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MIRKOVIĆ-VILONEN CYCLES AND POLYTOPES
FOR A SYMMETRIC PAIR

JIUZU HONG

Abstract. Let G be a connected, simply-connected, and almost simple al-
gebraic group, and let σ be a Dynkin automorphism on G. Then (G, Gσ)
is a symmetric pair. In this paper, we get a bijection between the set of σ-
invariant MV cycles (polytopes) for G and the set of MV cycles (polytopes)
for Gσ , which is the fixed point subgroup of G; moreover, this bijection can be
restricted to the set of MV cycles (polytopes) in irreducible representations.
As an application, we obtain a new proof of the twining character formula.

1. Introduction

Let G be a connected semisimple algebraic group over C, and let G be the affine
Grassmannian of G. Let Gλ be the G(C[[t]])-orbit on G corresponding to a domi-
nant coweight λ on G. Let ICλ be the spherical perverse sheaf supported on Gλ.
V. Ginzburg [G] and Mirković and Vilonen [MV] set up the geometric Satake cor-
respondence, which says that the category of spherical perverse sheaves on G is
equivalent to the category of finite dimensional representations of the Langlands
dual group G∨ of G; in particular, the irreducible representation V (λ) of G∨ with
highest weight λ is identified with the cohomology group H∗(G, ICλ). Further-
more, Mirković and Vilonen [MV] discovered Mirković-Vilonen cycles which affords
a natural basis of V (λ).

In [A], Anderson studied the moment polytopes of Mirković-Vilonen cycles,
which are called Mirković-Vilonen polytopes, and showed that these polytopes could
be used to understand the combinatorics of representations of G∨. In [K1], Kam-
nitzer gave an explicit combinatorial description of the MV cycles and polytopes.
He showed that canonical basis and MV cycles are governed by the same combina-
torics, i.e., MV cycles ←→ MV polytopes ←→ canonical basis, are bijections.

Let σ be a nontrivial Dynkin automorphism of G. We have a Dynkin automor-
phism on G∨ induced from σ. Let Gσ be the identity component of a fixed point
group of σ on G. Let λ be a σ-invariant dominant coweight of G, which can also be
viewed as a dominant coweight of Gσ. Let v(λ) be the irreducible representation of
G∨ with highest weight λ. We have a natural action of σ on V (λ) induced from the
action of the automorphism on G∨, which fixes the highest weight vector in V (λ).
For a σ-invariant coweight µ for G, σ acts on the weight space Vµ(λ). The twining
character chσV (λ) is defined to be

∑
σ(µ)=µ trace(σ|Vµ(λ))eµ. It is related to the

character of the irreducible representation of (Gσ)∨ with highest weight λ through
the twining character formula, which is attributed to Jantzen [J] under the name
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of Jantzen theorem in [KLP]. Though there are many proofs in the literature (for
example, [J], [N], [KLP]), it seems that there is no satisfactory explanation for why
Langlands dual appears in this formula.

In this paper, we consider the action of σ on MV cycles and MV polytopes. The
main result of the paper is to give an explicit bijection between σ-invariant MV
cycles (polytopes) for G to MV cycles (polytopes) for Gσ. In terms of polytopes, it
sends σ-invariant MV polytopes P for G, to P σ, which is a MV polytope for Gσ.
The bijection can be restricted to MV cyles (polytopes) in irreducible representation
space.

In this paper, we also show that the automorphism on G∨ from Tannakian
formalism is a Dynkin automorphism. On V (λ), there are two actions of σ, where
one is induced from G∨, and the other one is induced from the action of σ on MV
cycles. We show that both of them agree, then we get a new proof of twining
character formula through geometric Satake correspondence.
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2. Dynkin automorphism

2.1. Notations. Let G be a connected, simply-connected and almost simple al-
gebraic group of rank � over C. Let T be a maximal torus of G and let X∗ =
Hom(T, C×), X∗ = Hom(C×, T ) denote the weight and coweight lattices of T .
Then we have a natural perfect pairing 〈, 〉 : X∗ × X∗ → Z. Let W = N(T )/T
denote the Weyl group.

Let I = {1, · · · , l} denote vertices of the Dynkin diagram of G. Let B be a Borel
subgroup of G containing T . Let α1, α2, · · · , αl and α∨

1 , α∨
2 , · · · , α∨

l be simple roots
and simple coroots of G with respect to B, respectively. Then aij = 〈α∨

i , αj〉 is the
entry of the Cartan matrix of G. Note that (X∗, X

∗, 〈, 〉, α∨
i , αi; i ∈ I) is the root

datum of G. Let λ1, · · · , λl ∈ X∗ ⊗ R be fundamental weights.
For i ∈ I, let xi : C → G and yi : C → G be root homomorphisms (corresponding

to αi and −αi, respectively) which together with T , B form a pinning of G.
Let s1, · · · , s� ∈ W be the set of simple reflections. Let w0 be the longest element

of W , and let m be its length.
We use ≥ for the usual partial order on X∗, so that µ ≥ ν if and only if µ − ν

is a sum of positive coroots. More generally, for each w ∈ W , we have the twisted
partial order ≥w on X∗, where µ ≥w ν if and only if w−1 · µ ≥ w−1 · ν.

A reduced word for an element w ∈ W is a sequence of indices i = (i1, · · · , ik)
∈ Ik such that w = si1 · si2 · · · sik

is a reduced expression. In this paper, a reduced
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word will always mean a reduced word for w0, where w0 is the longest element
in W .

2.2. Group structure of Gσ. Let σ : I → I be a nontrivial bijection, satisfying
aσ(i)σ(j) = aij for all i, j ∈ I. We assume that there are automorphisms σ : X∗ →
X∗ and σ : X∗ → X∗ of Z-modules satisfying σ(αi) = ασ(i) and σ(α∨

i ) = α∨
σ(i)

for any i ∈ I. Then σ induces an automorphism σ : G → G of algebraic groups,
such that σ(xi(a)) = xσ(i)(a) and σ(yi(a)) = yσ(i)(a) (∀ i ∈ I). We call σ a Dynkin
automorphism on G. In particular, we have σ(B) = B and σ(T ) = T .

Let Gσ be the fixed point group of σ on G, and let Tσ and Bσ be the fixed point
groups of T and B, respectively. Then Gσ, Bσ and Tσ are connected; moreover,
Gσ is almost simple algebraic group, under our assumptions on G (see [ST]). We
call (G, Gσ) a symmetric pair.

We set Xσ
∗ = {λ ∈ X∗|σ(λ) = λ}, and X∗

σ = Hom(Xσ
∗ , Z). We have a perfect

pairing Xσ
∗ × X∗

σ → Z denoted again by 〈, 〉. Let Iσ be the set of σ-orbits on I.
For any η ∈ Iσ, let α∨

η = 2h
∑

i∈η α∨
i ∈ Xσ

∗ , where h is the number of unordered
pairs (i, j) such that i, j ∈ η, αi + αj ∈ Φ. Note that h = 1, if η = {i, j} and aij =
−1; h = 0, otherwise. Let θ : X∗ ⊗ R → X∗

σ ⊗ R be the natural surjection induced
from the perfect pairing 〈, 〉 : X∗ × X∗ → Z. Set αη = θ(αi), and λη = 1

hθ(λi),
where i is any element of η. We have the following proposition (see [KLP], [J]).

Proposition 2.1. (Xσ
∗ , X∗

σ, α∨
η , αη) is a root datum of Gσ.

Define xη =
∏

i∈η xi : C → Gσ, by xη(a) =
∏

i∈η xi(a), if η has only one element,
or ∀ i, j ∈ η, with i 	= j, aij = 0; define xη : C → Gσ, by xη(a) = xi(a)xj(2a)xi(a),
if η = {i, j}, aij = −1. We have the following lemma (see [L1]).

Lemma 2.2. Let x1, x2 be two simple root subgroup homomorphisms of G of type
A2 corresponding to α1 and α2. Then we have

x1(a1)x2(a2)x1(a3) = x2(
a2a3

a1 + a3
)x1(a1 + a3)x2(

a1a2

a1 + a3
).

From this lemma, we see easily that xη is a group homomorphism. Similarly,
we can define yη, so that xη and yη are homomorphisms from C to Gσ. Since
txη(a)t−1 = xη(αη(t)a), xη is a root subgroup homomorphism of Gσ with root αη.
We have

Proposition 2.3. (Tσ, Bσ, xη, yη; η ∈ Iσ) form a pinning of Gσ.

Clearly, σ : G → G induces an automorphism of W denoted again by σ, satisfying
σ(si) = sσ(i) for any i ∈ I. Let W σ = {w ∈ W |σ(w) = w}. For any η ∈ Iσ we
define sη ∈ W σ to be the longest element in the subgroup of W generated by
{si; i ∈ η}. It is known that W σ is a Coxeter group on the generators {sη; η ∈ Iσ}.
Any element w ∈ W σ can be restricted to Xσ

∗ . Under this restriction, we can see
that W σ is identified with the Weyl group of Gσ. For w ∈ W σ, we denote by �σ(w)
the length of w in the Coxeter group W σ.

3. MV cycles and MV polytopes for the symmetric pair

3.1. Action of σ on affine Grassmannian. Let O = C[[t]], and let K be the
quotient field of O. Let G and Gσ be affine Grassmannian of G and Gσ, respectively.
As the sets of rational points over C, G = G(K)/G(O), and Gσ = G(K)σ/G(O)σ.
A coweight µ ∈ X∗ gives a point in G, denoted by tµ. It is known that tµ is a fixed
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point for the action of T on G. In fact, all the fixed points of T are given in this
way.

For a given dominant coweight λ, we set Gλ = G(O) · tλ. We have the decompo-
sition G =

⊔
λ∈X+

∗
Gλ, where X+

∗ is the set of dominant coweights.
Let N be the unipotent radical of B. For w ∈ W , we set Nw = wNw−1. For

w ∈ W and µ ∈ X∗, define the semi-infinite cells by Sµ
w = Nw(K) · tµ. For simplicity,

we set Sµ = Sµ
e = N(K) · tµ. We have G =

⊔
µ∈X∗

Sµ. The semi-infinite cells have
the simple containment relation, Sµ

w =
⊔

ν≤wµ Sν
w. We see that if Sµ

w ∩ Sν
v 	= ∅,

then ν ≤w µ.
We have the closed embedding ι : Gσ ↪→ G. Since σ(Sλ) = Sσ(λ), we have

Gσ =
⊔

λ∈Xσ
∗
(Sλ)σ.

Set U := {g(t−1) ∈ G(C[t−1])|g(0) = 1)}. Then the fixed point set Uσ =
{g(t−1) ∈ Gσ(C[t−1])|g(0) = 1)}. For a coweight λ, set S(λ) := N(C[t, t−1]) ∩
tλUt−λ and Sσ(λ) := Nσ(C[t, t−1]) ∩ tλUσt−λ.

The following result is well known.

Lemma 3.1. Let λ ∈ X∗. Then the group S(λ) acts simply-transitively on Sλ,
i.e., S(λ) � Sλ, with the map g → g.tλ.

Proposition 3.2. The fixed point subvariety of the action of σ on G is exactly
identified with Gσ.

Proof. From Lemma 3.1, we are reduced to showing that S(λ)σ = Sσ(λ) for λ ∈ Xσ
∗ ,

and it is easy to see, since

S(λ)σ = N(C[t, t−1])σ ∩ (tλUt−λ)σ = Nσ(C[t, t−1]) ∩ tλUσt−λ = Sσ(λ). �

From Gλ =
⊔

µ≤λ Gµ, Sµ
w =

⊔
ν≤wµ Sν

w and the above proposition, we can easily
see that

Corollary 3.3. For λ a σ-invariant, and w a σ-invariant element in W, we have
(Gλ)σ = Gλ

σ , Gλ
σ

= Gλ
σ , (Sµ

w)σ = (Sσ)µ
w, and Sµ

w
σ

= (Sσ)µ
w.

3.2. MV cycles and MV polytopes. Let µ1, µ2 be coweights with µ1 ≥ µ2.
Following Anderson [A], an irreducible component of Sµ1

e ∩ Sµ2
w0 is called an MV

cycle with coweight (µ1, µ2). This definition of an MV cycle is a generalization of
the original one in [MV]. X∗ acts on G by ν ·L := tν ·L. Since T normalizes Nw, we
see that ν ·Sµ

w = Sµ+ν
w . If A is a component of Sµ1

e ∩ Sµ2
w0 , then ν ·A is a component

of Sµ1+ν
e ∩ Sµ2+ν

w0 . Hence X∗ acts on the set of all MV cycles. The orbit of an MV
cycle with coweight (µ1, µ2) is called a stable MV cycle with coweight µ2−µ1. Note
that a stable MV cycle with coweight µ has a unique representative with coweight
(ν, ν + µ) for a fixed coweight ν.

Let MVCG denote the set of stable MV cycles for G, and let MVCµ
G denote the

set of those with coweight µ. For a T -invariant closed subvariety A of the affine
Grassmannian, let Φ(A) ⊂ tR := X∗ ⊗ R be the moment polytope of A, which is
exactly the convex hull of {µ ∈ X∗|tµ ∈ A}.

If A is an MV cycle with coweight (µ1, µ2), then we say that Φ(A) is an MV
polytope with coweight (µ1, µ2). The action of X∗ on the set of MV cycles gives
an action of X∗ on the set of MV polytopes. It is easy to see that ν · P = P + ν.
The orbit of X∗ on an MV polytope with coweight (µ1, µ2) is called a stable MV
polytope with coweight µ2 − µ1.
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Let MVPG be the set of stable MV polytopes for G, and let MVPµ
G be the set

of stable MV polytopes for G with coweight µ. As mentioned in [A], there is a
natural bijection between MVCG and MVPG. Let C be an MV cycle, and let [C]
be its stable MV cycle. Let PC be the corresponding MV polytope of C, and let
[PC ] be its stable MV polytope. If there is no confusion, we write C (resp. P ) for
both MV cycle (or polytope) and stable MV cycle (resp. polytope).

Suppose we are given a collection of coweights µ• = (µw)w∈W such that µv ≤w

µw for all v, w ∈ W . Then we define the corresponding pseudo-Weyl polytope by

P (µ•) :=
⋂

w

Cµw
w = {α|〈α, w · λi〉 ≤ 〈µw, w · λ〉, ∀w ∈ W, and i ∈ I}.

For a collection (µw)w∈W with coweights such that µy ≤w µw, for any y, w ∈ W ,
set A(µ•) =

⋂
Sµw

w , and let Conv(µ•) be the convex hull of (µw)w∈W in tR. A(µ•)
is called a GGMS stratum, and it is a candidate of MV cycles. If it is not empty,
then the moment polytope of A(µ•) is exactly Conv(µ•) (see Lemma 2.3, [K1]),
which also coincides with P (µ•). That is, Conv(µ•) = P (µ•).

The following theorem gives a criterion for the closure of a GGMS stratum to
be an MV cycle.

Theorem 1 (Kamnitzer[K1]). Let (µw)w∈W be the set with coweights, such that
µy ≤w µw, for any y, w ∈ W . Then A(µ•) =

⋂
Sµw

w is an MV cycle if and only if
Conv(µ•) is an MV polytope.

Let P be an MV polytope with vertices (µw)w∈W . Then P is the moment

polytope of an MV cycle
⋂

Sµw
w . In this case, σ(

⋂
Sµw

w ) =
⋂

S
σ(µσ−1(w))
w is also an

MV cycle, and its moment polytope is exactly Conv(σ(µσ−1(w))). Hence it is an
MV polytope with vertices (σ(µσ−1(w)))w∈W , which coincides with σ(P ).

Lemma 3.4. Let (µw)w∈W be the vertices of an MV polytope P , and let A(µ•)
be the corresponding GGMS stratum, such that A(µ•) is an MV cycle. Then the
following statements are equivalent:

(1) P is σ-invariant.
(2) A(µ•) is σ-invariant.
(3) A(µ•) is σ-invariant.
(4) σ(µw) = µσ(w), ∀ w ∈ W .

Proof. Since MV cycles are parametrized by MV polytopes bijectively, it is easy to
see that the moment polytope of σ(

⋂
Sµw

w ) is σ(P ). So P is σ-invariant if and only
if A(µ•) is σ-invariant, i.e., (1) ⇔ (2).

Assume A(µ•) is σ-invariant. Then
⋂

Sµw
w =

⋂
S

σ(µσ−1(w))
w . Since

⋂
Sµw

w and
⋂

S
σ(µσ−1(w))
w are locally closed, we have (

⋂
Sµw

w )∩ (
⋂

S
σ(µσ−1(w))
w ) 	= ∅. It implies

that, ∀ w ∈ W , Sµw
w ∩ S

σ(µσ−1(w))
w 	= ∅. Hence µw = σ(µσ−1(w)), ∀w ∈ W . So

(2) ⇒ (4).
It is easy to see (3) ⇔ (4), and (4) implies (1) immediately. �

3.3. Lusztig datum. Let i be a reduced word, and n• ∈ Nm. Recall some results in
[K1]. We define {µwi

k
}0≤k≤m inductively by µe = 0 and µwi

k
= µwi

k−1
−nkwi

k−1(α
∨
ik

),

for any 1 ≤ k ≤ m. Set Ai(n•) =
⋂

S
µ

wi
k

wi
k

. Then Ai(n•) is an MV cycle with
coweight µw0 , and the corresponding MV polytope P has i-Lusztig datum n•.
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From the corresponding i-Lusztig datum of the MV polytope P , we can recover the
vertices of P uniquely, through the above procedure. In this way, we have a bijection
from MV polytopes to i-Lusztig data. Moreover, there exists an explicit bijection
between i-Lusztig data and MV cycles, τi : Nm → MVC by τi(n•) = Ai(n•).

Let i, i′ be two reduced words of w0. It is known that i′ can be obtained from
i through several braid moves. Fix a path of braid moves from i to i′. For each
move, there is a transform (in Proposition 5.2, [K1]) between the Lusztig data of P
along the two consecutive reduced words. By combining these transforms, we get
a bijection Ri′

i : Nm → Nm, which is independent of the choice of the path from i
to i′. We call it the Lusztig transform from i to i′ for G. From [K1], we also know
that Ri′

i (n•) = n′
• if and only if Ai(n•) ∩ Ai′(n′

•) is dense in Ai(n•).
We give a necessary and sufficient condition on the i-Lusztig datum n•, so that

P is σ-invariant. We call such an n• a σ-invariant i-Lusztig datum.

Proposition 3.5. Let w0 = sη1sη2 · · · sηm
be a reduced expression of w0 relative

to the Coxeter group W σ, where η1, η2, · · · , ηm, are orbits of σ in I. For each η,
we fix a reduced expression of sη as an element of W , and denote by i the resulting
reduced expression of w0 relative to W . Let n• be the i-Lusztig datum of P . Then
P is σ-invariant if and only if n1 = n2 = · · · = nrη1

, nrη1+1 = nrη1+2 = · · · =
nrη1+rη2

, · · · , where rη is the length of sη as an element of W .

Proof. For any orbit η of σ, let Rη be the root system generated by {αi; i ∈ η}.
Let Wη be the Coxeter group generated by {si, for i ∈ η}. Then sη is the longest
element in Wη.

Recall that nk means the length of the edge connecting µwi
k−1

with µwi
k
, i.e.,

µwi
k
− µwi

k−1
= −nk.wi

k−1(α
∨
ik

). The convex hull of {µw|w ∈ Wη1} forms an
MV polytope for an algebraic group of type Rη1 . We denote it by P 1

η1
. From

µwi
0
, · · · , µwi

rη1
, we get a Lusztig datum (n1, n2, · · · , nrη1

) along the chosen reduced
word of sη. The convex hull of {µw|w = sη1y, for y ∈ Wη2} forms an MV polytope
of type Rη2 . We denote it by P 2

η2
. From µwi

rη1+1
, · · · , µwi

rη1+rη2
, we get a Lusztig

datum (nrη1+1, nrη1+2, · · · , nrη1+rη2
) along the chosen reduced word of sη2 . Sim-

ilarly, we get subsequently MV polytopes P 3
η3

, · · · , Pm
ηm

, with type Rη3 , · · · , Rηm
.

We also get their corresponding Lusztig data along the chosen reduced words of
sηi

.
Now let us return to the proof. If P is σ-invariant, we have σ(µw) = µσ(w), for

all w ∈ W , by Lemma 3.4. Applying Lemma 3.4 again, we see that P k
ηk

, for all k,
are σ-invariant.

Note that there are two possibilities: A2 and A1×A1×· · ·×A1 ( with l copies of
A1, where � = 2 or 3) for Rη. Hence the sufficient part is reduced to the following
two cases which are easy to check.

(1) A2, if P is σ-invariant, then n1 = n2 = n3 .
(2) A1 × A1 × · · · × A1, if P is σ-invariant, then n1 = n2 = · · · = nl.

Conversely, from Ai(n•) =
⋂

k S
µ

wi
k

wi
k

, we have σ(Ai(n•)) = Aj(n•), where j =

(σ(i1), σ(i2), · · · , σ(im)). From the condition of n•, it is easy to see Rj
i(n•) = n•.

Hence their closures coincide, i.e., the corresponding MV cycle of this i-Lusztig
datum is σ-invariant. By Lemma 3.4, P is σ-invariant. �
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3.4. The bijection between MV cycles (polytopes) for a symmetric pair.
Let P be a σ-invariant MV polytope for G. In this subsection, we will show that
P σ is an MV polytope for Gσ, and then we get the bijection between MV polytopes
for a symmetric pair.

Consider the symmetric pair (A4, B2). For the longest element in the Weyl group
W , we have reduced expressions w0 = s1s4·s2s3s2·s1s4·s2s3s2 = s2s3s2·s1s4·s2s3s2·
s1s4. We get two reduced words iσ and i′σ for Gσ from these two expressions of w0.
From iσ, and i′σ, we naturally get 2 reduced words for G, i = (1, 4, 2, 3, 2, 1, 4, 2, 3, 2),
i′ = (2, 3, 2, 1, 4, 2, 3, 2, 1, 4), respectively. Let n•, n′

• be Lusztig data along i, and i′

for P , respectively. According to Proposition 3.5, we may write n• and n′
• as

n• = (n̄1, n̄1, n̄2, n̄2, n̄2, n̄3, n̄3, n̄4, n̄4, n̄4) ∈ N10,

n′
• = (n̄′

1, n̄
′
1, n̄

′
1, n̄

′
2, n̄

′
2, n̄

′
3, n̄

′
3, n̄

′
3, n̄

′
4, n̄

′
4) ∈ N10,

where n̄k, n̄′
k are nonnegative integers.

Set nσ
• = (n̄1, n̄2, n̄3, n̄4). By sending n• to nσ

• , we get a bijection between
i-Lusztig data of σ-invariant MV polytopes for G and iσ-Lusztig data of MV poly-
topes for Gσ. We shall show this bijection is intrinsic, and independent of the choice
of reduced words. Note that the above procedure works for the general case.

For any subvariety Y ⊂ G, we set Y σ := {y ∈ Y |σ(y) = y}.
Let B(n•) = {(b•) ∈ K�(w0)|val(bk) = nk, ∀k} and Bσ(nσ

• ) = {(b•) ∈ K�σ(w0)|
val(bk) = n̄k, ∀ k}, where val is the valuation function on K. Define a map jσ from
Bσ(nσ

• ) to B(n•), by jσ(b1, b2, b3, b4) = (b1, b1, b2, 2b2, b2, b3, b3, b4, 2b4, b4).
In this subsection, we always assume that i and i′ are reduced words of G re-

sulting from the reduced words of Gσ, iσ and i′σ, respectively, in the sense of
Proposition 3.5.

Lemma 3.6. Let n• be a σ-invariant i-Lusztig datum. Then Ai(n•)σ = Aiσ(nσ
• ).

Proof. We only show this lemma for the pair (A4, B2), and the following argument
works in general.

Let ι : Aiσ(nσ
• ) ↪→ G be the natural imbedding, which is the restriction of

ι : Gσ ↪→ G. We have surjections πiσ : Bσ(nσ
• ) → Aiσ(nσ

• ), and πi : B(n•) → Ai(n•),
which are given by

πiσ(b1, b2, b3, b4) = [η−1
w0

(xη1(b1)xη2(b2)xη1(b3)xη2(b4))],

πi(b1, b1, b2, 2b2, b2, b3, b3, b4, 2b4, b4)

= [η−1
w0

(x1(b1)x4(b1) · x2(b2)x3(2b2)x2(b2) · x1(b3)x4(b3)

· x2(b4)x3(2b4)x2(b4))],

where xη1 and xη2 are root subgroup homomorphisms for Gσ, and we denote by
[ ] the projection from G(K) to G. For the definition of ηw0 , see section 4.4, [K1].
Since x1(bi)x4(bi) = xη1(bi), for i=1 or 3, and x2(bj)x3(2bj)x2(bj) = xη2(bj), for
j=2 or 4, we can see that ι ◦ πiσ = πi ◦ jσ, i.e., we have the following commutative
diagram:

Bσ(nσ
• )

jσ−−−−→ B(n•)⏐⏐�πiσ

⏐⏐�πi

Aiσ(nσ
• ) ι−−−−→ Ai(n•).

Since πiσ(Bσ(nσ
• )) = Aiσ(nσ

• ), we have Aiσ(nσ
• ) ⊂ Ai(n•)σ.
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Assume n• is of coweight µ. It is known that X(µ) = S0
e ∩ Sµ

w0
=

⊔
Ai(n′

•),
where the union is taken over n′

•, such that n′
• is an i′-Lusztig datum with coweight

µ. Hence we have

(1) X(µ)σ =
⊔

Ai(n′
•)

σ,

where Ai(n•) appear in the right-hand side.
From Corollary 3.3, we have the decomposition

(2) X(µ)σ =
⊔

Aiσ(m•),

where the union is taken over m• such that m• is an iσ-Lusztig datum with coweight
µ.

Let m• = (m1, m2, m3, m4) be an iσ-Lusztig datum, such that Aiσ(m•) is an MV
cycle for Gσ with coweight µ. Let n′′

• = (m1, m1, m2, m2, m2, m3, m3, m4, m4, m4).
Then n′′

• is σ-invariant, and hence Aiσ(m•) ⊂ Ai(n′′
•)σ. By comparing decomposi-

tions of X(µ)σ in (1) and (2), we obtain Ai(n•)σ = Aiσ(nσ
• ). �

Remark 3.1. From this lemma, we see that the closure of the fixed point set of σ on
some open subset of a σ-invariant MV cycle C is an MV cycle for Gσ. We believe
that the fixed point set of σ on a σ-invariant MV cycle for G is an MV cycle for
Gσ.

Corollary 3.7. If Ai(n•) is not σ-invariant, then Ai(n•)σ is empty.

Lemma 3.8. If n• is a σ-invariant i-Lusztig datum, and Ri′

i (n•) = n′
•, then

(Ai(n•) ∩ Ai′(n′
•))σ contains an open dense subset.

Proof. We can change i to i′ by combining several braid d-moves.
If (· · · , ik, ik+1, ik+2, ik+3, · · · ) → (· · · , ik, ik+2, ik+1, ik+3, · · · ), (d = 2), define a

rational map from B(n•) to B(n′
•), by

(· · · , bk, bk+1, bk+2, bk+3, · · · ) → (· · · , bk, bk+2, bk+1, bk+3, · · · ).
If (· · · , ik, ik+1, ik+2, ik+3, ik+4, · · · ) → (· · · , ik, ik+2, ik+1, ik+2, ik+4, · · · ),

(d = 3), where ik+1 = ik+3, then we define a rational map from B(n•) to B(n′
•) by

(· · · , bk, bk+1, bk+2, bk+3, bk+4 · · · )

→ (· · · , bk,
bk+2bk+3

bk+1 + bk+3
, bk+1 + bk+3,

bk+1bk+2

bk+1 + bk+3
, bk+4, · · · ).

It is well known that, by several braid d-moves, we can arrive at i′ from i. Let
i → i1 → i2 → · · · → i′ be one such path, where → represents a braid d-move. For
a path from i to i′, we denote the rational map f by combining those in every step
defined above. Assume f(b1, · · · , bm) = (b′1, · · · , b′m). It is easy to see that b′k is
a rational function with numerator and denominator as nonzero polynomials with
nonnegative integral coefficients. Consider the diagram

B(n•) ��� B(n′
•)

↓ πi ↓ πi′

Ai(n•) ��� Ai′(n′
•)

where πi is as in the proof of Lemma 3.6, and dashed arrows denote rational maps.
We have πi = πi′ ◦ f .
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Let F be the product of all denominators appearing in every step of d-moves, so
it is a nonzero polynomial with nonnegative integral coefficients. Let U = {(b•) ∈
B(n•)|F (b•) 	= 0}. Then f is well defined on U , and so πi(U) ⊂ Ai(n•) ∩ Ai′(n′

•).
There exists y ∈ U , such that πi(y) ∈ πi(U) ⊂ Ai(n•) ∩ Ai′(n′

•), and πi(y) is
σ-invariant. Hence (Ai(n•) ∩ Ai′(n′

•))σ is nonempty. Since πi is an open map,
πi(U) is open in Ai(n•). We only show it in the case of (A4, B2). Since Ai(n•)
is σ-invariant, we have n• = (n̄1, n̄1, n̄2, n̄2, n̄2, n̄3, n̄3, n̄4, n̄4, n̄4). Now take y =
(tn̄1 , tn̄1 , tn̄2 , 2tn̄2 , tn̄2 , tn̄3 , tn̄3 , tn̄4 , 2tn̄4 , tn̄4) ∈ B(n•), then F (y) 	= 0. In the general
case, we have a similar argument.

Since Ai(n•) is irreducible by Lemma 3.6, we have (Ai(n•) ∩ Ai′(n′
•))σ is dense

in Ai(n•)σ. �

Lemma 3.9. Let Conv((µw)w∈W σ) be the convex hull of (µw)w∈W σ in tR. If the
MV polytope P = Conv((µw)w∈W ) is σ-invariant, then P σ = Conv((µw)w∈W σ).

Proof. Since P is σ-invariant, we have σ(µw) = µw, for w ∈ W σ. We can easily see
that σ acts trivially on Conv((µw)w∈W σ), so Conv((µw)w∈W σ) ⊂ P σ.

For the converse, the perfect pairing (X∗ ⊗ R) × (X∗ ⊗ R) → R descends to
(Xσ

∗ ⊗ R) × (X∗
σ ⊗ R) → R (see Section 2.2). Note that tσ

R
can be identified with

Xσ
∗ ⊗ R.
For any β ∈ P σ ⊂ P , and w ∈ W σ, we have 〈β, w · λi〉 ≤ 〈µw, w · λi〉. By

descent, we have 〈β, w · λη〉 ≤ 〈µw, w · λη〉, for every orbit η of σ in I, where λη is
the fundamental weight for Gσ corresponding to λi, for i ∈ I. Since P σ ⊂ tσ

R
, we

see that
P σ ⊂ {β ∈ tσ

R
|〈β, w · λη〉 ≤ 〈µw, w · λη〉, ∀η, ∀ w ∈ W σ}.

The right-hand side is exactly Conv((µw)w∈W σ ). �

Theorem 3.10. If P is a σ-invariant MV polytope for G, then P σ is an MV
polytope for Gσ.

Proof. Let µ• be the vertices of P . Fix a reduced word iσ for Gσ, and let nσ
• be

the corresponding iσ-Lusztig datum of P .
Let i be the fixed reduced word for G from iσ, in the sense of Proposition 3.5.

Let J = {(i′, n′
•)|i′ be a reduced word for G from some reduced word i′σ for Gσ, and

Ri′

i (n•) = n′
•}. We have

⋂
(i′,n′

•)∈J Ai′(n′
•)σ contains an open and dense subset of

Ai(n•)σ from Lemma 3.8, since the intersection of finite open dense subsets is still
open and dense.

Recall Ai′(n′
•) =

⋂
S

µ
wi′

k

wi′
k

, and Ai′σ(n′σ
• ) =

⋂
(Sσ)

µ
w

i′σ
k

w
i′σ
k

. By Lemma 3.6, we have

(
⋂

(i′,n′
•)∈J Ai′(n′

•))σ =
⋂

(i′σ,n′σ
• ) Ai′σ(n′σ

• ) = A((µw)w∈W σ), where A((µw)w∈W σ) =⋂
w∈W σ(Sσ)µw

w . The last equality holds, since for any w ∈ W σ, there exists some

reduced word i′σ of Gσ and some integer k, such that w = w
i′σ
k . Therefore, we

have Aiσ(nσ
• ) = Ai(n•)σ = (

⋂
(i′,n′

•)∈J Ai′(n′
•))σ = A((µw)w∈W σ ). That means, the

moment polytope of the MV cycle Aiσ(nσ
• ) is Conv((µw)w∈W σ), which is exactly

P σ, by Lemma 3.9. Hence P σ is really an MV polytope for Gσ. �

Corollary 3.11. Let (i, n•) and (i′, n′
•) be two σ-invariant Lusztig data. If Ri′

i (n•)
= n′

•, then R
i′σ
iσ

(nσ
• ) = n′σ

•
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Theorem 3.12. We have a bijection θP : MVPσ
G −→ MVPGσ , given by P → P σ,

which preserves coweights. Induced from θP , we have a bijection θC : MVCσ
G −→

MVCGσ

Proof. Let P be a σ-invariant MV polytope for G. By Theorem 3.10, we have a
well-defined map θP : MVPσ

G −→ MVPGσ by θP (P ) = P σ.
Fix a reduced word iσ for Gσ. Let i be a reduced word coming from iσ. For

any MV polytope for G (resp. Gσ), we have the corresponding i (resp. iσ) Lusztig
datum. According to Proposition 3.5, θP is injective. Let Q be any MV polytope
for Gσ, and let m• be the iσ-Lusztig datum of Q. By Lemma 3.6 and its proof,
there exists a unique i-Lusztig datum n• such that Aiσ(m•) is contained in Ai(n•),
and n• is σ-invariant. Let PQ be the MV polytope of Ai(n•). We have P σ

Q = Q,
since P σ

Q has the same iσ-Lusztig datum as Q. So θP is surjective.
Hence θP is a bijection, and it is easy to see that it preserves the coweights of

MV polytopes. �

3.5. The bijection in the highest weight case. Let λ, µ be σ-invariant coweights,
we set X(λ, µ) := Sλ

e ∩ Sµ
w0

, and X(µ − λ) = S0
e ∩ Sµ−λ

w0
. In this subsection, we

have the same assumptions on i and iσ as in Subsection 3.4.
The following lemma is given by Anderson [A]

Lemma 3.13. An irreducible component of X(λ, µ) is contained in Gλ if and only
if it appears as basis in Vµ(λ)

First, we have the decomposition

(3) X(λ, µ) = λ · X(µ − λ) =
⊔

λ · Ai(n•),

where the union is taken over n• which are i-Lusztig data with coweight µ − λ.
Then

(4) Sλ
e ∩ Sµ

w0
∩ Gλ =

⊔

1

λ · Ai(n•) ∪
⊔

2

(λ · Ai(n•) ∩ Gλ),

where the first union 1 is taken over those n• in (3) such that λ · Ai(n•) ⊂ Gλ; the
second union 2 is taken over those n• in (3) such that λ · Ai(n•) � Gλ.

If λ · Ai(n•) � Gλ, then λ · Ai(n•) ∩ Gλ is of lower dimension than Ai(n•).
From decomposition (4) and Corollary 3.7, we have

(5) (Sλ
e ∩Sµ

w0
∩Gλ)σ = (Sλ

e )σ∩(Sµ
w0

)σ∩(Gλ)σ =
⊔

3

λ·Ai(n•)σ∪
⊔

4

(λ·Ai(n•)∩Gλ)σ,

where the first union 3 is taken over those n• in (3), such that λ · Ai(n•) ⊂ Gλ

and n• is σ-invariant; the second union 4 is taken over those n• in (3), such that
λ · Ai(n•) � Gλ and n• is σ-invariant. From the viewpoint of Gσ, we also have the
decomposition

(6) (Sσ)λ
e ∩ (Sσ)µ

w0
∩ (Gλ)σ =

⊔

5

λ · Aiσ(m•) ∪
⊔

6

(λ · Aiσ(m•) ∩ Gλ
σ),

where the first union 5 is taken over m• which are iσ-Lusztig data with coweight
µ − λ, satisfying λ · Aiσ(m•) ⊂ Gλ

σ ; the second union 6 is taken over m• which are
iσ-Lusztig data with coweight µ − λ, satisfying λ · Aiσ(m•) � Gλ

σ .
If λ · Aiσ(m•) � Gλ, then λ · Aiσ(m•) ∩ Gλ

σ is of lower dimension than Aiσ(m•).
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Lemma 3.14. Gλ =
⋂

Sw·λ
w .

Proof. We know that
⋂

Sw·λ
w is an MV cycle with coweight (λ, w0 · λ), and it is

contained in Gλ. Since both of them are of the same dimension 2〈λ, ρ〉, and both
of them are irreducible, we have Gλ =

⋂
Sw.λ

w . �

Lemma 3.15. If λ ·Ai(n•) � Gλ, and n• is σ-invariant, then (λ ·Ai(n•)∩Gλ)σ is
of lower dimension than Ai(n•)σ.

Proof. With the same reason as in the proof of Lemma 3.6, we can find an open
subset U ⊂ B(n•), such that πi(U) ⊂

⋂
(i,n•) Ai(n•) =

⋂
w Sµw

w is open in Ai(n•).

Note that (
⋂

λ · Sµw
w ) ∩ Gλ is empty. Otherwise, if there exists a point p ∈

(∩λ · Sµw
w ) ∩ Gλ, then

p ∈ (
⋂

λ · Sµw
w ) ∩ Gλ = (

⋂
λ · Sµw

w ) ∩ ∩Sw·λ
w ⊂ (

⋂
λ · Sµw

w ) ∩ Sw·λ
w .

That is, ∀ w ∈ W , p must be contained in λ·Sµw
w ∩Sw·λ

w . From Sw·λ
w =

⊔
µ≤ww·λ Sµ

w,
we have µw + λ ≤w w · λ. We get that Conv(µ•) + λ ⊂ Conv(W · λ). According
to Anderson’s theorem on multiplicity of weight space [A], we have λ · A(µ•) is
an MV cycle in Vµ(λ). By Lemma 3.13, it is a contradiction to the condition
that λ · Ai(n•) � Gλ. As in Lemma 3.8, there exists a point p ∈ λ · Ai(n•). So
λ · Ai(n•)σ ∩ Gλ

σ
has lower dimension than Ai(n•)σ. �

By Lemma 3.15, and by comparing the two decompositions (5) and (6), we have
that the set {Ai(n•)|n• is σ-invariant and is of coweight µ−λ, and λ·Ai(n•) ⊆ Gλ}
is in bijection with the set {Aiσ(m•)|m• is of coweight µ−λ, and λ·Aiσ(m•) ⊆ Gλ

σ},
by sending Ai(n•) to Ai(n•)σ. We thus obtain the following theorem.

Theorem 3.16. We have a bijection θλ
C : MVCG(λ)σ −→ MVCGσ

(λ), which is
the restriction of θC in Theorem 3.12.

4. Twining character formula

Recall that PervG(O)(G) is a tensor category [MV], and it is easy to see the
tensor functor σ∗ induced from the action of σ on affine Grassmannian is a tensor
equivalence. From the functoriality of Tannakian formalism [DM], we have a natural
automorphism σ̄ on G∨.

Fix a σ-invariant coweight λ, and choose an isomorphism φ : ICλ � σ∗(ICλ),
which is compatible with the action of σ on MV cycles (as the basis of V (λ)).

Lemma 4.1. The action of σ̄ on G∨ is compatible with the natural action of σ on
V (λ) induced from φ.

Proof. Let T be the functor from PervG(O)(G) to Rep(G∨), such that T (ICλ) =
(ρλ, V (λ)), where ρλ : G∨ → GL(V (λ)) is the corresponding representation.

From σ∗ : PervG(O)(G) → PervG(O)(G), we get T (σ∗(ICλ)) = (ρλ ◦ σ̄, V (λ)). Let
σ̃ be the functor from Rep(G∨) to Rep(G∨), by sending (ρλ, V (λ)) to (ρλ◦ σ̄, V (λ)).
Then we have the following commutative diagram:

PervG(O)(G) T−−−−→ Rep(G∨)
⏐⏐�σ∗

⏐⏐�σ̃

PervG(O)(G) T−−−−→ Rep(G∨) .
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By applying T to φ : ICλ � σ∗(ICλ), we obtain an isomorphism σ = T (φ) :
(ρλ, V (λ)) → (ρλ ◦ σ̄, V (λ)) in Rep(G∨). In other words, there exists a linear
isomorphism σ : V (λ) → V (λ) satisfying

σ(ρλ(g) · v) = (ρλ ◦ σ̄)(g) · σ(v) = ρλ(σ̄(g)) · σ(v), (g ∈ G∨, v ∈ V (λ)). �
Theorem 4.2. σ̄ is a Dynkin automorphism on G∨.

Proof. Let VectX∗ be the tensor category of X∗-graded vector spaces. The action
of σ on X∗ induces an tensor functor σ◦ on VectX∗ . From Mirkovic-Vilonen’s paper
[MV], we know that there is a tensor functor F from PervG(O)(G) to VectX∗ , and
it is easy to see σ∗ and σ◦ are compatible with F .

Applying Tannkian formalism, from F we get the forgetful functor from Rep(G∨)
to Rep(T∨), where T∨ is a torus of G∨, and σ∗, σ◦ induce automorphisms on G∨

and T∨, respectively. Since σ∗ and σ◦ are compatible with F , we have σ̄ preserves
the torus T∨, i.e., σ̄(T∨) = T∨. It induces the action of σ on X∗(T∨).

Let B∨ be the maximal subgroup of G∨, which stabilizes the highest weight line
Vλ(λ) in V (λ), for any σ-invariant dominant weight λ of G∨. It is easy to see B∨ is
a Borel subgroup of G, and contains T∨. For any σ-invariant dominant weight λ, σ
acts on V (λ) by interchanging MV cycles, especially σ acts trivially on Vλ(λ). From
Lemma 4.1 and the triviality of σ on Vλ(λ), we have σ̄(b) · Vλ(λ) = σ(b · Vλ(λ)) =
σ(Vλ(λ)) = Vλ(λ), for any b ∈ B∨. Hence we have σ̄(B∨) = B∨.

The coroots of G α∨
i , i ∈ I, can be viewed as the roots of G∨, and σ sends the

root α∨
i to α∨

σ(i) automatically, since under the identification of X∗(T∨) and X∗,
the actions of σ are compatible.

Since σ(T∨) = T∨ and σ(B∨) = B∨, we can see that σ maps the root subgroup
Uα∨ to Uσ(α∨), where α∨ is a root of G∨. In particular, σ(Uα∨

i
) = Uα∨

σ(i)
, for any

i ∈ I.
Let G ∨ be the Lie algebra of G∨. Let τ be the automorphism on G ∨ induced

from σ̄. From the following Lemma 4.3, we know τ acts trivially on the simple root
space G ∨

α∨
i

and G ∨
−α∨

i
, for i fixed by σ. Lift τ to σ̄ on G∨, then σ̄ acts trivially on

the root subgroup Uα∨
i

and U−α∨
i
, for i, σ(i) = i. Hence we are able to find root

subgroup homomorphisms x∨
i : C → G∨ and y∨

i : C → G∨, corresponding to α∨
i

and −α∨
i , such that σ̄(x∨

i (a)) = x∨
σ(i)(a) and σ̄(y∨

i (a)) = y∨
σ(i)(a), for any a ∈ C,

and for any i ∈ I.
Hence σ̄ is a Dynkin automorphism with respect to a pinning (G∨, T∨, B∨, x∨

i , y∨
i ,

i ∈ I) of G∨. �
Assume the highest root is γ∨, then it is σ-invariant. G ∨ admits a highest rep-

resentation of G∨ with highest weight γ∨. Assume eα∨ is the basis corresponding
to the unique MV cycle in the root space G ∨

α∨ , for each root α∨ of G∨. By inter-
changing MV cycles, we get a linear operator σ on G ∨, especially σ(eα∨) = eσ(α∨).
Recall τ is an automorphism on G ∨, we have

Lemma 4.3. As linear operators on G ∨, if G∨ is of type A2n, then τ = −σ;
otherwise τ = σ.

Proof. Let H ∨ be the Lie algebra of T∨. It is a Cartan subalgebra of G ∨, and it
can be identified with X∗ ⊗ C, where the actions of τ on H ∨ and σ on X∗ are
compatible.

From Lemma 4.1, we have σ([a, b]) = [τ (a), σ(b)], for two arbitrary elements a
and b in G ∨. By Schur’s lemma, we have τ = c · σ, for some nonzero constant c.
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Let γ be the corresponding coroot of highest root γ∨, so it is σ-invariant. Since
[eγ∨ , e−γ∨ ] ∈ C · γ, we have [eγ∨ , e−γ∨ ] = τ ([eγ∨ , e−γ∨ ]) = [τ (eγ∨), τ (e−γ∨)] =
c2 · [eγ∨ , e−γ∨ ]. Hence c2 = 1.

If G∨ is of type A2n, there exists two adjacent simple roots α∨
i and α∨

j , such that
σ(i) = j, for i and j ∈ I. Then we have τ ([eα∨

i
, eα∨

j
]) = [eα∨

j
, eα∨

i
] = −[eα∨

i
, eα∨

j
].

Since α∨
i + α∨

j is also σ-invariant, it forces c = −1.
If G∨ is of another type, then let hi = [eα∨

i
, e−α∨

i
]. Then {hi}i∈I is a basis

of H ∨. Since σ([eα∨
i
, e−α∨

i
]) = [τ (eα∨

i
), σ(e−α∨

i
)] = c · [eα∨

σ(i)
, eα∨

−σ(i)
], we have

σ(hi) = c · hσ(i). It is easy to see that trace(σ|H ∨) = c · �{i ∈ I|σ(i) = i}.
Since there exists i ∈ I, such that σ(i) = i, when G∨ is not of type A2n, we have
trace(σ|H ∨) 	= 0. Moreover, σ interchanges MV cycles in H ∨, so trace(τ |H ∨) ≥ 0.
We thus have c = 1. �

Remark 4.1. We can give another construction of the Dynkin automorphism on G∨

which is compatible with the action of σ on MV cycles, by using Vasserot’s explicit
construction of the action of the dual group on cohomology of perverse sheaves [V].
Moreover, this automorphism coincides with the one from Tannakian formalism.

We have shown that σ̄ is a Dynkin automorphism, and from Lemma 4.1, we
see that the twining character chσ(V (λ)) =

∑
µ∈P (λ)σ trace(σ|Vµ(λ))eµ, where λ is

σ-invariant.

Proposition 4.4.

chσ(V (λ)) =
∑

w∈W σ (−1)�σ(w)ew(λ+ρ)

∑
w∈W σ(−1)�σ(w)ew(ρ)

.

Proof. Let V σ(λ) be the irreducible representation of (Gσ)∨ with highest weight λ.
By the Weyl character formula for Gσ, we have

∑

µ∈P (λ)σ

dimV σ
µ (λ)eµ =

∑
w∈W σ (−1)�σ(w)ew(λ+ρ)

∑
w∈W σ(−1)�σ(w)ew(ρ)

.

Comparing with our definition of twining character for G∨, we see that it is
equivalent to showing that trace(σ|Vµ(λ)) = dimV σ

µ (λ), for any µ ∈ P (λ)σ. By
Lemma 4.1, trace(σ|Vµ(λ) = �(MVCµ

G(λ)σ). Hence our proposition follows from
Theorem 3.16 �
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