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Fusion rings revisited

Jiuzu Hong

ABSTRACT. In this note we describe a general elementary procedure to at-
tach a fusion ring to any Kac-Moody algebra of affine type. In the case of
untwisted affine algebras, they are usual fusion rings in the literature. In the
case of twisted affine algebras, they are exactly the twisted fusion rings defined
previously by the author via tracing out diagram automorphisms on conformal
blocks for appropriate simply-laced Lie algebras. We also relate the fusion ring
to the modular S-matrix for any Kac-Moody algebra of affine type.

1. Kac-Moody algebras of affine types

Let A be a generalized Cartan matrix of affine type of order n+1 (and rank n).
We denote by a;(i = 0,1,---,n) the labelling on the vertices of Dynkin diagram
associated to A ([Kal, §4.8, Table Aff 1, Table Aff 2]). We denote by a;(i =
0,1,---,n) the labelling of the vertices of the affine Dynkin diagram associated to
the transpose A* of A, which is obtained rom the Dynkin diagram of A by reversing
all arrows and keeping the same enumeration of vertices.

Let g(A) denote the Kac-Moody algebra associated to A with Cartan sub-
algebra b, roots «;(i = 0,1,---n) and coroots &;(i = 0,1,---,n). Note that
A = ({a4,&;)),where (-,-) is the natural pairing between §h and its dual h*. Let
e, fi (i=0,1,--- ,n) denote the Chevalley generators of g(A). The following rela-
tions hold:

[ei7fj] = 51jd17 [hvei] = ai(h)e’iv and [h’a fz} = _az(h)f’tv
for any 4,5 = 0,---,n and h € h. Let g’(A) denote the derived subalgebra
[6(A),g(A)] of g(A). Note that g'(A4) is generated by e;, f;(: = 0,---,n). Fix
an element d € b such that

(ajyd)y=0fori=1,---, (ag,d)=1.
Then g(A) = g’'(A) + Cd, and b is spanned by &;(i =0,--- ,n) and d.

Put
n
K = Z aidv;.
=0

Then K is the central element of g(A).
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Let A;(i =0,---,n) denote the fundamental weights of g(A). The space h* is
spanned by «;,i =0,---,n and Ag. There is a special imaginary root § € h* given
by 6 = 31" jaia;. Let (-]-) denote the symmetric normalized bilinear form on b

such that:
(@la;) = ajajaij (3,5 =0,---,n)
(d;|d)=0 i=1,---,n
(do|d) = ao; (d|d) =0.
Let  : h — b* be the induced isomorphism from (-|-). Then

k(i) = Z—a K(K) = 6, #(d) = agAo.

7

[oX

We denote by g the subalgebra of g(A) generated by e;, f; (i = 1,--- ,n). Let
fD) be the span of &; (i = 1,--- ,n). Then g is a simple Lie algebra with the Cartan
subalgebra h Let i denote the dual Coxeter number of g(A). We denote by A the
Cartan matrix of g.

We will use XJ((,") to denote the generalized Cartan matrix of affine type. When
r=1, X](Vl) is untwisted; otherwise X]((,“) is twisted.

The following is the table for the associated A and h when A is of untwisted
affine type.

1 1 1 1 1 1 1 1 1
AT AT (B0 [ [ o0 [E0 [0 [ 50 [ 77 [ 6P

(1) Al A, | B, | C, | D, | Es | E- | Bs | Fy | Gy
h | n+l1|2n-1 | n+1|2n-2| 12 18 30 9 4

In the above table, n > 1 when A = AS), n > 3 when A = B,(ll), n > 2 when
A:Cgl),andnzélwhenA:D%l). ) §

The following is the table for the associated A and h when A is of twisted affine
type.

2 2 2 2 3
AL MEACIES
(2) Al C, Ch B, Fy Go

h | 2n+1 2n 2n 12 6

In the above table, n > 2 when A = Aéi), n >3 when A = Aéi)_l, and n > 3 when

2
A= Dflll-

2. Fusion rings associated to Kac-Moody algebras of affine types
Let P C l‘)* (resp. QcC b*) be the weight lattice (resp. root lattice) associated
to §. Let P denote the dual lattice of Q, i.e.
P={ieh|(\ ) eZ, forany X € Q}.

Similarly let () denote the dual lattice of P. Let Pt (resp. P*t) be the set of
dominant weights (resp. dominant coweights) of §. Let d (resp. <I>+) denote the
set of roots (resp. positive roots ) of g.

Let  (resp. p) denote the summation of fundamental weights (resp. coweights)
of g. Recall the symmetric bilinear form (+|-) on h. It restricts to the subspace b,
and it induces the isomorphism & : f) ~ f)*
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Put

) M_{n(cfg) if A=x{"or A=A

Q otherwise

Let W (resp. W) denote the Weyl group of g(A) (resp. g). Then W is naturally
isomorphic to W x M (cf.[Kal Proposition 6.5]).
Let 6 be the highest root of g. Set

G rle) ifA= X ora=AaP
highest coroot of § otherwise.

(4)

In fact when A = X](\,l)7 0 is the highest short coroot of §; when A = Aéi), 0 is twice
of the highest short coroot of §.
Given any k € N. We put

(5) P, ={\e Pt |(\6) <k}
We also put
={AePT(A\0) <k},
(we only need it when A = XI(\?) with 7 > 1 and A # Agzn))
Let 7' denote the torus Hom(P,C*). We define a finite subset 3y of 7. When
A= X(l) or A= AP we set

2n
(6) S = {errn P ¢ Py e P
When A = XI(\? with 7 > 1 and A # Agn), we set
Sy = {eiin A e 71X e By,

Let Ry (A) denote the commutative ring of C-valued functions on the finite set
k. We introduce an involution * on the set Pj by sending A to —wg(A) where wq
is the longest element in W,

For any w € W, let £(w) be the length of w. For any A € Py, and t € X, put

(7) Ja(t) = Z (=D w(A+ p)(8),

and Y (1) = 2.

Let f/)\ denote the irreducible representation of g of highest weight A\. By Weyl
character formula x(¢) is the trace of ¢ on the representation Vi. Therefore we get
a collection of well-defined functions {xx | A € Py} on Xj.

Set A(t) = |Jo(t)]?. We introduce an Hermitian form (-,-) on Ry (A) as follows,
for any f,g € Ri(A)

(8) (f,9) = f(©)
|P/(k + h)M)| tezz:
THEOREM 2.1. (1) The Hermitian form (-,-) on Ri(A) is an inner prod-
uct.

(2) The set of functions {xx|X € Py} is an orthonormal basis of the ring
Ry (A) with respect to the inner product (-,-).
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As a ring of functions on a finite set, Ri(A) is semismiple. For any A, u € P,
there exist unique coefficients ¢, such that

o o Voo
XX Xp = § CapXv>
veP;,

where c§, € C. Observe that Xax (t) = xa(t) for any A € P, and t € ¥;. Then an
immediate consequence of Theorem [Z1lis that the coefficients ¢ ., can be computed
by the following formula

1
9 cX = =~ Dtotay*tAt.
(9) A |P/(k+h)M|t€EkX/\()Xu()X (t)A(t)
We call the ring Ry(A) together with the basis {xa|A € Py} the fusion ring
associated to the Kac-Moody algebra g(A), and we call c5, the fusion coeflicients
The following theorem asserts the integrability of fusion coefficients, and the
stabilization when the level is sufficient large.

THEOREM 2.2. For any A, u,v € Py, we have
(1) The coefficients c¥,, € Z.
(2) If (\+ p+v,0) < 2k, then

c5, = dim Homﬁ(f/,,, Vi ® VM)

The following theorem is an incarnation of [Ho2| Theorem 1.6] in terms of
fusion rings.

THEOREM 2.3. The fusion rings R2k+1(Aé3L)) and Rk(C’T(Ll)) are isomorphic.

Theorem 211 Theorem and Theorem 23] are basically the consequence
of Verlinde formula for dimension of conformal blocks (cf.[Be]), and the Verlinde
formula for the trace of diagram automorphism on conformal blocks [Ho2] by the
author. In the rest of note we will explain uniformly how they are deduced.

When A = XJ(\}), the theory of fusion rings and conformal blocks can be dated
back to [FalBellTUYI[V]. The coefficients oy, are always nonnegative, since they
can be interpreted as the dimension of conformal blocks.

When A = XJ(\T) with » > 1, the corresponding theory of fusion rings and its
relation with usual conformal blocks is essentially explained in [Ho2], although the
role of twisted affine Lie algebras was not clearly clarified there. We expect that
the fusion coefficients ¢, are all nonnegative. For example by Theorem 23] the

fusion coefficients for Agn) are always nonnegative when the level is odd. We expect

that there is an appropriate theory of twisted conformal blocks whose dimensions
would correspond to the fusion coefficients for twisted affine Lie algebras. We also
hope that there will be a theory of fusion category for twisted affine Lie algebra in
the flavor of [Fi].

3. Twining formula and Verlinde formula

3.1. Twining formula for tensor invariant space. For each g(A) with
A= X](\;), we attach a unique pair (g, o) where g is a simple Lie algebra and o is a
diagram automorphism on ¢ (possibly trivial) of order r. Let A (resp. A) denote

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



FUSION RINGS REVISITED 139

the Cartan matrix of § (resp. g). The Cart.an nﬂlatrix A is attached as follows. If
A is of untwisted affine type, then we take A = A; if A is of twisted affine type, we
have the following table:

ATAT AT, [ O, B9 [P
(10) Al C, Cp By, Fy | Go
A A2n Dn+1 A2n71 EG D4

The simple Lie algebra § is the orbit Lie algebra of the pair (g, 0) in the sense
of [Ho2|, Section 2.1].

Let I (resp. I ) denote the set of vertices of Dynkin diagram of g (resp. §).
We will denote by P (resp. Q) the weight lattice (resp. root lattice) of g, and we
denote by P the set of dominant weights. Let {w; |7 € I} denote the fundamental
weights of g. There is a bijection p : I~ I/o where I/o denotes the set of o- orblts

on I. Moreover there is a bijection ¢ : P~ P°and a projection i : Q — Q such
that

(1) e(@s) = X ep(s) @i for any i € 1. ]
(2) (A 1(B)) = ((N), B), for any A € P and f € Q.

For any A\ € PJr let Vy denote the irreducible representation of g of highest
weight +(\) € PT. There is a unique operator o : Vy — Vy such that

(1) o(z-v) =0o(x)-o(v) for any z € gand v € V,
(2) o(vy) = vy where vy is the highest weight vector of V.
For any tuple X = (A1, -+, Am) of elements in Pt let V)? (resp. V)? ) denote
the tensor invariant space
(Va, @ ®@Vi,)® (tesp. (Va, @@ Vy,)9).
From each operator o on V,\,i, there exists an operator o (we still use the same

notation) acting diagonally on V)? . The following twining formula was proved in
[HS| Theorem 1.1].

THEOREM 3.1. We have the equality tr(a|V§) = dim IO/XQ, where tr(0|V§) is the
trace of o on VXg
The twining formula for the weight spaces between representations of g and

g was first discovered by Jantzen (cf. [HolllJa]). Theorem Bl can actually be
deduced from Jantzen formula (cf.[Ho2| Section 5.1]).

3.2. Verlinde formula. Let C((t)) be the field of Laurent series. Let £(g)
be the associated affine Lie algebra g((t)) ® CK @ Cd (cf.[Kal §7]). The diagram
automorphism o still acts on ﬁ(g) Note that if A is of untwisted affine type, then
a(A) ~ L£(§). If Ais of twisted affine type, then the Kac-Moody algebra g(A)
is the orbit Lie algebra of (£(g),0), and in fact there is also a twining formula

for the weight spaces between representations of £(g) and g(A), which is due to
Fuchs-Schellekens-Schweigert [F'SS].

Let é denote the highest short coroot of g. Let Py, denote the subset of P+
consisting of A € Pt such that (\,0) < k. For any A € Py, let 7-.[)\+kAO denote the
irreducible integrable representation of ﬁ(g) of highest weight A + kAg, where A
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140 JIUZU HONG
is the fundamental weight of ﬁ(g) corresponding to the vertex 0 in the extended
Dynkin diagram of g.

~ LEMMA 3.2. The isomorphism v : P ~ P7 restricts to the bijection v : Py ~
(Pr)7

PROOF. It is enough to show that for any A € Py, ¢(A) € Py.. By [Ho2| Lemma
2.1], () = 0. For any A € Py, we have
(1), 0) = (7, 1(0)) = (A 0) <k

Hence 1(\) € Py. O

Given an m-pointed smooth projective curve (C,p) over C, on each point p;
we associate a dominant welght \; € P, and an 1rredu01ble integral representation
’HA +ri an affine Lie algebra L(§) depending on the point p;. Let §(C\p) be the
space of g-valued regular functions on C\p. The space g(C\p) is naturally a Lie
algebra induced from §. The Lie algebra g(C\p) acts on

H)\ H)\l-‘rk/\() ® ® H)\T‘rl-‘rkAO

naturally. The space VX(C’7 p) of conformal blocks associated to p and X is defined
as the coinvariant space of ”HX with respect to the action of §(C\p) :

Vi(C.0) = Hs/a(C\P)H;.
The trace tr(U\VX(C,ﬁ)) is independent of the choice of p (cf.[Ho2| Section 3]). For
convenience we write tr(U|VX(C’)) by ignoring p.

LEMMA 3.3. We attach A\, pu € Py, to two distinct points on the projective line
P'. Then we have

tr(o{ V0 (P1)) = Oy e
PrROOF. cf.[Ho2, Lemma 3.9]. O

Let h denote the dual Coxeter number of L(§). By comparing Table (@), @)
and (I0), we can see that i = h.

LeMMA 3.4. If A= X(l) or A= Aén), then
3 Q A= X(l)
A(Q) =4 | ; N(2)
§Ql A= A2n
Proor. It follows from the discussions in [Kal §6.5]. O
Recall the torus 7 = Hom(P, C). Set
={teT|a(t)=1,Ya € (k+h)M}.

Then T is a finite subgroup of T. An element t € T is regular if a(t) # 1 for any
a€d. Equivalently an element t € T is regular if and only if the stabilizer group
of W at t is trivial. Let T,°® denote the set of regular elements in Tj,.

The following is the general Verlinde formula for the trace of o on the space of
conformal blocks.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



FUSION RINGS REVISITED 141

THEOREM 3.5. Let (C,p) be an m-pointed smooth projective curve of genus
g. Given a tuple A = (A1, A2, -+, A\p) of elements in Py. We have the following
formula

(11) tr(o|V(C) = [Tel*™ > X ()X, (DA
teTr8 /W

PrOOF. When A = XI(\}), it is just the usual Verlinde formula(cf.[Be]). When

A= X](J) with > 1, it is the main theorem of [Ho2]. Lemma [34] ensures the data
in the formulas of [Bel[Ho2| matches with the note. O

In particular if C = P! and X = (A, p,v) with A\, u, v € Py, we have

(12) wOlV5(C) = = 3 Ok (OA®).

T
1Tkl teT;o8 /W
Let W}, denote the affine Weyl group W x (k + h)M. We define the dotted
action of Wy on P,

w* A =wA+ p) — p, for any w € Wj.

Let W,I denote the set consisting of the minimal representatives of the left

cosets of W in Wj,. For any A € Py, w* A € PT if and only if w € W,I
The following is a general version of Kac-Walton formula.

THEOREM 3.6. For any \, u,v € Py, we have
(o Vaun(P)) = > (1)) dim V§

A, wkr
wEW,I
ProoF. When A = Xz(\}) it is just the usual Kac-Walton formula (cf.[Kal

Ex.13.35]). When A = X](J) with r > 1, it follows from [Ho2| Theorem 5.11] and
Theorem [311 O

4. Proofs

4.1. Proof of Theorem [2.11
4.1.1. Inner product.

LEMMA 4.1. We have the following equality

h={(p0)+1

Proor. When A = X](\}), 0 is the highest short coroot of g. When A = Aéi), 0
is twice of the highest short coroot of §. Then it is easy to check that h = (p,0) + 1
by comparing the numerical labels in the tables of [Kal §4.8] and Tables () (2)).

When A = X]((,“) with » > 1 and A # Aéi), (p,0) + 1 is the Coxeter number of
dual root system of g. By comparing the table in [Kal §6.1], it is also easy to see
the equality. |

To prove the Hermitian form defined in (§)) is an inner product, it is enough to
show that A(¢) > 0 for any ¢t € ). By Weyl denominator formula

A)=[[a-am) =1 [T @ -a®)P.

acd acd+
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When A = X](\}) or A= Agi), for any A € P, and o €+, we have 0 < (M) <
k. By Lemma 1] (p|6) = (p,0) = h — 1. Since 6 is the highest root of §, for any
o € ®* we have
0 < (4la) < (4l6) = h— 1.
In particular
0<A+pla) <k+h-—1.
It shows that a(t) can not be equal to 1. Hence A(t) > 0 for any ¢ € .
When A = XJ(\;) withr > 1 and A # ASL), for any A € Py, we have 0 < (o, \) <

k. By Lemma [£]] for any « € o+, we always have
0< (0 p+)<hth
Hence in this case, we also have A(t) > 0 for any ¢t € Xy,
4.1.2. Orthonormal basis. Recall that T} is the group consisting of ¢ € T" such
that a(t) = 1 for any a € (k+ h)M. The group T} is naturally isomorphic to
13) P/k+h)M ifA=X{ or A=A
P/(k+h)Q otherwise

LEMMA 4.2. |Ty| = |P/(k + h)M]|.

ProoF. When A = X](\}) or A = A;i), it simply follows from the natural
isomorphism (I3). . .

When A = X]((,“) with r > 1 and A # Aéi), P/(k + ﬁ)Q is Pontryagin dual to
P/(k+ h)Q. Then the lemma follows from the natural isomorphism (I3). O

We recall the finite set ¥y, in 7. It is clear that 3y is a subset of T,°®.
When A = X](\}) or A = Aéi), let 1 : Pr — X be the map by assigning
27i (8
A€ Py toty = erin ") 5y When A = X with 7 > 1 and A # A$ let

el 2n >
N2 : P — X be the map assigning A € Py, to t5 = eierh (PHA)

LEMMA 4.3. The maps 1n1,n2 defined above are bijections.

PrOOF. We first assume that A = XI(\}) or A= Agi)

1 is injective, equivalent it is enough to show that iy : P, — P/(k+ h)M the map
given by

. It is enough to show that

A= A+p mod (k4 h)M
is injective. For any A € (k+ h)M and w € W, we always have
(14) (N w(d)) € (k+h)Z.
Fﬁ)r any A1, Ao € Py, we have 0 < <)\i7é> < k. It also follows that for any
weW,
(15) k< O w(®) <k

If i(\1) = i(\2), equivalently \; — Ao € (k 4+ h)M, then by (@) and (I5) we
have

</\1 — )\2, w(0)> = O7
for any w € W. Since {w(f) |w € W} spans b, it follows that A; = Ay. It proves
the injectivity of ;.
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When A = XI(\;) with 7 > 1 and A # Aéi), we consider the map iy : P, —
P/(k + h)Q given by

A= A+5 mod (k+h)Q.

In this case the lemma can be proved similarly. O
LEMMA 4.4. When A = XJ(\;) with r > 1 and A # Agl), we have |Py| = | Py|.

PrROOF. When A # Agill and A # Dﬁzh it is clear that |Py,| = | Py since the
dual Lie algebra of g is isomorphic to g. §

When A = Agi)_l or A= D;a)_l, we define a map e : P — P given by w; — @
where £ is the rank of g. Note that € induces the dual map € : Q — Q Observe
that €() = 0, where @ is the highest coroot of §. It is now clear that e defines a
bijection Py =~ Py,. Hence the lemma is proved. O

COROLLARY 4.5. For any generalized Cartan matriz A of affine type, we have
Xk| = | Pl

Proor. It follows from Lemma and Lemma O

LEMMA 4.6. X, is the fundamental set of T;,*® with respect to the action of the
Weyl group W, i.e. for any t € T,°® there exists a unique element ty € Xj, and a
unique w € W such that w(ty) = t.

PrROOF. By Lemma (3], we are reduced to consider the action of the Weyl
group W on P/(k + h)M.

When 4 = X](\}) or A= Agi), it follows from the fact that the set {p+A| A € Py}
is exactly those integral weights sitting in the interior of fundamental alcove with
respect to the action of the affine Weyl group W x (k4 h)M on P®R.

When A = XI(\?) with 7 > 1 and A # Aéi), it follows from the fact that the set
{/3 + A |\ € Pk} is those integral coweights sitting in the interior of fundamental
alcove with respect to the action of the affine Weyl group W x (k+ ﬁ)Q on P®R.

|

From this lemma, we immediately get $y = T5° /W. By Theorem B3 Lemma
and Lemma [£.6] Lemma [3.3] is equivalent to

1

(16) ~—w% <. _
P/(k+ M| S

X ()X (D) A() = O,
for any A\, € Py. Recall the definition of the Hermitian form (-,-) in (&), the
formula ([6]) implies that {xx |\ € Py} is an orthonormal subset of Ry (A).

In the end in view of Corollary 5] the dimension Ry (A) is equal to the cardi-
nality of Py. It follows that {xx |\ € Py} is indeed an orthonormal basis of Ry (A)
with respect to the inner product (-, -).

4.2. Proof of Theorem From the proof of Theorem [2.1] the Verlinde
formula (Theorem BH]) implies that

(17) CK;/, = tr(U|V/\g,u,,1/*)7
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for any A, u,v € P,. By Kac-Walton formula (Theorem B.6]) we have

(18) K= D (D dimVE
wGW,;r

It follows that for any A, pu,v € Py, ¢, € Z.

We now proce?d to prove theostabilizqtion 9f fusion coefficients. We first obsgerve
that (A", 0) = (A, 0) for any A € P, since 6" = 0. Hence the condition (A+p+v,0) <
2k is equivalent to the condition (A 4+ p + v*,0) < 2k.

When 4 = X](Vl), the stabilization follows from [Bel Proposition 4.3].

When A = XJ(\;) with r > 1, g is simply-laced, and A, i, v satisfies the following
inequality §

(W) + () + 0(v)", 6) < 2%
Again in view of [Bel Proposition 4.3] we have
V)\,u,u* (Pl) o~ (V)\ ® Vll« & VV*)Q.
In particular it follows that
(0| Vi i (P)) = tr(o(Va ® V, @ Vi )g) = dim(Va @ V, @ Vi )3,

where the second equality follows from Theorem B.I] since the tensor invariant
space and tensor co-invariant space of § and g are naturally isomorphic.

4.3. Proof of Theorem 2.3l Let A; = Agl) and Ay = CV. The underlying
simple Lie algebras g1 and gs are both isomorphic to the simple Lie algebra of type
C,. We use notation g for type C,, simple Lie algebra to identity g; and go. Let
M; (resp. Ms) be the lattice in f)* associated to the generalized Cartan matrix A
(resp. As ) of level 2k 4+ 1 (resp. k). Then we have

15 . .

Let (:]-); be the inner product on b associated to A; for each i = 1,2. Note
that (-]-)1 = 2(+|-). Let Px(A4;) be the finite set of dominant weights associated to
A; as in (@) for each ¢ = 1,2. In particular we have

Pori1(A) = {r e P|(\|0); < 2k +1}
and )
Pu(Az) = {X € P| (A6)a < k).
It is now not difficult to see that
Popi1(Ay) = Py(Az).

We set Py, := Pi(As2) = Pary1(A1). Then the fusion ring Rop41(41) and Ry (Az)
have bases indexed by the same set Py.

Let ¥4 (A;) be the finite set of T' defined as in () for each i = 1,2. We observe
that

Yort1(A1) = Br(A2),
since for any A € Py we have
62k+121;n+1 A+pl)1 — eikf:{il ()\+f3“)2'
From Formula (@), we see that the fusion rings Rogt1(A;1) and Ry (Asz) are indeed
isomorphic.
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5. Modular S-matrix

The relation between the fusion ring and modular S-matrix is well-known when
the genearlized Cartan matrix is of untwisted affine type, see details in [Kal §13.8,
Ex.13.34,13.35]. In the case of twisted affine case, we use the fusion rings that
we have just defined to relate to the S-matrix for twisted affine algebras (cf.[Kal
§13.9]). For convenience we still treat all generalized Cartan matrices of affine type
generally.
We first assume A = X](\;) with » > 1 but A # Agi) For any A, we attach the
adjacent Cartan matrix A’ as follows:
a [ D0, (A8, e D

We define a linear isomorphism e : [;’ ¥~ f) such that
(1) If A= Agill or A= Dfﬁl, then €(w}) = wy—; forany i =1,--- ,n;
(2) otherwise e(w)) =&; forany i =1,--- ,n,
where &; denotes the fundamental coweight of g.

Let 6’ be an element in the coroot lattice of g’ defined similarly as 6 in (@), and
let P/ be similarly defined as Py in ({]).

LEMMA 5.1. The map € restricts to a bijection € : P;, ~ P,.

PROOF. The root system of g’ is dual to §. The lemma is clear by looking at
the Dynkin diagram of g and g’. O

We now identify h and f)' via the isomorphism ¢ := €* o x from h to b, where
€* is the dual operator of € : h”™* ~ §.
When A = XJ(\}) or A=AP we take A’ = A and take ¢ to be the identity on

. 2n>
b.

When A = X](\f) with r > 1 and A # Agl), for any p' € Py, let t,, denote
the element in ¥, associated to e(y/) € P,. When A = XJ(\}) or A= Agzn), for any

p' € P] = Py, we denote by ¢,/ the element in ¥ associated to p’ € Py. Put
(20) S = 1T P (k + R)M| 5 (t),

where ¢ is the imaginary unit.

The matrix S = (S\ ) is indexed by P x P/. We call it the modular matrix
from A to A’. Let S* (resp. S*) be the transpose (resp. conjugate transpose) of S.
Then S* (resp. S%) is a matrix indexed by P x Pj.

LEMMA 5.2. SS? is the identify matriz indexed by Py, X P.

PRrROOF. Note that the number of positive roots of type B, is equal to the
number of positive roots of type C,, (cf.[Hul §12.2, Table 1]). It is easy to see that
1T = 4197 for any A, where @1 is the set of positive roots of §’. Hence the
lemma is equivalent to that {xx |\ € Py} is an orthonormal basis of Rj(A) with

respect to the inner product (-,-) defined in (g]). O
Note that (A") = A. Let S’ be the modular matrix (Sy/ ) from A’ to A.
LEMMA 5.3. St =95
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PrROOF. When A = X](\}) or A= A;i), the lemma is clear since Jy(t,) = Ju(tr).
We now assume A = X](J) with 7 > 1 and A # Agl) Note that M = Q (resp.
M’ = @’). moreover

o

W =h, eP)=P, and Q') =Q.

It follows that e induces the isomorphism

P /(k+R)Q ~ P/(k+ h)Q.
From (), we observe that Jx(t,) = Ju(tx) for any A € P, and p/ € P[. Tt
concludes the Lemma. O

For any dominant integral weight A of g(A) of level k, we denote by Ha the
irreducible integrable representation of highest weight A. Let xa denote the nor-
malized character of g(A), i.e. xa = e "™A%hy,, where chy, is the character of
Ha and the number my is the so-called modular anomaly (cf.[Kal, §12.7.5]). Let
V (A, k) be the vector space spanned by the normalized characters y of level k.
Then the matrix S gives a linear transformation from V(A,k) to V (A’ k). For
precise transformation formula, see [Kal Theorem 13.8, 13.9]. In the literature
the formula ([20) is called Kac-Peterson formula (cf.[KallKal]) for the modular
S-matrix as the linear transformation from V(A4, k) to V(A’, k).
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