma 3.4.1]) Let X be an algebraic variety over F with
rational singularities. Let U be a smooth open subvariety of X whose complement
has codimension ≥ 2. Then the measure (|ω|F)|X(F) is locally finite for all algebraic
volume form ω on U.
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Proof Let π : X̃ → X be a strong resolution of singularities. Let ω̃ be as in Lemma
6.24. Write π(|ω̃|) for the push-forward of |ω̃|F through the map

π : X̃(F) → X(F). (26)

Then the measure π(|ω̃|) is locally finite since (26) is a proper continuous map of
topological spaces. The proposition then follows by noting that π(|ω̃|) − (|ω|F)|X(F)

is a non-negative measure. 
�
Definition 6.26 We say that an algebraic variety X over F has Gorenstein rational
singularities if it has rational singularities, and the push forward KX of ∧top�Xsm

through the inclusion map Xsm ↪→ X is a locally free OX-module.

The sheaf KX is called the dualizing sheaf of X. If X is smooth, then KX � ∧top�X.
We have the following examples of Gorentain rational singularities:

(1) If X has symplectic singularities, then X has rational Gorenstein singularities, see
[4, Proposition 1.3].

(2) The normalization of nilpotent varieties in semisimple Lie algebras have Goren-
stein rational singularities, see [17].

Recall the following standard fact in algebraic geometry.

Lemma 6.27 Let X be a normal variety and suppose that F is a locally free sheaf on
X. Let U be an open subvariety of X such that the complement X\U is of codimension
≥ 2. Then the restriction map �(X,F) → �(U,F) is an isomorphism.

Proof See [16, Proposition 1.11, Theorem 1.9]. 
�
We say that a quasi-coherent sheaf F on an algebraic variety X is torsion-free if

for every x ∈ X, the stalk Fx is torsion-free as a module of the local ring OX,x . The
following fact is standard. We omit its easy proof.

Lemma 6.28 Let F be a torison-free quasi-coherent sheaf on an algebraic variety
X. Let U be an open subset of X whose complement has codimension ≥ 1. Then the
restriction map F(X) → F(U) is injective.

Similar to Lemma 6.24, we have the following proposition.

Proposition 6.29 Let X be an algebraic variety over F with Gorenstein rational sin-
gularities. LetU be a smooth open subvariety ofXwhose complement has codimension
≥ 2. Let π : X̃ → X be a strong resolution of singularities. Then for every positive
integer m and every algebraic m-volume form ω onU, there is an algebraic m-volume
form ω̃ on X̃ so that its restriction to π−1(U) is identical to ω via the isomorphism
π : π−1(U) � U.

Proof Let ω be an algebraic m-volume form on U, that is, ω ∈ �(U, (∧top�U)⊗m).
We choose an affine open covering {Vα}α∈I of X. Let ωα be the restriction of ω to
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U∩Vα for each α. Since Vα is affine, by [15, Proposition 5.2(b), Chapter II] we have
�(Vα, (KVα

)⊗m) � �(Vα,KVα
)⊗m .For eachαwe have the following isomorphisms:

�(U ∩ Vα,∧top�U∩Vα
)⊗m � �(Vα,KVα

)⊗m

� �(Vα, (KVα
)⊗m)

� �(U ∩ Vα, (∧top�U∩Vα
)⊗m),

where the the first and the last isomorphisms follow from Lemma 6.27.
Therefore ωα can be expressed as a finite sum

ωα =
nα∑
i=1

ωα,i,1 ⊗ ωα,i,2 ⊗ · · · ⊗ ωα,i,m (nα ≥ 0),

where each ωα,i,k is an algebraic volume form on U ∩ Vα .
By Lemma 6.24 and Lemma 6.28, the pull-back π∗ωα,i,k is uniquely extended to

an algebraic volume form ω̃α,i,k on π−1(Vα). Put

ω̃α := θα

( nα∑
i=1

ω̃α,i,1 ⊗ ω̃α,i,2 ⊗ · · · ⊗ ω̃α,i,m

)
,

where θα is the natural map

θα : �
(
π−1(Vα),∧top�π−1(Vα)

)⊗m → �
(
π−1(Vα), (∧top�π−1(Vα))

⊗m
)

.

It is clear that ω̃α is an extension of π∗(ωα) from π−1(U ∩ Vα) to π−1(Vα).
By Lemma 6.28, for all α, β ∈ I , the two algebraic m-volume forms ω̃α and ω̃β

coincide on π−1(Vα ∩ Vβ), since they coincide on π−1(Vα ∩ Vβ ∩ U ). Hence {ω̃α}
can be glued to be an algebraic m-volume form ω̃ on X̃, and clearly the restriction of
ω̃ to π−1(U) is identical to ω via the isomorphism π : π−1(U) � U. 
�

Similar to Proposition 6.25, we have the following proposition.

Proposition 6.30 Let X be an algebraic variety over F with Gorenstein rational sin-
gularities. LetU be a smooth open subvariety ofXwhose complement has codimension
≥ 2. Then the measure (|ω|1/mF )|X(F) is locally finite for all algebraic m-volume form
ω on U (m ≥ 1).

Proof The proof is similar to that of Proposition 6.25. 
�

6.8 Locally finiteness of generalized invariant measures

As before, let G be a linear algebraic group over F, with unipotent radical N. Put
G := G(F) and N := N(F). Let χ be a character on G which is trivial on N . In this
subsection, we prove the following theorem.

123



Generalized semi-invariant distributions on p-adic spaces 1771

Theorem 6.31 LetX be an algebraic variety overF ofGorenstein rational singularity.
Let U be a smooth open subvariety of X whose complement has codimension ≥ 2.
Assume that U is a homogeneous space of G. Let η be a χ -generalized invariant
distribution on U(F). Then η is a measure, and η|X(F) is locally finite.

Lemma 6.32 Theorem 6.31 holds when G is connected.

Proof We are in the setting of Theorem 6.31 and assume thatG is connected. Theorem
6.31 is trivial when U(F) is empty. So assume that U(F) is non-empty. Then we may
(and do) assume thatU = G/H for some algebraic subgroupHofG. Since (G/H)(F) is
the disjoint union of finitely manyG-open orbits, we assumewithout loss of generality
that the distribution η is supported on G/H . Write

η|G/H = P(val ◦ α1, val ◦ α2, . . . , val ◦ αr ) · |β1|s1F · |β2|s2F · · · · · |βt |stF · χf · (|ω|1/mF )|G/H ,

as inTheorem6.16.ByLemma6.27,α1, α2, . . . , αr ,β1, β2, . . . , βt extend to elements
of O(X). Therefore

P(val ◦ α1, val ◦ α2, . . . , val ◦ αr ) · |β1|s1F · |β2|s2F · · · · · |βt |stF

extends to a continuous function onX(F). By Proposition 6.30, (|ω|1/mF )|X(F) is locally
finite. Therefore the lemma follows. 
�

Denote by G0 the identity connected component of G.

Lemma 6.33 Let U be a homogeneous space ofG. Then every connected component
of U containing an F-point is G0-stable and homogeneous.

Proof Let x0 ∈ U(F). Let H denote the stabilizer of x0 in G. Then U = G/H. Note
that G0 · H is an open algebraic subgroup of G, and (G0 · H)/H = G0/(G0 ∩ H) is a
connected homogeneous space of G0. Write

G/H = (G0 · H)/H � (G\(G0 · H))/H,

and the lemma follows. 
�
Now we come to the proof of Theorem 6.31 in general. Since X is normal, it is the

disjoint union of its irreducible components, and all the irreducible components are
open in X. We only need to show that for every irreducible component X′ of X,

η′ := η|U′(F) is a measure, and η′|X′(F) is locally finite , (27)

where U′ := X′ ∩ U. This is trivially true if U′(F) is empty. So assume that U′(F) is
non-empty. ThenU′ is an irreducible component ofU, and hence it is also a connected
component ofU sinceU is normal. By Lemma 6.33,U′ isG0-stable and homogeneous.
Therefore (27) holds by Lemma 6.32.
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6.9 Proof of Theorem 1.5

Now we are in the setting of Theorem 1.5. Let η be a χ -generalized invariant distribu-
tion onU(F). By Theorem 6.31, η is ameasure and themeasure η|X f (F) is locally finite.
Proposition 6.22 implies that the measure η|X f (F) is definable of order ≤ k for some
k ∈ N. By Corollary 5.21, η|X f (F) extends to a χ -generalized invariant distribution on
X(F). This finishes the proof of Theorem 1.5.

6.10 A variant of Theorem 1.5

We also have the following theorem.

Theorem 6.34 LetG be a linear algebraic group over F. LetX be an algebraic variety
over F so thatG acts algebraically on it with an open orbit U ⊂ X. Assume that there
is a non-zero semi-invariant algebraic volume form onU, and there is a semi-invariant
regular function f on X with the following properties:

• f does not vanish onU, and X f \U has codimension≥ 2 in X f , where X f denotes
the complement in X of the zero locus of f ;

• the variety X f has rational singularities.

Let χ be a character of G(F) which is trivial on N(F), where N denotes the unipotent
radical of G. Then every generalized χ -invariant distribution on U(F) extends to a
generalized χ -invariant distribution on X(F).

The proof of Theorem 6.34 is the same as that of Theorem 1.5, except that we
should replace Theorem 6.31 by the following theorem.

Theorem 6.35 LetX be an algebraic variety over F of rational singularities. LetU be
a smooth open subvariety of X whose complement has codimension ≥ 2. Assume that
U is a homogeneous space of G and there exists a non-zero semi-invariant algebraic
volume form on U. Let η be a χ -generalized invariant distribution on U(F), where χ

is as in Theorem 6.34. Then η is a measure, and η|X(F) is locally finite.

The proof of Theorem 6.35 is also similar to that of Theorem 6.31, except that we
replace Proposition 6.30 by Proposition 6.25.

7 Generalized semi-invariant distributions on matrix spaces

We consider the following action of G := GLm(F)×GLn(F) (m, n ≥ 1) on the space
Mm,n := Mm,n(F) of m × n-matrices with coefficients in F:

(g1, g2) · x := g1xg
−1
2 , g1 ∈ GLm(F), g2 ∈ GLn(F), x ∈ Mm,n .

For r = 0, 1, . . . ,min{m, n}, let Or denote the set of rank r matrices in Mm,n , which
is a G-orbit. Put Ōr := ⊔r

i=0 Oi. Then Or is open and dense in Ōr . Every character
of G is given by

(g1, g2) �→ χ1(det(g1))χ2(det(g2)),
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for some characters χ1, χ2 of F×. We denote this character of G by the pair (χ1, χ2).
Let Ir = (ai j ) be the matrix in Or such that

ai j =
{
1 if 1 ≤ i = j ≤ r,

0 otherwise .

The stabilizer group Gr of Ir in G consists of elements of the form

([
x y
0 w1

]
,

[
x 0
z w2

])
,

where x ∈ GLr (F), y ∈ Mr,m−r (F), z ∈ Mn−r,r (F), w1 ∈ GLm−r (F), w2 ∈
GLn−r (F). The algebraic modular character �Gr of Gr is given by

([
x y
0 w1

]
,

[
x 0
z w2

])
�→ det(x)m−ndet(w1)

−rdet(w2)
r .

By (16) and (25), for each character χ of G, the orbit Or is χ -admissible if and only
if

χ |Gr = |�G |F · |�Gr |−1
F = |�Gr |−1

F .

Since the stabilizer Gr is connected when viewed as an algebraic group, the orbit Or

is χ-admissible if and only if it is weakly χ-admissible.

Proposition 7.1 Fix a character χ = (χ1, χ2) of G. Assume that m �= n, then the
following holds.

(a) If χ = (1, 1), then D(Mm,n)
χ,∞ = D(Mm,n)

χ = C · δ0, where δ0 is the delta
distribution supported at 0.

(b) If χ = (| · |nF, | · |−m
F ), then D(Mm,n)

χ,∞ = D(Mm,n)
χ = C · μMm,n , where μMm,n

is a Haar measure on Mm,n.
(c) If χ �= (1, 1), (| · |nF, | · |−m

F ), then D(Mm,n)
χ,∞ = 0.

Proof Note that there is no non-constant semi-invariant regular function on each orbit
Or . By Theorem 6.16, all generalized χ -invariant distributions on Or are χ-invariant.

If χ = (1, 1), then O0 is the only χ -admissible orbit, and therefore

D(Mm,n)
χ,∞ = D(Mm,n)

χ = C · δ0.

If χ = (| · |nF, | · |−m
F ), then Omin{m,n} is the only χ -admissible orbit. Then Theorem

1.4 implies that

C · μMm,n ⊂ D(Mm,n)
χ ⊂ D(Mm,n)

χ,∞

= D(Omin{m,n})χ,∞ = D(Omin{m,n})χ = C · μMm,n .

If χ �= (1, 1), (| · |nF, | · |−m
F ), then each orbit Or is not χ-admissible. Therefore

D(Mm,n)
χ,∞ = 0. 
�
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We now assume that m = n, and we denote by Mn the space Mn,n . Consider the
following zeta integral

Zχ (φ, s) =
∫
Mn

φ(x)χ(det(x))|det(x)|sF
dx

|det(x)|nF
,

where det is the determinant function on Mn , dx is the Haar measure on Mn so that
the space Mn(R) of integral matrices in Mn has volume 1, χ is a character of F× and
φ ∈ S(Mn). By Theorem 5.13, it is a rational function of 1 − q−s

F . Let Zχ,i be the
i-th coefficient of the Laurent expansion of Zχ (as a rational function of 1 − q−s

F ).
By Proposition 5.20, Zχ,i is a generalized (χ, χ−1)-invariant distribution. It is easy
to check that

(1 − g) · Zχ,i = Zχ,i−1, (28)

for all g = (g1, g2) ∈ G such that det(g−1
1 g2) is a uniformizer of R. Here the action

of G on D(Mn)
(χ,χ−1),∞ ⊂ HomC(S(Mn), (χ, χ−1)) is as in the Eq. (5) of Sect. 2.2.

Proposition 7.2 (a) If χ = | · |rF for some r = 0, 1, . . . , n − 1, then Zχ,i = 0 for all

i < −1, and {Zχ,i }i≥−1 is a basis of D(Mn)
(χ,χ−1),∞.

(b) If χ �= | · |rF for all r = 0, 1, . . . , n − 1, then Zχ,i = 0 for all i < 0, and {Zχ,i }i≥0

is a basis of D(Mn)
(χ,χ−1),∞.

(c) For every character (χ1, χ2) of G, the space D(Mn)
(χ1,χ2),∞ = 0 if χ1χ2 �= 1.

Proof Note that for each i < 0, Zχ,i is supported in Ōn−1, in other words,

Zχ,i ∈ D(Ōn−1)
(χ,χ−1),∞.

It is easy to see {Zχ,i |On }i≥0 is a basis of D(On)
(χ,χ−1),∞. In particular, we have an

exact sequence

0 → D(Ōn−1)
(χ,χ−1),∞ → D(Mn)

(χ,χ−1),∞ → D(On)
(χ,χ−1),∞ → 0. (29)

If χ �= | · |rF for all r = 0, 1, . . . , n − 1, then any orbit in Ōn−1 is not χ -admissible,
i.e. not weakly χ -admissible. By Bernstein-Zelevinsky localization principle,

D(Ōn−1)
(χ,χ−1),∞ = 0.

Therefore part (b) of the proposition follows.
Now assume that χ = | · |rF (r = 0, 1, . . . , n − 1). Then

D(Ōn−1)
(χ,χ−1),∞ = D(Ōr )

(χ,χ−1),∞ = D(Or )
(χ,χ−1),∞ = D(Or )

(χ,χ−1). (30)

Here the first equality follows from the localization principle of Bernstein-Zelevinsky,
the second one is implied by Theorem 1.4, and the last one follows as in the proof
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of Proposition 7.1. In particular, Zχ,i is (χ, χ−1)-invariant for all i < 0. Then (28)
implies that that Zχ,i = 0 for all i < −1. On the other hand, the computation ([18,
Chapter 10.1])

∫
Mn(R)

|det(x)|sdx =
n∏

i=1

1 − q−i
F

1 − q−i−s
F

implies that Zχ,−1 �= 0. Therefore Zχ,−1 is a generator of the one-dimensional space
(30). Now part (a) of the proposition follows by the exact sequence (29).

Part (c) of the proposition is an easy consequence of Bernstein-Zelevinsky local-
ization principle, since under which condition every orbit in Mn is not χ -admissible.


�
In view of (28), Proposition 7.2 implies that

dimD(Mn)
(χ,χ−1) = 1

for all character χ of F×. This generalizes the equality (2) of Tate’s thesis, and is a
(well-known) particular case of local theta correspondence.
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