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MIRKOVIC-VILONEN CYCLES AND POLYTOPES
FOR A SYMMETRIC PAIR

JIUZU HONG

ABSTRACT. Let G be a connected, simply-connected, and almost simple al-
gebraic group, and let o be a Dynkin automorphism on G. Then (G,G?)
is a symmetric pair. In this paper, we get a bijection between the set of o-
invariant MV cycles (polytopes) for G and the set of MV cycles (polytopes)
for G?, which is the fixed point subgroup of GG; moreover, this bijection can be
restricted to the set of MV cycles (polytopes) in irreducible representations.
As an application, we obtain a new proof of the twining character formula.

1. INTRODUCTION

Let G be a connected semisimple algebraic group over C, and let G be the affine
Grassmannian of G. Let Gy be the G(C[[t]])-orbit on G corresponding to a domi-
nant coweight A on G. Let IC) be the spherical perverse sheaf supported on Gy.
V. Ginzburg [G] and Mirkovi¢ and Vilonen [MV] set up the geometric Satake cor-
respondence, which says that the category of spherical perverse sheaves on G is
equivalent to the category of finite dimensional representations of the Langlands
dual group GV of G; in particular, the irreducible representation V() of GV with
highest weight A is identified with the cohomology group H*(G,IC)). Further-
more, Mirkovié and Vilonen [MV] discovered Mirkovié-Vilonen cycles which affords
a natural basis of V().

In [A], Anderson studied the moment polytopes of Mirkovié-Vilonen cycles,
which are called Mirkovié-Vilonen polytopes, and showed that these polytopes could
be used to understand the combinatorics of representations of G¥. In [KI], Kam-
nitzer gave an explicit combinatorial description of the MV cycles and polytopes.
He showed that canonical basis and MV cycles are governed by the same combina-
torics, i.e., MV cycles «—— MV polytopes «— canonical basis, are bijections.

Let o be a nontrivial Dynkin automorphism of G. We have a Dynkin automor-
phism on GV induced from o. Let G? be the identity component of a fixed point
group of ¢ on G. Let A be a o-invariant dominant coweight of GG, which can also be
viewed as a dominant coweight of G?. Let v(\) be the irreducible representation of
GV with highest weight \. We have a natural action of ¢ on V()) induced from the
action of the automorphism on GV, which fixes the highest weight vector in V()).
For a o-invariant coweight p for G, o acts on the weight space V,,()\). The twining
character ch?V/(A) is defined to be 3__,\_, trace(oly, (x))e”. It is related to the
character of the irreducible representation of (G°)Y with highest weight A through
the twining character formula, which is attributed to Jantzen [J] under the name
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of Jantzen theorem in [KLP|. Though there are many proofs in the literature (for
example, [J], [N], [KLP]), it seems that there is no satisfactory explanation for why
Langlands dual appears in this formula.

In this paper, we consider the action of ¢ on MV cycles and MV polytopes. The
main result of the paper is to give an explicit bijection between o-invariant MV
cycles (polytopes) for G to MV cycles (polytopes) for G?. In terms of polytopes, it
sends o-invariant MV polytopes P for G, to P?, which is a MV polytope for G.
The bijection can be restricted to MV cyles (polytopes) in irreducible representation
space.

In this paper, we also show that the automorphism on GV from Tannakian
formalism is a Dynkin automorphism. On V(A), there are two actions of o, where
one is induced from GV, and the other one is induced from the action of ¢ on MV
cycles. We show that both of them agree, then we get a new proof of twining
character formula through geometric Satake correspondence.
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2. DYNKIN AUTOMORPHISM

2.1. Notations. Let G be a connected, simply-connected and almost simple al-
gebraic group of rank ¢ over C. Let T be a maximal torus of G and let X* =
Hom(7T,C*), X, = Hom(C*,T) denote the weight and coweight lattices of T.
Then we have a natural perfect pairing (,) : X« x X* — Z. Let W = N(T)/T
denote the Weyl group.

Let I = {1,---,l} denote vertices of the Dynkin diagram of G. Let B be a Borel
subgroup of G containing T'. Let oy, iz, -+ , oy and o, oy, - - - , @ be simple roots
and simple coroots of G with respect to B, respectively. Then a;; = (o), ;) is the
entry of the Cartan matrix of G. Note that (X., X*,(,),a), a;;i € I) is the root
datum of G. Let Ay, -+, A\, € X* ® R be fundamental weights.

Fori e I,let z; : C — G and y; : C — G be root homomorphisms (corresponding
to «; and —q;, respectively) which together with 7', B form a pinning of G.

Let s1,---,s¢ € W be the set of simple reflections. Let wg be the longest element
of W, and let m be its length.

We use > for the usual partial order on X, so that p > v if and only if y — v
is a sum of positive coroots. More generally, for each w € W, we have the twisted
partial order >,, on X,, where y >,, v if and only if w=!-pu>w=! v.

A reduced word for an element w € W is a sequence of indices i = (i1, - , i)

€ I* such that w = Siy * Siy *** 8i,, 1s a reduced expression. In this paper, a reduced
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word will always mean a reduced word for wg, where wy is the longest element
in W.

2.2. Group structure of G?. Let o : I — I be a nontrivial bijection, satisfying
Ao (i)o(j) = @ij for all 4,5 € I. We assume that there are automorphisms o : X* —
X* and 0 : Xy — X, of Z-modules satisfying o(o;) = a,(;) and o(a) = ),
for any ¢ € I. Then o induces an automorphism o : G — G of algebraic groups,
such that o(z;(a)) = 2,(;)(a) and o(yi(a)) = ys@;)(a) (Vi € I). We call o a Dynkin
automorphism on G. In particular, we have o(B) = B and o(T) =T.

Let G be the fixed point group of ¢ on G, and let T and B? be the fixed point
groups of T" and B, respectively. Then G?, B and T are connected; moreover,
G? is almost simple algebraic group, under our assumptions on G (see [ST]). We
call (G,G7) a symmetric pair.

We set X? = {\ € X.|o(A\) = A}, and X} = Hom(X?,Z). We have a perfect
pairing X7 x X* — Z denoted again by (,). Let I, be the set of o-orbits on I.

For any n € I, let a:?/ =2h Zie" ay € X7, where h is the number of unordered
pairs (4, j) such that ¢,5 € , a; + a; € ®. Note that h =1, if n = {4, j} and a;; =
—1; h =0, otherwise. Let 6 : X* ® R — X ® R be the natural surjection induced
from the perfect pairing (,) : X, x X* — Z. Set a;; = 0(;), and X, = +6(\;),
where i is any element of 7. We have the following proposition (see [KLP], [J]).

Proposition 2.1. (Xf,X;,a);,an) is a root datum of G°.

Define z,, = [[;¢, z: : C — G7, by z,(a) = [[;¢, zi(a), if n has only one element,
orVi,j €n, with ¢ # j, a;; = 0; define z,, : C — G7, by z,(a) = z;(a)z;(2a)z;(a),
if n ={i,j}, a;; = —1. We have the following lemma (see [L1]).

Lemma 2.2. Let x1, o be two simple root subgroup homomorphisms of G of type
Ay corresponding to ay and as. Then we have
a20a3 ajag

r1(ay +az)x .
ay +a3) o 2 2(a1 + ag

From this lemma, we see easily that x, is a group homomorphism. Similarly,
we can define y,, so that x, and y, are homomorphisms from C to G°. Since
try(a)t™! =z, (ay(t)a), x, is a root subgroup homomorphism of G7 with root a,.
We have

ﬂfl(al)xz(@)!ﬂl(ag) = 992(

Proposition 2.3. (T, B, z,,y,;n € 1) form a pinning of G°.

Clearly, 0 : G — G induces an automorphism of W denoted again by o, satisfying
0(si) = 84(;) for any i € I. Let W7 = {w € W|o(w) = w}. For any n € I, we
define s,, € W7 to be the longest element in the subgroup of W generated by
{si;1 € n}. It is known that W7 is a Coxeter group on the generators {s,;n € I, }.
Any element w € W can be restricted to X?. Under this restriction, we can see
that W is identified with the Weyl group of G?. For w € W?, we denote by £, (w)
the length of w in the Coxeter group W7.

3. MV CcYCLES AND MV POLYTOPES FOR THE SYMMETRIC PAIR

3.1. Action of o on affine Grassmannian. Let O = CJ[t]], and let K be the
quotient field of O. Let G and G,, be affine Grassmannian of G and G, respectively.
As the sets of rational points over C, G = G(K)/G(0O), and G, = G(K)?/G(O)°.
A coweight p € X, gives a point in G, denoted by t*. It is known that ¢* is a fixed
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point for the action of T on G. In fact, all the fixed points of T are given in this
way.

For a given dominant coweight )\, we set G* = G(O)-t*. We have the decompo-
sition G = | | Aext G*, where X[ is the set of dominant coweights.

Let N be the unipotent radical of B. For w € W, we set N,, = wNw~!. For
w € W and p € X, define the semi-infinite cells by S¥ = N,,(K)-t#. For simplicity,
we set S = SI'= N(K)-t". We have G = | | ¢, 5. The semi-infinite cells have
the simple containment relation, Si, = L, <, Su- We see that if Sf NSy # @,
then v <, p.

We have the closed embedding ¢ : G, — G. Since 0(S*) = S°™ | we have
G7 = Urexs (87

Set U := {g(t71') € G(C[t71])|g(0) = 1)}. Then the fixed point set U’ =
{g(t™1) € G°(C[t71])|g(0) = 1)}. For a coweight A, set S(A\) := N(C[t,t"1]) N
AUt and S, (\) := N°(C[t,t~ ) n AUt >,

The following result is well known.

Lemma 3.1. Let A € X,. Then the group S()\) acts simply-transitively on S*,
i.e., S(\) =~ S*, with the map g — g.t*.

Proposition 3.2. The fized point subvariety of the action of o on G is exactly
identified with G,.

Proof. From Lemmal[B.T] we are reduced to showing that S(A)? = S, () for A € X7,
and it is easy to see, since

S(\)7 = N(C[t,t™ )7 n (t*"Ut™)7 = N°(C[t,t ) nt* Ut = S,(\). O

From G» = |—|u<>\ Ggr, Sk = |—|V<'wH S¥ and the above proposition, we can easily
see that - N

Corollary 3.3. Fo@ a o-invariant, and w a o-invariant element in W, we have
(GN)7 =G, 6N =G, (Sh)7 = (So )k, and S = (So)t-

3.2. MV cycles and MV polytopes. Let py, pe be coweights with p; > po.
Following Anderson [A], an irreducible component of SE* N S4? is called an MV

cycle with coweight (u1, p2). This definition of an MV cycle is a generalization of
the original one in [MV]. X, acts on G by v-L :=t”- L. Since T normalizes N,,, we

see that v-S# = SETV_ If A is a component of SE* N S42, then v+ A is a component

of S#11 N 82T Hence X, acts on the set of all MV cycles. The orbit of an MV
cycle with coweight (i1, u2) is called a stable MV cycle with coweight pe — 1. Note
that a stable MV cycle with coweight p has a unique representative with coweight
(v,v+ p) for a fixed coweight v.

Let MVC¢ denote the set of stable MV cycles for G, and let MVCY, denote the
set of those with coweight p. For a T-invariant closed subvariety A of the affine
Grassmannian, let ®(A) C tg := X. ® R be the moment polytope of A, which is
exactly the convex hull of {u € X, |tF € A}.

If Ais an MV cycle with coweight (1, p2), then we say that ®(A) is an MV
polytope with coweight (g1, p2). The action of X, on the set of MV cycles gives
an action of X, on the set of MV polytopes. It is easy to see that v- P = P + v.
The orbit of X, on an MV polytope with coweight (u1, u2) is called a stable MV
polytope with coweight po — p1.
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Let MVP¢ be the set of stable MV polytopes for G, and let MVP? be the set
of stable MV polytopes for G with coweight . As mentioned in [A], there is a
natural bijection between MVC¢q and MVPg. Let C be an MV cycle, and let [C]
be its stable MV cycle. Let Pc be the corresponding MV polytope of C, and let
[Pc] be its stable MV polytope. If there is no confusion, we write C' (resp. P) for
both MV cycle (or polytope) and stable MV cycle (resp. polytope).

Suppose we are given a collection of coweights e = (tw)wew such that p, <,
1y for all v,w € W. Then we define the corresponding pseudo-Weyl polytope by

Plua) = (Clir = {ol{ow - A) < (i w-X), Y € W, and i € 1),

For a collection (ftw)wew with coweights such that p, <., p, for any y,w € W,
set A(pe) = Stw, and let Conv(ue) be the convex hull of (ty)wew in tr. A(pe)
is called a GGMS stratum, and it is a candidate of MV cycles. If it is not empty,
then the moment polytope of A(u.) is exactly Conv(ue) (see Lemma 2.3, [K1J),
which also coincides with P(j,). That is, Conv(ie) = P(tte)-

The following theorem gives a criterion for the closure of a GGMS stratum to
be an MV cycle.

Theorem 1 (Kamnitzer[K1]). Let (pw)wew be the set with coweights, such that
Py <w Hw, for any y,w € W. Then A(pe) = () Sh* is an MV cycle if and only if
Conv(pe) is an MV polytope.

Let P be an MV polytope with vertices (piy)wew. Then P is the moment

polytope of an MV cycle (]S4, In this case, o(()SL") = ﬂSZ(M"_l(m) is also an
MV cycle, and its moment polytope is exactly Conv(o(fs-1(w))). Hence it is an
MV polytope with vertices (o (tto-1(w)))wew, Which coincides with o(P).

Lemma 3.4. Let (uy)wew be the vertices of an MV polytope P, and let A(fie)
be the corresponding GGMS stratum, such that A(ue) is an MV cycle. Then the
following statements are equivalent:

(1) P is o-invariant.

(2) A(pe) is o-invariant.

(3) A(pe) is o-invariant.
(4) O-(ﬂw) = Ho(w)s VweW.

Proof. Since MV cycles are parametrized by MV polytopes bijectively, it is easy to
see that the moment polytope of o([) S4*) is o(P). So P is o-invariant if and only

if A(pe) is o-invariant, i.e., (1) < (2).
Assume A(j,) is o-invariant. Then () Sh* = ﬂSZ,(M“*l(“’)). Since () S#» and
N S;(H"_l(’”)) are locally closed, we have ((SE») N (N SZ(H“_l(“’))) # @. It implies

that, Vw € W, Si» N S’;(“"_l(”’) # @. Hence py = o(fto-1(w)), Yw € W. So
(2) = (4).
It is easy to see (3) < (4), and (4) implies (1) immediately. O

3.3. Lusztig datum. Let ibe areduced word, and n, € N™. Recall some results in
[K1]. We define {413 to<k<m inductively by pe = 0and p,i = pyi —npwy_q (o)),

. oot - . .

for any 1 < k < m. Set A'(n,) =[S ;*. Then Al(n,) is an MV cycle with
Wi

coweight fi,,, and the corresponding MV polytope P has i-Lusztig datum n,.
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From the corresponding i-Lusztig datum of the MV polytope P, we can recover the
vertices of P uniquely, through the above procedure. In this way, we have a bijection
from MV polytopes to i-Lusztig data. Moreover, there exists an explicit bijection
between i-Lusztig data and MV cycles, 7; : N™ — MVC by 7i(ne) = Al(n.,).

Let i, i’ be two reduced words of wg. It is known that i’ can be obtained from
i through several braid moves. Fix a path of braid moves from i to i’. For each
move, there is a transform (in Proposition 5.2, [K1]) between the Lusztig data of P
along the two consecutive reduced words. By combining these transforms, we get
a bijection Ré/ : N™ — N which is independent of the choice of the path from i
to i’. We call it the Lusztig transform from i to i’ for G. From [K1], we also know
that R (ne) = n), if and only if A'(ne) N AV (n)) is dense in Al(n,).

We give a necessary and sufficient condition on the i-Lusztig datum n,, so that
P is o-invariant. We call such an ne a o-invariant i-Lusztig datum.

Proposition 3.5. Let wg = sy, 5y, - Sp,. be a reduced expression of wo relative
to the Coxeter group W7, where ny,m2,+ ,Nm, are orbits of o in I. For each n,
we fix a reduced expression of s, as an element of W, and denote by i the resulting
reduced expression of wg relative to W. Let ne be the i-Lusztig datum of P. Then
P is o-invariant if and only if ny = ng = -+ = Ny s My 41 = Ny 2 = 00 =
N,y +rpys "5 Where Ty is the length of s, as an element of W.

Proof. For any orbit n of o, let R,, be the root system generated by {c;;i € n}.
Let W, be the Coxeter group generated by {s;, for i € n}. Then s, is the longest
element in W,,.

Recall that n; means the length of the edge connecting P with o » ie.,

i — Hui | = —ngwh_y(ay). The convex hull of {p,lw € Wy} forms an

MYV polytope for an algebraic group of type R,,. We denote it by Pnll. From
s "+ 5 Mt > we get a Lusztig datum (n1,ng,- - , Ny, ) along the chosen reduced
n

1
word of s,,. The convex hull of {p,,|w = s,,y, for y € W,,} forms an MV polytope
of type R,,. We denote it by P%. From 1, Ry , we get a Lusztig
™

1 +1 Tnq +7‘772
datum (nrm+1,nrm+2, e ’nrm+f’n2) along the chosen reduced word of s,,. Sim-
ilarly, we get subsequently MV polytopes ng, <, P with type Ry, -cc Ry,
We also get their corresponding Lusztig data along the chosen reduced words of

Sp; -
Now let us return to the proof. If P is o-invariant, we have o(jtw) = fio(w), for
all w € W, by Lemma 34l Applying Lemma [3.4] again, we see that Pfk, for all k&,
are o-invariant.
Note that there are two possibilities: Ay and Ay x A7 X ---x Ay ( with [ copies of
Ay, where £ = 2 or 3) for R,. Hence the sufficient part is reduced to the following
two cases which are easy to check.

(1) Ay, if P is o-invariant, then ny = ng = ng .

(2) Ay x Ay X -+ x Ay, if P is o-invariant, then ny =ng =--- = n;.
Conversely, from Al(n,) = (N, Su?%, we have o(Al(n,)) = A(n,), where j =
wk X
(o(i1),0(i2), -+ ,0(im)). From the condition of n,, it is easy to see R](ne) = na.

Hence their closures coincide, i.e., the corresponding MV cycle of this i-Lusztig
datum is o-invariant. By Lemma [3.4] P is o-invariant. O
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3.4. The bijection between MV cycles (polytopes) for a symmetric pair.
Let P be a o-invariant MV polytope for G. In this subsection, we will show that
P? is an MV polytope for G?, and then we get the bijection between MV polytopes
for a symmetric pair.

Consider the symmetric pair (A4, Bs). For the longest element in the Weyl group
W, we have reduced expressions wg = S1584:525352°5154°S28352 = $25352-S1584°S25352"
s184. We get two reduced words i, and i/, for G? from these two expressions of wy.
From i,, and i/, we naturally get 2 reduced words for G, i = (1,4,2,3,2,1,4,2,3,2),
i"'=1(2,3,2,1,4,2,3,2,1,4), respectively. Let n,, nj, be Lusztig data along i, and i’
for P, respectively. According to Proposition B0 we may write ne and n/, as

ne = (M1, N, Mg, N, Mg, N3, N3, N, Mg, Ng) € N,
TL’. = (ﬁlla ﬁ/la ﬁ/la 7_7'/2a 7_7'/2a ﬁéa ﬁéa ﬁéa ﬁila 7_7'21) € Nloa
where 7y, 7}, are nonnegative integers.

Set ng = (R1,M2,M3,74). By sending ne to ng, we get a bijection between
i-Lusztig data of o-invariant MV polytopes for G and i,-Lusztig data of MV poly-
topes for G?. We shall show this bijection is intrinsic, and independent of the choice
of reduced words. Note that the above procedure works for the general case.

For any subvariety Y C G, we set Y7 := {y € Y|o(y) = y}.

Let B(ne) = {(be) € KX 0)|val(by,) = ng, Vk} and B, (ng) = {(bs) € Kt (0|
val(by) = g, V k}, where val is the valuation function on K. Define a map j, from
Bg(nf) to B(Tl.), by jg(bl, bg, bg, b4) = (bl, bl, bQ, 2b2, bg, bg, bg, b4, 2b4, b4)

In this subsection, we always assume that i and i’ are reduced words of G re-

sulting from the reduced words of G, i, and i',, respectively, in the sense of
Proposition

Lemma 3.6. Let n, be a o-invariant i-Lusztig datum. Then Al(ne)? = Alv(ng).

Proof. We only show this lemma for the pair (A4, B2), and the following argument
works in general.

Let ¢ : Al*(ng) — G be the natural imbedding, which is the restriction of
t: Gy — G. We have surjections 7, : B, (ng) — Alv(ng), and 7; : B(ne) — Al(n,),
which are given by

i, (01,02, b3, b4) = [1550 (2, (b1) Ty (b2) 2y, (b3) sy, (ba))],
i(b1, b1, b2, 2b, ba, b3, b3, by, 24, bs)
= [0y (@1 (b1)2a(b1) - 22(b2)73(2b2) 22 (b2) - 21 (b3) 4 (b3)
- 2(ba)w3(2b4)72(ba))],

where z,, and z,, are root subgroup homomorphisms for G°, and we denote by
[ ] the projection from G(K) to G. For the definition of 7,,, see section 4.4, [KIJ.
Since $1(bz)]}4(bz) = Ty, (bi), for i=1 or 3, and $2(bj)$3(2bj)1‘2(bj) = Ty (bj), for
j=2 or 4, we can see that ¢t om = 7 o j,, i.e., we have the following commutative
diagram:

B,(ng) _de B(n,)
Pt

A (ng) —— Ai(n,).

Since m;, (B, (ng)) = Alv(ng), we have Alv(ng) C Al(n,)°.
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Assume n, is of coweight . It is known that X (p) = SO N Sk = || Al(n)),
where the union is taken over n,, such that n} is an i’-Lusztig datum with coweight
. Hence we have

(1) X(p)7 =] ] 4 ),

where Al(n,) appear in the right-hand side.
From Corollary B.3] we have the decomposition

(2) X(n)7 =|_|A* (ma),
where the union is taken over mg4 such that m, is an i,-Lusztig datum with coweight
L.

Let me = (M1, ma, m3, my4) be an i,-Lusztig datum, such that Ale(m,) is an MV
cycle for G7 with coweight u. Let nl = (mq, mq, ma, ma, Mo, M3, M3, Mg, Mg, My).
Then n/) is o-invariant, and hence Alv(m,) C A}(n’)°. By comparing decomposi-
tions of X (1)? in (@) and (&), we obtain Al(n,)? = Al (ng). O

Remark 3.1. From this lemma, we see that the closure of the fixed point set of o on
some open subset of a o-invariant MV cycle C' is an MV cycle for G?. We believe
that the fixed point set of ¢ on a g-invariant MV cycle for G is an MV cycle for
G°.

Corollary 3.7. If Ai(n,) is not o-invariant, then Al(ne) is empty.

Lemma 3.8. If n, is a o-invariant i-Lusztig datum, and R¥ (ne) = nl, then

e’

(Al(ng) N A (nl))? contains an open dense subset.

Proof. We can change i to i’ by combining several braid d-moves.
I (oo ihy Gk s Gy 2y Tht3, o0 ) = (0 Bk, Gkt2, Tkt 1, Tkt3, 0o+ ), (d = 2), define a
rational map from B(n,) to B(n,), by

(5 Ok by 1, D2, byss o) = (oo, by D2, by, brges, - o)

I (o iy s T2, kg 3y Thgas ) > (oo ik Thgs Tk 1, Tkr2s Thta, 0 ),
(d = 3), where ix41 = ix+3, then we define a rational map from B(n,) to B(n,) by

(- 5 bk, b1, by, brgs, s -+ +)
br+1br42

bry2bri3
bry1 + brys

s Vk s ).
b1 + bri3 )

H( abkv abk+1+bk+3a

It is well known that, by several braid d-moves, we can arrive at i’ from i. Let
i+ iy — iy — ---— i’ be one such path, where — represents a braid d-move. For
a path from i to i/, we denote the rational map f by combining those in every step
defined above. Assume f(b1,---,by) = (bf,---,b,). It is easy to see that b is
a rational function with numerator and denominator as nonzero polynomials with

nonnegative integral coeflicients. Consider the diagram
B(ne) --» B(n,)
1 Y
Al(na) --> A¥(ny)

where T is as in the proof of Lemma [3.6] and dashed arrows denote rational maps.
We have 7; = 1y o f.
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Let F be the product of all denominators appearing in every step of d-moves, so
it is a nonzero polynomial with nonnegative integral coefficients. Let U = {(b,) €
B(n)|F(bs) # 0}. Then f is well defined on U, and so m;(U) C Al(ne) N AV (n)).

There exists y € U, such that m(y) € m(U) C Al(ns) N A (n)), and m(y) is
o-invariant. Hence (A'(ne) N AV (n)))? is nonempty. Since 7 is an open map,
mi(U) is open in Al(n,). We only show it in the case of (A4, B2). Since Ai(n,)
is o-invariant, we have ne = (71,71, Nia, g, o, N3, N3, N4, g, i4). Now take y =
(t™ g™ gh2 2fN2 M2 {Ms ¢Ms ¢N4 2iN4 {T4) € B(n,), then F(y) # 0. In the general
case, we have a similar argument.

Since Ai(n,) is irreducible by Lemma B0, we have (Al(ne) N A¥ (n)))? is dense
in Al(n,)°. O

Lemma 3.9. Let Conv((fy)wewe) be the convex hull of (tw)wewe in tr. If the
MYV polytope P = Conv((fw)wew) s o-invariant, then P% = Conv((y)wewe)-

Proof. Since P is o-invariant, we have o (p,) = i, for w € W2. We can easily see
that o acts trivially on Conv((pw)wew-), 50 Conv((ty)wewe) C P.

For the converse, the perfect pairing (X, ® R) x (X* ® R) — R descends to
(X2 ®R) x (XX ®R) — R (see Section 22). Note that t% can be identified with
X7 ®R.

For any § € P° C P, and w € W7, we have (B,w - A\;) < (o, w - N;). By
descent, we have (G, w - \;) < {tw,w - Ay), for every orbit n of o in I, where ), is
the fundamental weight for G° corresponding to \;, for ¢ € I. Since P C tg, we
see that

P? C{B etgl(B,w-Ay) < (ftw,w-Ny), Vi, Vwe W7}

The right-hand side is exactly Conv((ptw)wew«)- d

Theorem 3.10. If P is a o-invariant MV polytope for G, then P? is an MV
polytope for G°.

Proof. Let pe be the vertices of P. Fix a reduced word i, for G%, and let ng be
the corresponding i,-Lusztig datum of P.

Let i be the fixed reduced word for G from i,, in the sense of Proposition
Let J = {(i’,n,)|i’ be a reduced word for G from some reduced word i/, for G?, and
RY(n,) = n)}. We have N ng e AY(n),)? contains an open and dense subset of

Al(ne)? from Lemma [3.8 since the intersection of finite open dense subsets is still

open and dense.
Mooy

o H it o wio
Recall A' (n,) =S ,*, and A (n?) = (Ss) ,/ . By Lemma B.6] we have
’Ll))C wk;a
(N mgyes A (1)) = Ny ey A% (07) = A((pw)wew ), where A((p)wewe) =
Nwewe (So)iw. The last equality holds, since for any w € W7, there exists some
reduced word i/, of G? and some integer k, such that w = w;j. Therefore, we
have Al (ng) = Ai(ne)? = (N 7 AY(n}))? = A((tw)wew- ). That means, the
moment polytope of the MV cycle Al (ng) is Conv((py)wewe), which is exactly
P?, by Lemma [30 Hence P? is really an MV polytope for G°. O

i',n,)e

Corollary 3.11. Let (i,n.) and (i',n}) be two o-invariant Lusztig data. If RY (n,)

s/
1
=y, then R (nJ) =ny
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Theorem 3.12. We have a bijection Op : MVPZ — MVPge, given by P — P,
which preserves coweights. Induced from 0p, we have a bijection 6 : MVCE —
MVCg-

Proof. Let P be a o-invariant MV polytope for G. By Theorem [BI0, we have a
well-defined map 0p : MVPZG — MVPgo by 0p(P) = P°.

Fix a reduced word i, for G?. Let i be a reduced word coming from i,. For
any MV polytope for G (resp. G?), we have the corresponding i (resp. i,) Lusztig
datum. According to Proposition B3], p is injective. Let Q be any MV polytope
for G, and let m4 be the i -Lusztig datum of ). By Lemma and its proof,
there exists a unique i-Lusztig datum ne such that Al (m,) is contained in Ai(n,),
and n, is o-invariant. Let Pg be the MV polytope of Ai(n,). We have Pg = Q,
since P§ has the same i,-Lusztig datum as Q). So 0p is surjective.

Hence 0p is a bijection, and it is easy to see that it preserves the coweights of
MYV polytopes. O

3.5. The bijection in the highest weight case. Let A, u be o-invariant coweights,
we set X (A, p) := S2 NSk, and X(p— A) = SY N SE-*. In this subsection, we

wo?
have the same assumptions on i and i, as in Subsection [34]
The following lemma is given by Anderson [A]

Lemma 3.13. An irreducible component of X (\, u) is contained in 2 if and only
if it appears as basis in V,,(N)

First, we have the decomposition
(3) X =X X(p=X)=||r A(n,),
where the union is taken over ne which are i-Lusztig data with coweight u — A.
Then
(4) S2nsk NGr=| |x- Al(na) U] (X Al(na) NG),

1 2

where the first union 1 is taken over those n, in (@) such that A - Ai(n.) C G*; the
second union 2 is taken over those n, in (@) such that A - Al(n o) < G

If \- Ai(n,) € G, then X - Ai(n,) NG is of lower d1mens1on than Al(n,).
From decomposition (@) and Corollary B7 we have

(5) (S2NSH NGY )7 = (S2)7N(Sh)TN(GY)T = | | A-Af(ne)7U]_|(A-A¥(na)nGH)7,
3 4

where the first union 3 is taken over those ne in (), such that X - Ai(ny) € G*
and n, is o-invariant; the second union 4 is taken over those ne in ([@)), such that

M- Al(n o) L G and n, is o-invariant. From the viewpoint of G?, we also have the
decomp051t10n
6) ()2 N (S, N(GN)7 =] |A- Al (m |_| - A (m) N GD),

5

where the first union 5 is taken over m, which are i,-Lusztig data with coweight
@ — A, satisfying A - Ale (me) C g_ the second union 6 is taken over m, which are
i,-Lusztig data with coweight p — A, satisfying X - Ale (m o) Q)‘

If \- Al (m, )€ gA, then X - Alv(me) N gg is of lower dlmensmn than Ale(my,).
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Lemma 3.14. G* = Su2,

Proof. We know that () S%* is an MV cycle with coweight (A, wo - A), and it is
contained in G*. Since both of them are of the same dimension 2(), p), and both
of them are irreducible, we have G* = (| Sw-A. O

Lemma 3.15. If \- Al(n,) € G*, and n, is o-invariant, then (- Al(ns) NGY)7 is

of lower dimension than Al(ne).

Proof. With the same reason as in the proof of Lemma [B.6] we can find an open
subset U C B(na), such that m(U) C (.., Ai(ny) =, S is open in Al(n,).

Note thatiﬂ)\ - SHe) N G* is empty. Otherwise, if there exists a point p €
(NA - SEe) N G, then

pe (A8t NG = (A~ Sh) NSy A C ((A-Sh) NS,

That is, ¥ w € W, p must be contained in \-S#» NSwA, From SwA = U< wr St
we have i, + A <, w - A. We get that Conv(pe) + A C Conv(W - X). According
to Anderson’s theorem on multiplicity of weight space [A], we have A\ - A(u,) is
an MV cycle in V,(\). By Lemma B3 it is a contradiction to the condition
that X - Ai(n,) ¢ G*. As in Lemma 38 there exists a point p € A - Ai(n,). So

M- Al(ng)o N G*’ has lower dimension than Al(ng)e. O

By Lemma BI85 and by comparing the two decompositions (&) and (@), we have
that the set { A'(n4)|ne is o-invariant and is of coweight u—X, and A-Ai(n,) C G}
is in bijection with the set { Alv (14 )|ma is of coweight u—X, and \-Alv(m,) C G2},
by sending Al(n,) to Al(ne)”. We thus obtain the following theorem.

Theorem 3.16. We have a bijection 62, : MVCg(N\)° — MVCq, (\), which is
the restriction of 8¢ in Theorem [3.12l

4. TWINING CHARACTER FORMULA

Recall that Pervg(p)(G) is a tensor category [MV], and it is easy to see the
tensor functor o* induced from the action of o on affine Grassmannian is a tensor
equivalence. From the functoriality of Tannakian formalism [DM], we have a natural
automorphism & on GV.

Fix a o-invariant coweight A, and choose an isomorphism ¢ : IC) ~ o*(IC)),
which is compatible with the action of o on MV cycles (as the basis of V/(A)).

Lemma 4.1. The action of & on GV is compatible with the natural action of o on
V(X) induced from ¢.

Proof. Let T be the functor from Pervg(o)(G) to Rep(GY), such that T(ICy) =
(px, V(N)), where py : G¥Y — GL(V(\)) is the corresponding representation.

From o* : Pervg(0)(G) — Pervg(0)(G), we get T(o*(ICy)) = (paoa, V(X)). Let
& be the functor from Rep(GY) to Rep(GY), by sending (px, V(X)) to (proa, V(X)).
Then we have the following commutative diagram:

Pervg(0y(G) —— Rep(GY)

. !

Pervg(0)(G) — L Rep(GY).
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By applying T to ¢ : IC) =~ o*(IC)), we obtain an isomorphism o = T(¢) :
(pr, V(N)) — (pr o a,V(N) in Rep(GY). In other words, there exists a linear
isomorphism o : V() — V() satisfying

a(palg) -v) = (pr03)(g) - o(v) = pa(G(9)) - o(v). (9 € G, w e V(N). O
Theorem 4.2. ¢ is a Dynkin automorphism on GV.

Proof. Let Vectx, be the tensor category of X,.-graded vector spaces. The action
of o on X, induces an tensor functor ¢° on Vectx,. From Mirkovic-Vilonen’s paper
[MV], we know that there is a tensor functor F' from Pervg(0)(G) to Vectx,, and
it is easy to see ¢* and ¢° are compatible with F.

Applying Tannkian formalism, from F we get the forgetful functor from Rep(G")
to Rep(T"V), where TV is a torus of GV, and ¢*, ¢° induce automorphisms on GV
and TV, respectively. Since o* and ¢° are compatible with F', we have & preserves
the torus TV, i.e., a(T") = T"V. Tt induces the action of ¢ on X*(T"V).

Let BY be the maximal subgroup of GV, which stabilizes the highest weight line
Va(A) in V(A), for any o-invariant dominant weight A of GV. It is easy to see BY is
a Borel subgroup of G, and contains TV. For any o-invariant dominant weight A, o
acts on V() by interchanging MV cycles, especially o acts trivially on V) (A). From
Lemma .T] and the triviality of o on Vi(A), we have (b) - Va(A) = a(b- Va(N)) =
a(Va(\)) = Va(A), for any b € BY. Hence we have (BY) = BY.

The coroots of G o, ¢ € I, can be viewed as the roots of GV, and ¢ sends the
root oy’ to o, automatically, since under the identification of X*(7") and X,
the actions of ¢ are compatible.

Since o(TV) =TV and o(BY) = BY, we can see that ¢ maps the root subgroup
Uav t0 Ug(qvy, where o is a root of GV. In particular, o(Uay) = Ua,,y for any
1el.

Let ¢V be the Lie algebra of G¥. Let 7 be the automorphism on ¢V induced
from . From the following Lemma [£.3] we know 7 acts trivially on the simple root
space 4, and ¢V ., for i fixed by o. Lift 7 to & on GV, then & acts trivially on
the root Zsubgroup (D’aiv and U_,yv, for i, o(i1) = i. Hence we are able to find root
subgroup homomorphisms z; : C — G and y;” : C — GV, corresponding to
and —a;/, such that o(z}(a)) = )/, (a) and &(y;(a)) = y;;(a), for any a € C,
and for any i € I.

Hence & is a Dynkin automorphism with respect to a pinning (G, TV, BV, z}, v,
iel)of GY. O

Assume the highest root is vV, then it is o-invariant. ¢V admits a highest rep-
resentation of GV with highest weight V. Assume e, is the basis corresponding
to the unique MV cycle in the root space ¥4, for each root a" of G¥. By inter-
changing MV cycles, we get a linear operator o on ¢V, especially o(eqv) = €y(av)-
Recall 7 is an automorphism on 4V, we have

Lemma 4.3. As linear operators on 4V, if GV is of type As,, then T = —o;
otherwise T = 0.

Proof. Let sV be the Lie algebra of TV. It is a Cartan subalgebra of ¢V, and it
can be identified with X* @ C, where the actions of 7 on J#¥ and ¢ on X* are
compatible.

From Lemma A we have o([a,b]) = [r(a),o(b)], for two arbitrary elements a
and b in ¢V. By Schur’s lemma, we have 7 = ¢ o, for some nonzero constant c.
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Let v be the corresponding coroot of highest root vV, so it is o-invariant. Since
[eyv,e—qv] € C -, we have [eyv,e_yv] = T(leyv,eyv]) = [r(eyv), T(e—yv)] =
e leqv,e_v]. Hence ¢* = 1.

If GV is of type Agp, there exists two adjacent simple roots a;’ and o/, such that
o(i) = j, for i and j € I. Then we have 7([eay,eav]) = [eay,€ay] = —leay, €ay].
Since o +  is also o-invariant, it forces ¢ = —1.

If GV is of another type, then let h; = [eqv,e_qv]. Then {h;}ics is a basis
of V. Since o([eqy, e—av]) = [T(eay), o(e_av)] = c- [eag(i), eazam], we have

a(hi) = ¢+ he@y. It is easy to see that trace(o|nv) = c- #{i € I|o(i) = i}.
Since there exists ¢ € I, such that o(i) = 4, when GV is not of type As,, we have
trace(o| v ) # 0. Moreover, ¢ interchanges MV cycles in 52V, so trace(t|v) > 0.
We thus have ¢ = 1. O

Remark 4.1. We can give another construction of the Dynkin automorphism on G
which is compatible with the action of ¢ on MV cycles, by using Vasserot’s explicit
construction of the action of the dual group on cohomology of perverse sheaves [V].
Moreover, this automorphism coincides with the one from Tannakian formalism.

We have shown that & is a Dynkin automorphism, and from Lemma [£1] we
see that the twining character ch”(V(A)) = X ,cp(r)- trace(aly, ()€, where A is
o-invariant.

Proposition 4.4.

ZwGW” (_1)€a(w)ew(/\+p)
ZMGWU(_D&(w)ew(p)

Proof. Let V?(\) be the irreducible representation of (G?)V with highest weight \.
By the Weyl character formula for G?, we have

(—1)fe (W) gw(rtp)
S dim V(e = Luew=(~1) i (we) =
peP(N\)" Ywews (—1)f(Wenle

ch? (V) =

Comparing with our definition of twining character for GV, we see that it is
equivalent to showing that trace(o|y, (n)) = dimV,J()), for any p € P(A\)?. By
Lemma BT} trace(aly, () = §(MVCE(X)?). Hence our proposition follows from

Theorem [3.16] 0
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