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1. Introduction

The Verlinde formula computes the dimension of the space of conformal blocks. It is
fundamentally important in conformal field theory and algebraic geometry. The formula
was originally conjectured by Verlinde [35] in conformal field theory. It was mathe-
matically derived by combining the efforts of mathematicians including Tsuchiya-Ueno-
Yamada [33], Faltings [4]. It was proved by Beauville-Laszlo [2], Kumar-Narasimhan-
Ramanathan [23], Faltings [4], that conformal blocks can be identified with the general-
ized theta functions on the moduli stack of G-bundles on projective curves where G is a
simply-connected simple algebraic group. Therefore the Verlinde formula also computes
the dimension of the spaces of generalized theta functions. For a survey on Verlinde
formula, see Sorger’s Bourbaki talk [30].

Let (C,p) be a stable k-pointed curve. Let g be a simple Lie algebra over C. Let £ be
a positive integer. Put

Py={\e Pt|(\0) <)}, (1)

where 6 is the highest root of g and 6 is the coroot of #. Given a tuple of dominant weights
X = (A1, A2, -+, A\k) such that A\; € Py for each i. We can attach the space ij(c,ﬁ)
of conformal blocks of level ¢ to (C,p) and X. We will recall the definition of conformal
blocks in Section 3.4.

Let o be a diagram automorphism on a simple Lie algebra g. One can attach another
simple Lie algebra g, as the orbit Lie algebra of g (see Section 2 for details). If o is
trivial, then g = g,. Let ® (resp. ®,) be the set of roots of G (resp. G, ). We put

A= =1, A;= ] (e -0. (2)

acd acd,
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There is a natural correspondence between o-invariant weights (resp. dominant
weights) of g and weights (resp. dominant weights) of g, (see Section 2.1). In this in-
troduction we will identify them if no confusion occurs. For any dominant weight A of
g (resp. g,), we denote by V) (resp. W)) the irreducible representation of g (resp. g,)
of highest weight A. Let A (resp. hy) be the dual Coxeter number of g (resp. g.). Let
G (resp. G,) be the associated simply-connected simple algebraic group of g (resp. g, ).
Let T' (resp. Ty) be a maximal torus of G (resp. G, ). Let W (resp. W,,) denote the Weyl
group of G (resp. G).

Throughout this paper, we denote by tr(A|V) the trace of an operator A on a finite
dimensional vector space V. The following is the celebrated Verlinde formula.

Theorem 1.1 (Verlinde formula). Let (C,p) be a stable k-pointed curve of genus g. Given
any tuple X = (A1, A2, -+, Ak) of dominant weights of g such that \; € Py for each i, we
have

tr(t[Vs)

dim Vy , 3(C,p) = Tyl Z A(t)s—1’

teT, s /W

(3)

where V5 denotes the tensor product Vi, ® --- &V, of representations of g and
Tr={teT|e*(t)=1,ac ({+h)Q}

is a finite abelian subgroup in the mazimal torus T, T,°® denotes the set of regular
elements in Ty and T,°®* /W denotes the set of W-orbits in T,;*®. Here Q; denotes the
lattice spanned by long roots of g, and for any o € Qy, e“ is the associated character
of T.

From now on we always assume o is nontrivial. When the tuple X of dominant weights
of g is o-invariant, one can define a natural operator on the space Vg) 0 x(C, p) of conformal
blocks, which we still denote by o, see Section 3.4. A natural question is how to compute
the trace of o as an operator on the space of the conformal blocks. In this paper, we
derive a formula for the trace of o, which is very similar to the Verlinde formula for the
dimension of the space of conformal blocks. Very surprisingly, in the formula the role of
g is replaced by g,. The following is the main theorem of this paper.

Theorem 1.2. Let (C,p) be a stable k-pointed curve of genus g. Let o be a nontrivial
diagram automorphism on a simple Lie algebra g which has dual Coxeter number h.
Given a tuple X = (A1, A2, -+, A\k) of o-invariant dominant weights of g such that for
each i, \; € Py, we have the following formula

tr(t[Wx)

tr(olV x(C7) = Tl ™ 3 e

teT ) /Wo

(4)
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where W5 denotes the tensor product Wy := Wy, ® --- @ Wy, of representations of g
and

Tyo={teT,|e*(t)=1,a€ ({+h)Q"}.

Here T} denotes the set of regular elements in Ty, and T, /W, denotes the set of
W - orbzts in TOF and

Q° = root lattice of 95  if g # Aap
weight lattice of g if g = Aap,.

Since the space of conformal blocks can be identified with the space of generalized
theta functions, Theorem 1.2 implies the same formula for the trace of diagram auto-
morphisms on the space of generalized theta functions.

Remark 1.3. By the basic representation theory of finite groups, we have the following
formula

dimV, , +(C,p)7 = = Ztr o'V, ,5(C.P)),

where r is the order of o, and V_,:(C,p)° denotes the space of o-invariants in

[\WAPN
Vg,l,A(C’ p). Combining Theorem 1.1 and Theorem 1.2, we immediately get a formula

for the dimension of V , +(C,p)”.

The proof of Theorem 1.2 will be completed in Section 5.5. Our proof closely follows
[4,1,22] for the derivation of the usual Verlinde formula, where the fusion ring plays
essential role. In the standard approach to the Verlinde formula for general stable pointed
curves, the factorization rules for conformal blocks and degeneration of projective smooth
curves allow a reduction to projective line with three points case. Our basic idea is that
we replace the dimension by the trace of the diagram automorphism everywhere. In
our taking trace setting, we explain in Section 3.4 that factorization rules for conformal
blocks and degeneration of curves are compatible well with the trace operation on the
space of conformal blocks.

By replacing the dimension by the trace, we introduce o-twisted fusion rings Ry(g, o)
in Section 3.5. We also introduce the o-twisted representation ring R(g,o) of g (see
Section 5.1). For the usual fusion ring R,(g) and the representation ring R(g), it is
important to establish a ring homomorphism from R(g) to Re(g). Similarly, we establish
a ring homomorphism from R(g, o) to Ry(g, o) in Section 5.3. One of important technical
tools is that we interpret o-twisted fusion product via affine analogue of Borel-Weil-Bott
theorem, where the new product is introduced in Section 5.2. A vanishing theorem of Lie
algebra cohomology by Teleman [32] plays a key role in our arguments as in the dimension
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setting (cf. [22, Chapter 4]). We describe all characters of the ring R;(g, o) in Section 5.4.
The Verlinde formula for the trace of diagram automorphism will be a consequence of
the characterization of the ring Ry(g, o) and the determination of the Casimir element in
Ry(g,0). As a byproduct we obtain an analogue of Kac-Walton formula (Theorem 5.11)
in Section 5.2.

In the process of proving the coincidence of two products in the ring Ry(g, o) and estab-
lishing the ring homomorphism from R(g, o) to R¢(g, o), some interesting sign problems
occur on the higher cohomology groups of vector bundles on affine Grassmannian and
affine flag variety, also in affine BBG-resolution and affine Kostant homologies. The reso-
lution of these sign problems is very crucial for the characterization of the ring Ry(g, o).

Let L£,(Vy) be the vector bundle on the affine Grassmannian Gr¢g of G associated to the
level £ and the representation V) of G. By affine Borel-Weil-Bott theorem (cf. [21]) there is
only one nonzero cohomology H!(Grg, L¢(V3)) and the restricted dual H*(Grg, L,(V))Y
is the irreducible integrable representation H, of the affine Lie algebra g of level . The
action of o on the highest weight vectors of H*(Grg, £L,(Vy))V is determined in Section 4.1
and Section 4.2. This problem is closely related to similar problem on the cohomology
of line bundle on affine flag variety. The answer is very similar to the finite-dimensional
situation which is due to Naito [28] where Lefschetz fixed point formula is used. In the
affine setting, we don’t know how to apply Lefschetz fixed point formula since the affine
Grassmannian and affine flag variety are infinite-dimensional. Instead, our method is
inspired by Lurie’s short proof of Borel-Weil-Bott theorem [26]. Our method should be
applicable to similar problems for general symmetrizable Kac-Moody groups. Similar
sign problems also appear in BGG resolution and the Kostant homology for affine Lie
algebras. See the discussions in Section 4.3.

Our starting point of this work is the Jantzen’s twining formula (cf. [18,10,7,24,
28,29]) relating representations of g and g,, where the term “twining” is coined by
Fuchs-Schellekens-Schweigert [7]. Given a o-invariant dominant weight A of g where
o is the diagram automorphism as above. There is a unique operator ¢ on V) such
that o preserves the highest weight vector vy € V) and for any u € g and v € Vj,
o(u-v) = o(u) - o(v). For any o-invariant weight u, Jantzen [18] proved the following
formula

tr(o|Va(p)) = dim Wi (),

where A and p are also regarded as (dominant) weights of g,. Given a tuple X of
o-invariant dominant weights of g. Let V)? (resp. W;”) be the tensor invariant space
of g (resp. g,). Induced from the action of o on each V), o acts on VXEl diagonally. Shen
and the author obtained the following twining formula in the setting of tensor invariant
spaces in [13],

9y — d; 9o
tr(a|VX) = dim We7. (5)
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A consequence of (5) is that the o-twisted representation ring R(g, o) of g is isomorphic
to the representation ring R(g,) of g,. This is how we are able to express the trace of o
on the space of conformal blocks by the data associated to g .

It is well-known that given a tuple X of dominant weights of g, the space Vg’ 0 X(IF’l7 D)
of conformal blocks on (P!,p) stabilizes to the tensor co-invariant space (Vx)g when
the level ¢ increases. From Formula (5), it is natural to hope that the conformal blocks
associated to g and the conformal blocks associated to g, are related and have a twining
formula with a fixed level. Unfortunately this is not the case. We found the following
counter-example using [31] (joint with P. Belkale).

Example 1.4. We have
dim ‘/;l6,4,)\7u,u<]P)la 07 17 OO) = 47

where A = wo + w3 +wy, 4 = w1 + w3 +ws and v = wy + 2ws + ws. Here w1y, ws, w3, wy, ws
denote the fundamental weights of slg. Since the order of ¢ on slg is 2, this forces that
the trace tr(o|Vsg,a,x,..0(P1,0,1,00)) is even. On the other hand, we have

dim ‘/;0774,)\7;L,1/(P17 0) 17 OO) = 3’

where A = Wy 2 +Wo 3, ft = Wo,1 +We,3 and v = Wy 1 + 2w, 3. Here wy 1, ws 2, we,3 denotes
the fundamental weights of sor.

Actually from formula (4) in Theorem 1.2, it is quite clear that tr(c|V, , 3(C, p)) should
not be the same as ding 0 5(C,p). Nevertheless, for the special pair (slony1,5p2n) We
do have a twining formula where one needs to take different levels on both sides.

Theorem 1.5. If £ is an odd positive integer, then the following formula holds

tr(olVyy,, e x(CP) = dim Vs 3(C,P). (6)

This theorem is a corollary of Theorem 1.2, and the proof will be given in Section 5.6.
It has following interesting numerical consequences where ¢ is assumed to be odd.

e The trace tr(or|Vslzn+1 0 5(C,p)) is non-negative.
o If dim ‘/sl2n+1,£,i(c’m is 1, then dim V=~ 1 5(C,p) is also 1.
o IfV i +(C,p) is nonempty, then V. +(C, p) is nonempty.

SP2n, 5 KA Slon41,4,X
Theorem 1.5 establishes a bridge between the conformal blocks for sla, 11 and spay,.
The failure of the formula (6) in general is not really the end of the story. The combi-
natoric data appearing in the formula in Theorem 1.2 actually suggests a close connection
with twisted affine Lie algebras. It is very natural from the point of view of the twin-
ing formula for affine Lie algebras by Fuchs-Schellekens-Schweigert [7]. Moreover the
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o-twisted fusion ring Ry(g,o) defined in this paper is closely related to Kac-Peterson
formula for S-matrices of twisted affine Lie algebras (cf. [19]). The analogue of Kac-
Walton formula obtained in this paper is also a strong hint. In fact this perspective has
recently been clarified in [11] by the author. The connection on the trace of diagram au-
tomorphism on the space of conformal blocks and certain conformal field theory related
to twisted affine Lie algebra was predicted by Fuchs-Schweigert [5]. It seems to the au-
thor that this work has confirmed Conjecture 2 in [6] when the automorphism is induced
from a diagram automorphism of g. This work should also be closely related to the fusion
rules for the orbifold conformal field theory that is developed by Birke-Fuchs-Schweigert
[3] and Ishikawa-Tani [16].

A general theory of twisted conformal blocks has been developed recently by S. Kumar
and the author [12]. It would be interesting to investigate the connection between this
paper and [12].

Acknowledgments The author would like to express his gratitude to P. Belkale for
introducing him into the theory of conformal blocks, and for many helpful and stimulating
discussions throughout this work. He would like to thank S. Kumar for helpful discussions
and for his careful reading on the first draft of the paper, and also for sharing his
unpublished book on Verlinde formula [22]. He also wants to thank I. Cherednik for his
interest and many helpful comments. This work was partially supported by the Simons
Foundation collaboration grant 524406.

Finally, the author would like to thank the anonymous referee for very careful reading
and the help in improving the exposition of the paper.

2. The root systems and affine Weyl group of orbit Lie algebras
2.1. Root systems

Let g be a simple Lie algebra over C. Let I be the set of vertices of the Dynkin
diagram of g. For each i € I, let a; (resp. w;) be the corresponding simple root (resp.
fundamental weight). Let P be the weight lattice of g and let PT be the set of dominant
weights of g. Let ® (resp. ®) be the set of roots (resp. coroots) of g, and let Q (resp.
Q) be the root lattice (resp. coroot lattice) of g. For each root a € @, let & € & be the
associated coroot of a. Let (,) : P X Q — Z be the perfect pairing between weight lattice
and coroot lattices. Note that the matrix ((o, ¢;)) is the Cartan matrix of g.

We denote by e;, fi, h; the corresponding Chevalley generators in g for each i € I.
Let o be a nontrivial diagram automorphism of the Dynkin diagram of g. Note that g
can only be of types A, D,, Es when o is nontrivial. The automorphism o acts on P,
such that o(a;) = ay(;) and o(w;) = we(;) for each i € I. Clearly o maps each dominant
weight to another dominant weight.

The diagram automorphism o defines an automorphism o of the Lie algebra g such
that o(e;) = es(), 0(fi) = foq), 0(hi) = hy(;) for each i € I. Here we use the same
notation o to denote these automorphisms if no confusion occurs.
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Let I, be the set of orbits of ¢ on I. There exists a unique simple Lie algebra g,
over C whose vertices of Dynkin diagram is indexed by I, (cf. [13, Section 2.2]), and the
Cartan matrix is given as follows,

[2|

0y — {7aij, g is of type As, and 1 is disconnected

|t|a;j, otherwise

for any ©+ # j € I,, where i € 1,j € 7 and |¢| is the cardinality of the 2. The Lie algebra
go is called the orbit Lie algebra of (g, ) in literature.

Let «, (resp. &) be the corresponding simple root (resp. simple coroot) for ¢ € I,.
Let P, be the weight lattice of g,. There exists a bijection of lattices ¢ : P? ~ P, such
that .= (w,) = > ic, wi for each 1 € I, where P is the fixed point lattice of o on P. Let
p (resp. py) be the sum of all fundamental weights of g (resp. g,). Note that p € P7,
and ¢(p) = py. Moreover,

(o) = {Ziezai for any i # j €1,a;; =0 )

2(OL¢+Otj) Z:{i,j},ai]‘ :71

Let Qo (resp. Q) be the root lattice (resp. coroot lattice) of g,. There is a projection
map [ : Q — va Under this projection, we have

~

(&) =d&, foranyié€a.

For any A € P, and z € Qg, we have the following compatibility

(t(A), i) = (X, @), (8)

where (), : Py X Qg — Z is the perfect pairing between the weight lattice and dual
root lattice for g,. The following is a table of g and g, for nontrivial o ([13, Section 2.2]
or [27, 6.4)):

(1) If g = Ag,,—1 and o is of order 2, then g, = B,,, n > 2.

(2) If g = Aoy, and o is of order 2, then g, = Cy,, n > 1, where C7 by convention means
Ay

(3) If g = D,, and o is of order 2, then g, = Cp,—1, n > 4.

(4) If g = D4 and o is of order 3, then g, = Ga.

(5) If g = Fg and o is of order 2, then g, = Fy.

Let 6 be the highest root of g. It is clear that o(6) = 0.
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Lemma 2.1. We have

L(Q) = {9075 (g’gU) a (A2nacn) (9)

%90 (gaga) = (AQnacn)

where 0, is the highest root of g, and 0, ¢ is the highest short root of g,. Moreover,

i(0) = (10)

{éa (gvgo) 7é (AQn?Cn)
Qéo,s (9790) = (AQ"’ Cn)

where 0, (resp. ég,s) is the highest coroot (the coroot of the highest root) of g, .

Proof. We first determine (). Let g be the Lie algebra with root system dual to the
root system of g. We still denote by o the diagram automorphism on g induced from the
diagram automorphism ¢ on g. It is well-known that the root system of g, is dual to the
root system of the fixed Lie algebra g (cf. [10,13]).

By [10, Lemma 4.3], o acts on the highest root subspace g; by 1 if g is not of type
Agy; otherwise, o acts on g; by —1. It follows that if g is not Ay, then g, is the highest
root subspace of the fixed point Lie subalgebra g§°. Thus, in this case Z(é) =6,. When g
is of type Ay, by [19, Prop. 8.3] i(6) = 20, .

Finally, we can determine ¢() from (7) and [14, Table 2, p. 88], and we get the formula
(9). o

Note that éc, is the coroot of 0, ¢ and éms is the coroot of 6.

Lemma 2.2. Let I, be the Dynkin diagram of type Cy with k > 2, where I}, consists of
vertices 11,12, -+ i, Ssuch that the simple root oy, is a long root. Then the long root
lattice Q; of CY, is spanned by o, 20, , 20y, .

Proof. For any k > 1, let Iy be the Dynkin diagram of Cj (where C; = A;), there
exists a natural embedding I, < ;1. Assume that Ij consists of vertices iy,i2,- - , ik,
where the simple root «;, is the long root. Let 6 be the highest long root of Cj. Then
Ok+1 — 0 = 2a41. Therefore the lattice of long roots of Cj, for k > 2, is spanned by
Qs 20,, -+, 204, O

Let Q7 denote the lattice of o-invariant elements in the root lattice @ of g.

Lemma 2.3. With respect to the isomorphism v : P, ~ P, we have

@) Qo if g is not of type Aay,
L =
Pa' - %Qo,l ng 18 AQTL

where Q4,1 s the lattice spanned by the long roots of g,
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Proof. Clearly Q7 has a basis {D_,., a; |2 € I, }. In view of (7), it is easy to see when g
is not of type As,, t(Q7) is the root lattice Q, of g, .

If g is of type Aa, this is just a direct simple calculation. Otherwise, if g = As,, with
n > 2, then «(Q7) = >, c; a,Za,, where

L if 4 is connected

{1 if 2 is not connected
a, =
2

Let 29 be the connected o-orbit in I. Note that 1 corresponds to the long root of C,.
By Lemma 2.2, our lemma follows. 0O

2.2. Affine Weyl groups and diagram automorphisms

In this subsection, we refer to [15] the basics of affine Weyl groups and alcoves.

Let W be the Weyl group of g. The group W acts on the weight lattice P. Let Pr be
the space P ®z R. For each root a € ®, let s, be the corresponding reflection in W, i.e.
for any A € PR, sa(A) = A — (A, &)

Let Wy be the affine Weyl group W x £Q for any £ € Q. Since g is simply-laced, the
Coxeter number is equal to the dual Coxeter number, moreover all roots have the same
length. For any £ € N, W, is the Weyl group of the affine Lie algebra g of level £. Let s
be the affine reflection s¢ 1, i.e.

v

39,1(/\) =A- (<)‘7 9> - 6)0, (11)

where 6 is the highest root of g. The affine Weyl group W, is a Coxeter group generated
by {s; | i € I}. For any o € ® and n € ¢Z, the hyperplane

Ha,n:{AGBR|<)‘7d> :’I’L}

is an affine wall of Wy. Every component of the complements of affine walls in Pg is an
alcove. The affine Weyl group Wy acts on the set of alcoves simply and transitively. Let
Ap be the fundamental alcove, and it can be described as follows,

{Ae Pr|(\ &) >0, foranyie I, and (\,6) < (}.

The diagram automorphism o acts on W. Let W7 be the fixed point group of o on W.
Let W, be the Weyl group of g, with simple reflections {s, |+ € I,}. Then there exists
an isomorphism ¢ : W2 ~ W, such that for any ¢+ € I,

(12)
sisjs;  ife={i,j} and a;; = —1

S any i #j €1, a; =0
Ll(sl)_{rLGz T y 7&-7 ]

The following lemma is obvious.
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Lemma 2.4. The group action of W, on P, is compatible with the action of W7 on P,
with respect to the isomorphisms v : P° ~ P, and 1 : W7 ~ W,.

The diagram automorphism o also acts naturally on W,. Let W/ denote the fixed
point group of o on Wy. It is easy to see that

W7 =W x £Q°. (13)
Let I, be the set I, L1 {0}. We have the following lemma, (cf. [7, Section 5.2]).
Lemma 2.5. WJ is a Cozeter group generated by {t='(s,) |2 € I, }.

The group W/ naturally acts on Pg. Let A denote the set of alcoves of W, in Pg.
There exists a natural action of o on A. Let A% be the set of o-stable alcoves.

Lemma 2.6.

(1) Forany A € A°, the set A% is not empty, where A° is the set of o-invariant elements
in A.
(2) For any two o-stable alcoves A and A’ in A, there exists a unique w € WJ such that

w(A) = A"
Proof. We first prove (1). For any A € A, \,0()\),---0""}(\) € A, where r is the order

of o. By the convexity of A,

AtoA)+--+0"HN)

€ A,

which is o-invariant.

Now we prove (2). The affine Weyl group Wy acts simply and transitively on A (cf.
[15, §4.5]). Hence, given any two elements A, A’ € A7, there exists a unique w € Wy
such that w(A) = A’. In particular, we have

o(w)(A) = cwo 1 (A) = ow(A) = o(A') = A" = w(A).
By the uniqueness of w, we have o(w) =w. O

Let P, r be the space P, ®z R. We still denote by ¢ : W7 ~ W, x (¢Q7) the natural
isomorphism of groups. By Lemma 2.3, W, x ¢(¢Q?) is an affine Weyl group. In view of
Lemma 2.1 and Lemma 2.3,

v

Ao ={NE€P,rI(\ &), >0 forany 1 € I,, and (\,I(0)), < ¢}

is the fundamental alcove of W, x ¢(£Q7).
Let A, be the set of alcoves of W, x +({Q7) in P, R.
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Proposition 2.7.

(1) The isomorphism ¢ : P§ ~ P, r induces a bijection v : (Ag)? =~ Ag .
(2) There exists a bijection A° ~ A, with the map given by

A (A7),

(3) For any A\ € P, X is in an affine wall of Wy if and only if L(\) € P,g is in an
affine wall of W, x 1(£Q7).

Proof. We first prove (1). For any A € Pg, A € (Ap)? if and only if ¢(\) € (Ap)?, since
(A i) = ((A), U)o = (e(A); Gu)o > 0,

for any 1 € I, and i € 1, and (X, 6) = (L()), 1(0)), < L.

The second part (2) of proposition follows from Lemma 2.6 and the first part of the
proposition. The third part (3) of the proposition follows from the first and second part
of proposition. O

Let £, : W7 — N denote the length function on the Coxeter group W7. For any
A €£Q7, let 7\ be the translation on Pg by A. The following lemma will be used in the
proofs of Proposition 5.15 and Lemma 5.18 in Section 5.

Lemma 2.8. The length £, (Ty) is even.

Proof. When g is not As,, by Lemma 2.3 «(Q7) = Q,. The Coxeter group Wy is
isomorphic to the affine Weyl group W, x Q.. The problem is reduced to show that for
any A € 5, Tx has even length in W, x Q.. If A is dominant, then ¢, (1) = (\,20,)
(cf. [17]), where p, is the sum of all fundamental weights of g,. Hence ¢, (7)) is even.
For general A\, A = w(\) for some w € W, and some dominant weight A* € Q,. Then
Tx = wTy+w ™!, and hence 7y is even.

When g is of type As,, by Lemma 2.3 1(Q?) = £Q,;. The normalized Killing form
on g, can identify %QU,Z with %QU (cf. [1, Proof of Lemma 9.3 (b)]), where Q, is the
coroot lattice of g,. This identification is compatible with the action of W,. Hence W/
is isomorphic to W, x Qg. By the same argument as above, the length ¢, (7)) is also
even. [0

3. Conformal blocks
3.1. Affine Lie algebra
Let g be a simple Lie algebra. Let C((¢)) be the field of Laurent series over C. Let g

be the associated affine Kac-Moddy algebra g((t)) ® Cc @ Cd, where g((t)) denotes the
loop Lie algebra g ®c C((¢)). The Lie bracket [,] on g is given by
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[u® fio®g] = [u,v]® fg+ (u\v)Restzo(fl—J;g)c,

and [u@t",d =nu®t”, [dc =0, [u®f =0, foranyu,vegandfgeC((t),
where [u,v] is the Lie bracket on g and (-|-) is the normalized invariant bilinear form
on g. For convenience, we identify v ® 1 with u for any u € g, and hence g is naturally
a Lie subalgebra of g.

Put g = g((t)) ® Cc. Clearly g is a Lie subalgebra of g. The affine Kac-Moody algebra
g corresponds to the extended Dynkin diagram I=1u {0} of g. The Cartan subalgebra
t associated to g is t®Cc® Cd. For any A € P we view it as a weight of § in the following
way, A extends to t such that A(d) = A(c) = 0. Let & be the linear functional on t such
that

Sle=0, &(c)=0, d&(d) =1.

Let ag = —6 + &, where 6 is the highest root of g. Then {;|i € I} is the set of simple
roots of §. The fundamental weight Ay of § is given by the linear functional on  such
that

Aole=0, Aolc) =1, Ag(d)=0.
3.2. Affine Weyl groups and Weyl groups of affine Kac-Moody algebras

In the following we describe the relationship between the affine Weyl groups of simple
Lie algebras and the Weyl groups of affine Kac-Moody algebras. For more details, one
can refer to [19, §6]. These two different perspectives are both crucial in this paper.

Let W be the Weyl group of the affine Kac-Moody algebra § (cf. [19, §3.7]). Set
& := Pr + RAg + RS. The Weyl group W acts on . Note that W keep § invariant (cf.
[19, §6.5]). Hence the Weyl group W acts on pR,g for any ¢ € R, where

Pry:={z €| (z,c) = }/R0.

With respect to the isomorphism Pgr =~ Pﬂu given by A — A + ¢Ag, we have the
following lemma (cf. [19, §6.5,56.6]).

Lemma 3.1. There exists an isomorphism af : W ~ W, of groups such that for any
A=X+/lAg € ]SRJ and w € W, the following formula holds,

w- A = af(w) - A+ €Ay in Pry.

Let p be the sum ), _; A; of all fundamental weights of g. By [19, §6.2.8], p = p+ hAg

where p is the sum ). _;w; of all fundamental weights of g, and h is the dual Coxeter

i€l
number of g.
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We define x action of W on pﬂu as follows,
wxkA=w-(A+p)—p, weW,Ae Pry.
Similarly, we still denote by x the following action of W, on Pg,
wxA=w-(A+p)—p, we Wy € Pg.
Lemma 3.2. Given A = X+ (A € pﬁu and w € W, we have

wx A = af(w) x A+ Ao,  where af(w) € W,_ ;.

Proof. It follows from Lemma 3.1 and the formula p = p + hAo. O
3.3. Diagram automorphisms as intertwining operators of representations

We denote by V) the irreducible representation of g of highest weight A for each
A € Pt. From now on we always fix a highest weight vector vy € Vj for each \. There
exists a unique operator o : Vy — V() such that o(vy) = vy(»), and o(u-v) = o(u)-o(v)
for any v € g and v € V.

When o(A\) = A, o acts on V). Given any o-invariant dominant weight of g and any
r-th root of unity { € C where r is the order of o, we denote by V) ¢ the representation
of g x (o), i.e. it consists of V) as representation of g and an operator o : V) — V), such
that o acts on vy by &, and o(u-v) = o(u) - o(v).

Given a tuple X = (A1, Ag) of dominant weights of g. We denote by V5 the tensor
product V), ® --- ® V), . Denote by V; the invariant space of g on V5. The collection of
operators {o : Vi — V() } induce

o:Vy— VU(X)7 o: V; — Vf(xy
where o(X) = (0(A1), -+, (M)
Recall the set Py defined in (1). The following lemma is well-known (cf. [19, §12.4]).

Lemma 3.3. For any A € PT and £ € N, X\ + {Aq is a dominant weight of § if and only
if A€ Py.

For any A € Py, let M(V}) denote the generalized Verma module U(§) ®up) Va of g,
where p = g[[t]] ® C - ¢ acts on V), by evaluating ¢ = 0 and ¢ acts by £. Then the unique
maximal irreducible quotient H, is an irreducible integrable representation of g of level £.
The action of § on H) extends uniquely to the irreducible integrable representation of g
of highest weight A + ¢A( by letting d act trivially on the highest weight vectors.

From the construction of H), there exists a natural inclusion V) — H . Denote by v
the image of vy € V) in H,, which is again a highest weight vector in H,.
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The diagram automorphism o : g — g extends to an automorphism on § (by abuse
of notation we still use o) such that o(u ® f) = o(u) ® f for any u € g and f € C((t)),
and o(c) = c. As in the case of V), there exists a unique operator o : Hx — H,(y) such
that o(vy) = U,(n), and o(X - v) = o(X)o(v) for any X € g and v € H,. In particular
o acts on H) when o(\) = A. As in the case of V), for any o-invariant dominant weight
X of g and for any r-th root of unity &, we denote by 7, ¢ the representation of g % (o)
which satisfies similar conditions for V) ¢.

Given a tuple X of dominant weights, denote by Hy the tensor product Hy, ®@- - -Q@Hs, .
The operators {0 : Hx — Hy(x)} induce the operator o : Hy — HU(X) such that

o1 @ - Qug) =0(v1) ® - ®o(vg),

for any v; € Hy,,i1=1,--- k.
The inclusion V) — H) is compatible with the diagram automorphism, i.e.

Vi——Hy . (14)

Lol

Voory —— Ho(n)

Let §~ denote the Lie subalgebra ¢t~'g[t™']. We denote by (H,)z- the coinvariant
space of H with respect to the action of g~. The Lie algebra g acts naturally on (Hx)z--
The following lemma is well-known.

Lemma 3.4. As representations of g, we have a natural isomorphism Vy ~ (Hx)g-. More-
over the following diagram commutes

Vi —— (Ha)g- - (15)

Lol

Vo) — (Hon))s-

Let 7 be the Cartan involution of g such that 7(e;) = —fi, 7(fi) = —ei, 7(h;) = —hy,
where e;, f;, h; for ¢ € I, are Chevalley generators of g. Then 7 is an automorphism on g.
For any finite dimensional representation V' of g, by composing 7 we can redefine a new
representation structure on V, X x v := 7(X) - v, for any X € g and v € V. We denote
by V7 this T-twisted representation.

For any dominant weight A, let A* be the dominant weight —w(\) where wq is the
longest element in the Weyl group W. The space VY is isomorphic to V« as representa-
tions of g.

The Cartan involution 7 on g extends to an automorphism on g (by abuse of notation
we still use 7) such that 7(u ® f) = 7(v) ® f and 7(c) = ¢ for any u € g, f € C((¢)).
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Denote by H3 the representation of g by composing the automorphism 7 : § — g. Then
HK ~ Hoyx.
Summarizing the above discussions, we have the following lemma.
Lemma 3.5.
(1) There exists a unique C-linear isomorphism 7y : V\ — Vy+ such that
Ta(va) =vas, Ta(u-v)=7(W)-ma(v), foranyué€gandve V).
(2) There exists a unique C-linear isomorphism 7y : Hx — Hx= such that

x(va) =vne, (X 0)=7(X) 7ma(v), forany X € g andv € Hy.

The isomorphism 7y : V), — V)« for each X induces an isomorphism T VXgl — VX{ for

*

any tuple of dominant weights X. Since for any weight A, we have o(A*) = a(N)*, and

ooT =700, we have the following lemma.

Lemma 3.6. Let \* denote (A5, -+, A%). The following diagram commutes:

g T g
Vi —— Ve,

g T g
Vo) 7 Vo

3.4. Conformal blocks and diagram automorphisms

A k-pointed projective curve consists of a projective curve C' and k-distinct smooth
points p = (p1, - ,pr) in C. Given a k-pointed projective curve (C,p), we associate a
dominant weight A\; € Py to each point p;. Let g(C\p) be the space of g-valued regular
functions on C\p. The space g(C\p) is naturally a Lie algebra induced from g. There
exists a Lie algebra action of g(C'\p) on Hy, and the space V , 3(C,p) of conformal

blocks associated to p and X is defined as follows:

Voo 3(Cp) == (Hg)gonp = Hz/a(C\P) My

Let 75 : H5 — Hy. be the C-linear isomorphism 7, ® - - - ® 7y, . The map 75 descends
to an isomorphism on the space of conformal blocks

TS - VM)X((J,ﬁ) — Vg,é,X* (C,ﬁ)
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Lemma 3.7. We have the following commutative diagram:

ﬁ)—> ggm( ﬁ)

, I

( ﬁ)ﬁvgg()\)( 7]5)

yi

Proof. The automorphism ¢ commutes with the automorphism 7 on g, i.e. Tooc =0coT.

VMU(

Then commutativity easily follows. O

Proposition 3.8. Let o' = {p1,p2, - ,ps}, ¢ = {q1,q2, -+ ,q:} be two finite nonempty
subsets smooth points of C, without common points; let Ay, - -+, As, 11, -+ , e be elements
in Py. We let g(C\p) act on V,, through the evaluation map X ® f — f(q;)X. The
inclusions V,,; — H,,,; induce an isomorphism

(M5 ® Va)aenp = (Hz @ Hi)gco\pog) = Vy052(C5 P, D), (16)

and this isomorphism is compatible with the diagram automorphism o, i.e. the following
diagram commutes

(Hz ® Vo — Vouia 0D - (17)

Lo

(Hoxy @ Vom)o@\n = Vg r.o(0).00)(C: 95 0)

Proof. Isomorphism (16) is a well-known theorem (cf. [1, Proposition 2.3]). The commu-
tativity of diagram (17) follows from the commutativity (15). O

When ¢ = g and p = 0. Isomorphism (16) is the so-called “propogation of vacua”.
Proposition 3.8 shows that the propagation of vacua is compatible with the action of the
diagram automorphism.

Lemma 3.9.

(1) For any p € P!, one has Vg o(P1) =~ Vy00(P',p) ~ C by 1, and the automorphism
o acts on Vg o(PY) and Vg,00(PL,p) by 1.

(2) Foranyp # q inP', one has Vg o - (PLp, q) = (VA®Vi+)g = C. As a consequence,
the automorphism o acts on VQ,L)\’A*(Pl,p, q) by 1 for any o-invariant dominant
weight \.
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Proof. By Proposition 3.8, there exists a map C — Vp1(p;0) compatible with the action
of ¢ where C is viewed as a trivial representation of g and o acts on C trivially. By
[1, Corollary 4.4], this map is an isomorphism. By Proposition 3.8 again, Vg ,(P') ~
Vg7g70(P1, p) ~ C and this isomorphism is also compatible with the action of o. Hence,
o acts on Vg o(P1) and Vg0 0(P', p) by 1. This proves (1).

Similarly, by Proposition 3.8 there exists a map (VA®Vi+)g — Vg.exa+ (P, p, ¢) which
is compatible with the action of o. This map is an isomorphism in view of [1, Corollary
4.4]. On the other hand, it is easy to see that o acts on (V) ® Vi+)g by 1. Hence it also
acts on Vyeax-(Plp,g) by 1. O

Given a stable k-pointed curve (C,p). Assume that ¢ € C' is a nodal point in C'. Let
7 : C' = C be the normalization of C' at ¢. Denote by {q+,q-} the preimage of ¢ via .
Without confusion, we will still denote by p1, - - - , pr the preimages of p1,ps, - ,pxr € C
in C.

We choose a system of g-equivariant maps «,, : C = V,, ® V,,« for p € P*, such that
the following diagram commutes

C— "V, @V

(e
Ro(n)

Vo) @ Vo(ur)

for any dominant weight y. Note that the map , induces the following map

Ru:V, (C p) =V a.0,x, O(C P, q) — Vg,zj’”’u* (C,P,q4,9-).

Moreover, it is easy to see that the following diagram commutes

(O — Vs (CRana) (18)
J/ U(u) l -
5\' C ﬁ) Vg’g’g(j\')’a(#)vg(#*) (C7P, q+; q,)
Theorem 3.10. The map
(Ru) ~
Vg7g,X(Caﬁ) — @MGPZ Vg,é,x,mu* (C,p, q+, Q—) (19)

is an isomorphism. Moreover the following diagram commutes,
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(Ry:) .
C.p) ——— @per, Vouspu (CoPrara-) (20)

J |

X (C.p) *> DBcr V. G S (S Y ARy By

Proof. Isomorphism (19) is the well-known factorization theorem on conformal blocks
(cf. [34, Theorem 3.19]), and the commutativity (20) follows from the commutativity
(18). O

Recall that Py is the set of o-invariant dominant weights in F;.

—

Corollary 3.11. With the same setup as above. If (T(X) = ), then the following equality
holds

o]V, ,5(C.0) = Y te(olVy 5, - (Coiar4-)).

HEPY

Proof. This is an immediate consequence of Theorem 3.10. O

Given a family (7 : C — X,p) of stable k-pointed curves where 7 is a family of
projective curves with at most nodal singularities over a smooth variety X and p =
(p1,- -+ ,pr) is a collection of sections p; : X — C with disjoint images such that p;(z)
is a smooth point in C, := 7 1(x) for each i and * € X, one can attach a sheaf
of conformal blocks V_ , A(C p) on X which is locally free and of finite rank, see [25]
for the coordinate- free approach to the sheaf of conformal blocks. For each x € X,
the fiber V_ , <(C,p)|s is the space of conformal blocks V, , 3(Cy,p(z)), where p(z) =
(p1(x), - ,pr(z)) are the k-distinct smooth points in C, as the image of x via p.

From the construction the sheaf of conformal blocks (cf. [25]), one can see the dia-
gram automorphism o acts algebraically on Vg’ 0 x(C, p). Denote by (o) the cyclic group
generated by o. Then the group (o) is isomorphic to Z/rZ, where r is the order of o.

Lemma 3.12. For any family (7 : C — X,p) of stable pointed curves, the function x €
X — tr(o] g”\(ng,p( x))) is constant.

Proof. Given any irreducible representation p of (o), we denote by ch(p) and

ch(Vg)&X

tations of (o). For any two functions ¢, on <O‘> we define the bilinear form

(Cz,p(x))) the characters of p and Vs ”\(Cz,p( x)) respectively as represen-

(6.9) = 3 > 0lo" (o),

where 7 is the order of o. For any = € X, let m,(z) be the multiplicity of p appearing

inV

o, 5(Ce,p(x)). By representation theory of finite groups, we have
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(@) = (chp, bV, , 5(Ca, F(a)).

This is a continuous function on X with integer values. This is forced to be constant.
Hence

tr(a|V, , x( Zmp Ytr(olp)

is constant along x € X. O

The following theorem shows that the trace of the diagram automorphism on the
space of conformal blocks satisfies factorization properties.

Theorem 3.13.

(1) For any stable k-pointed curve (C,p), let X be a tuple of dominant weights in Py
attached to p. Then the value tr(U|Vg’Z’X(C,ﬁ)) only depends on X and the genus
of C.

(2) Given a stable k-pointed curve (C,p) of genus g > 1 and a stable (k + 2)-pointed
curve (C',q) of genus g — 1. We have the following formula

tr(olV,  5(C.0)) = Y tr(olV, 5, . (C @),

nepg

where a tuple X = (A1, -+, Ak) of dominant weights in Py, is attached to p and the
first k points of q.

(3) Given any tuples of dominant weights X = (A, A2, Xs) and = (p, -+, 1e) in
P7 where s,t > 2, we have the following equality

tr(0Vy o 5,:(PL50) = @D 1(0lVy 5, (P 72))tr(0|Vae - (P, 53)).
yEPf’

where Py is any tuple of s+t distinct points, pa is any tuple of s + 1 distinct points
and p3 s any tuple of t + 1 distinct points in PL.

Proof. We first prove part (1). By the standard theory of moduli of curves (cf. [9, The-
orem 2.15]), there exists a chain of families of stable k-pointed curves over smooth bases
connecting any two stable k-pointed curves with the same genus. In view of Lemma 3.12,
(1) follows.

From the theory of moduli of curves again (cf. [9, Theorem 2.15]) and the dimension
formula for the space of nodal curves with fixed nodal types (see the discussions after
[9, Theorem 2.15]), we know that any smooth pointed stable curve can be degenerated
to an irreducible stable pointed curve with only one nodal point. Then part (2) follows
from part (1) and Corollary 3.11.
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We now proceed to prove part (3). Let C' be the union of two projective lines C' =
Cy1 U Cy where Cy and Cs intersect at one point z. Let p' = (p1,---,ps) be a set of
s distinct points in C1\{z} and ¢ = {q1,---, ¢} be another set of ¢ distinct points in
C\{z} where s,t > 2. Clearly (C,p'U q) is a stable (s + t)-pointed curve of genus zero.
Again by the theory of moduli of curves, there exists a family 7 : C — X of stable
(s + t)-pointed curves over a smooth variety X such that C,, = C' with p’U ¢ and any
other fiber is a projective line with a tuple p} of s + ¢ points. By Lemma 3.12,

tI‘(O’lVg7€7;\‘7ﬁ(C, ﬁa Cj)) = tr(a'|vg7£7x,ﬁ(lplaﬁl)'

Let 7 : C' — C be the normalization of C at z with the preimage (z4,z_) of z. The
pointed curve (C,7,q, 24,2-) = (P',§,z4) U (P!, §,2_) is a disjoint union of a (s +
1)-points projective line and a (¢t 4+ 1)-pointed projective line. Finally, part (3) follows

from Corollary 3.11 and Lemma 3.12. O

Remark 3.14. By Theorem 3.13, the computation of the trace of the diagram automor-
phism on the space of conformal blocks can be reduced to the trace of the diagram
automorphism on the space of conformal blocks on the pointed curve (P, (0, 1,00)).

3.5. o-twisted fusion ring

Let J be a finite set with an involution A — A\*. We denote by N7 the free commutative
monoid generated by J, that is, the set of sums ), . ; naA with ny € N. The involution
of J extends by linearity to an involution x — z* of N7. We first recall the definition of
fusion rule (cf. [1, §5]).

Definition 3.15. A fusion rule on J is a map N : N’/ — Z satisfying the following
conditions:

(1) One has N(0) =1, and N(A) > 0 for some X € J;
(2) N(z*) = N(x) for every v € N’;
(3) For z,y € N7, one has N(z +y) = >, N(z+ A)N(y + \*).

The kernel of a fusion rule N by definition is the set of elements A € J such that
N(A+x) =0 for all z € NZ. A fusion rule on J is called non-degenerate if the kernel is
empty.

Lemma 3.16. If o(X) = X, then the trace t1"(0|Vg , 5(C, D)) is an integer.

Proof. When the order of ¢ is 2, this is obvious. In general, it follows from Theorem 5.11,
Formula (5) in the introduction and part (3) of Theorem 3.13. O
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Theorem 3.17. The map tr, : N — 7 given by
D i o]V, 5 (P, 9),

where X = (M, ,A\k) and p= (p1,--- ,pk) is the set of any k-distinct points in P, is
a non-degenerate fusion rule. Here the set Py is equipped with the involution A — \* :=
—wp(\), where wy is the longest element in the Weyl group W.

Proof. By Lemma 3.16, the trace map tr, indeed always takes integer values.

Condition (1) of Definition 3.15 follows from part (1) of Lemma 3.9. Condition (2)
follows from Lemma 3.7. Condition (3) follows from part (3) of Theorem 3.13. The
non-degeneracy follows from part (2) of Lemma 3.9. O

Let R¢(g,0) be a free abelian group with the set P/ as a basis. As a consequence
of Theorem 3.17 and [1, Proposition 5.3], we can define a ring structure on Ry(g,o) by
putting

A-p= Z tr(o|Vg.eapw (P1,0,1,00))v, for any A\, u € Pf. (21)
VEP;

Let S, be the set of characters (i.e. ring homomorphisms) of Ry(g,0) into C. The
following proposition is a consequence of general facts on fusion ring by Beauville [1,
Corollary 6.2].

Proposition 3.18.

(1) Re(g,0) ® C is a reduced commutative ring.
(2) The map Ry(G,0) ® C — C% given by x + (x())ees, 5 an isomorphism of
C-algebras.

(3) We have x(z*) = x(x), where x(x) denotes the complex conjugation of x(x) for any
X € So and x € Ry(g,0).

Let w, be the Casimir element in Ry(g, o) defined as follows

We= Y AN (22)

AePg

Proposition 3.19. For any k-pointed stable curve (C,p) and for any o-invariant tuple X
of dominant weights in Py, we have the following formula

tr(oV, ,5(C.7) = D> x(\) - xOw)x(we)? ™,

XESs

where g is the genus of C' and x(wy) = ZAGP; Ix(N)]2.
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Proof. This is a consequence of part (2) of Theorem 3.13 and [1, Proposition 6.3]. O

From this proposition, if we can determine the set S, and the value x(w,) for each
X € S5, then the trace tr(c|V, , 5(C,p)) is known.

4. Sign problems
4.1. Borel- Weil-Bott theorem on the affine flag variety

Let G be a connected and simply-connected simple algebraic group associated to a
simple Lie algebra g. Let G((t)) be the loop group of G, and let G be the nontrivial
central extension of G((t)) by the center C*. Then § is the Lie algebra of G. Let G be
the group G = G x C* whose Lie algebra is the affine Kac-Moody algebra g.

Let Z be the Twahori subgroup of G((t)), i.e. T = evy'(B), where B is the Borel
subgroup of G. Let Flg be the affine flag variety G((t))/Z of G. Let Z be the group
T x C*, where C* is the center of G. Let Z be the product Z x C* as subgroup of G.
Then we have

Flg ~ G/T ~G/T.

Given any algebraic representation V of Z, we can attach a G-equivariant vector
bundle £(V') on Flg as £L(V) := G x3 V*, where V* is the dual representation of Z. Let
A be a character of Z and let C, be the associated 1-dimensional representation of Z.
We denote by £(A) the G-equivariant line bundle £(Cy) on Flg.

For any ind-scheme X and any vector bundle F on X, the cohomology groups
H*(X,F) carry a topology. We put H*(X,F)V the restricted dual of H*(X,F), ie.
H*(X,F)Y consists of continuous functional on H*(X, F) where we take discrete topol-
ogy on C. The affine flag variety Flg is an ind-scheme of ind-finite type. We refer the
reader to [21] for the foundation of flag varieties of Kac-Moody groups.

Recall the following affine analogue of Borel-Weil-Bott theorem (cf. [21, Theorem
8.3.11]).

Theorem 4.1. Given any dominant weight A of G and any w € W, the space
HY ) (Flg, L(w * A))Y is naturally the integrable irreducible representation Hy of § of
highest weight A, where wxA = w-(A+p)—p and H* ™) (Flg, L(w * A)) is the cohomology
of the line bundle L(w x A) on Flg. Moreover, H (Flg, L(w % A)) = 0 if i # {(w).

Let o be a diagram automorphism on G. It induces an action on G((t)) by acting
trivially on ¢. It also induces actions on G and G by acting trivially on the center and
degree component. Note that o preserves Z. For any o-invariant character A of Z, we
have a natural o-equivariant structure on £(A), since
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where the action of o on C, is by the scalar 1. Let £ be an r-th root of unity, where r
is the order of 0. We denote by L(A, ¢) the following G x (o)-equivariant line bundle,

L(A,€) := G X (0) X700y (Cae)*

where 7 acts on Cae by A and o acts on Cp ¢ by & By this convention the natural
G % {(0)-equivariant structure on £(A) is isomorphic to £(A,1).

For any o-orbit ¢ in the affine Dynkin diagram I , let G, be the simply-connected
algebraic group associated to the sub-diagram 1 and let B, be the Borel subgroup of G,.
We have the following possibilities

SLQ 1= {Z}
SLs x SLy 2= {i,j} and 4, j are not connected
SLo x SLy x SLy ¢ ={4,4,k} and 4, j, k are not connected

SLs 1= {4,j} and ,j are connected

We still denote by o the diagram automorphism on G, which preserves B,. Any
o-invariant weight A of G, can be written as np, for some integer n € Z, where p, is the
sum of all fundamental weights of G,. Let B, := G,/B, be the flag variety of G,. Put
d, = dim G,/B,.

As in the affine case for any r-th root of unity and any o-invariant character A of B,,
we set

LN, €) =G, x5, (Cre)”

as a G, % {o)-equivariant line bundle on B,. Let 2, be the canonical bundle of 5,. Note
that the canonical bundle 2, is naturally a G, x (o)-equivariant line bundle.

Lemma 4.2. We have the following isomorphism of G, x (o)-equivariant line bundles
Q'L = ﬁ(_2p1762); 'U)he']"e €, = (—1)d1_1'

Proof. The canonical bundle €, is naturally isomorphic to G, x g, (A% (g,/b,))*, where
g, (resp. b,) is the Lie algebra of G, (resp B,). Hence, it suffices to determine the action
of T, and & on A%(g,/b,), where T, is the maximal torus of G, contained in B,. Note
that

N (9./b,) =~ /\d,nz—7
where n; is the nilpotent radical of the negative Borel subalgebra of g,. Hence, as

1-dimensional representation of T, it is isomorphic to —2p,, and by case-by-case analysis
it is easy to check o acts on it exactly by ¢,. This finishes the proof of the lemma. O
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Only when ¢ consists of two vertices and ¢+ = {1, j} is not connected, ¢, = —1; otherwise
e, = 1.

Lemma 4.3. Given any n € Z and any r-th root of unity £, there exists a unique isomor-
phism up to a scalar

H"(B,, L(np,,€)) = H (B, L((=n = 2)pi, €, - €)),
as representations of G, x {c). Moreover,
H"(B,, L(np,,€)) =0 if k #0,d,.

Proof. By Borel-Weil-Bott theorem we have the following isomorphism of representations
of G, x (o)

Vip,e n=>0
H(B,, L(np,,£))* = {0 . gn —0 ; (23)

for any n € Z and r-th root of unity &, where V,,,, ¢ is the irreducible representation
of G, of highest weight np, with the compatible action of o which acts on the highest
weight vectors by &£.

By Serre duality we have the following canonical isomorphism

H®"(B,, L(np,,€)) = HO(B,, L(~np,, €) @ Qp, )" (24)
as representations of G, X (¢). In view of Lemma 4.2,
HO(B,, L(—np,, ") @ Qp,) = H*(B,, L((=n = 2)py, €, - €71)).
In view of (23), by Schur lemma there exists a unique isomorphism up to a scalar
HO(B,, L((=n = 2)pu, € - €71))" = HO(B,, L((=n = 2)py, € - §)) (25)
as representations of G, x (o). Therefore we have an isomorphism
H™ (B, L(np.,€)) = H (B, L((=n = 2)pys €, - €)) (26)
as representations of G, x (o).
Now we prove the second part of the lemma. When n > 0, np, is dominant, then
Borel-Weil-Bott theorem implies that H*(B,, L(np,,£)) = 0 unless k = 0. In view of

isomorphism (26), when n < —2, H*(B,, L(np,,€)) = 0 unless k = d,. When n = —1, we
have s; x p, = p,. Thus, H*(B,, L(—p,,&)) = 0 for any k. O
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Let P, be the parabolic subgroup of G containing Z and G,. We have an isomorphism of
varieties ﬁz/f ~ B,. Let 7, : Flg — C~v'/73z be the projection map. The fiber is isomorphic
to B,. There exists the following natural isomorphism as G (o)-equivariant ind-schemes

G X <J> Xﬁl><1<0'> Bl ~ FIG.

From the G, x (0)-equivariant line bundle L(np,, ) on B,, by descent theory one can
attach a G x (0)-equivariant line bundle Ly, (np,,€) on Flg, i.e.

‘Cm (npz,f) =G <U> ><751><1(c7) ‘c(nplvg)v

where the action of P, x (¢) on L(np,, €) factors through G, x (). Let Q. be the relative
canonical line bundle of Flg over G/P,. By Lemma 4.2 as a G x (¢)-equivariant bundle,
we have

Qr, = Lo (—2py,€,). (27)

7

Let R¥(,). be the k-th derived functor of the pushforward functor (r,).. The follow-
ing lemma is a relative version of Lemma 4.3.

Lemma 4.4. There exists a natural isomorphism of G x (0)-equivariant vector bundles

R* () (L, (01, §)) = (7)) (L, ((—1 = 2)p1, & - €,))-

Proof. By relative Serre duality for the morphism =, : Flg — C?/?sl, there exists a
canonical isomorphism of G' x (o)-equivariant sheaves on G/P,,

R* (1) (L, (npy, §)) =~ (m)*(ﬁm(_npuf_l) ® Qm)v,

where V denotes the dual of coherent sheaf. From isomorphism (27), it gives rise to the
following isomorphism of G x (o)-equivariant sheaves on G / P,

R (1) (L, (091, €)) = (M) (L, (=1 = 2)p1, €)Y (28)

We look at the fiber of the sheaf (,).(Lx, ((—n — 2)p,, € '€,))V at the base point eP, €
G /P,. This is the representation of P, x (o) on H(B,, L((—n—2)p,, €,-€1))* by factoring
through the map P, x (¢) = G, x (o). From isomorphism (25), the G x (¢)-equivariance
gives rise to an isomorphism of G X (o)-vector bundles

() (L, (=1 = 2)p,, €71€))Y = (1) (L, (=1 = 2)p,, € - €1)).
Combining with (28), the lemma follows. O

By Lemma 2.5, the affine Weyl group (W) consists of simple reflections {s, |2 € I,}.
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Lemma 4.5. For any o-invariant weight A of g and for any o-orbit in I, we have

A A— (A &)Y e, ifayy =0 foranyi# j €,
s, A=
A—2(A o) (a; + ;)  ife={i,j} is connected.

Proof. For any o-orbit ¢ in I, this is routine to check, in particular we use the formula
(7). When 2 = {0}, this is simply the definition of so. O

Proposition 4.6. For any o-invariant weight A, and for any o-orbit in the affine Dynkin
diagram I and any r-th root of unity &, we have the following isomorphism

H*(Flg, L(s, % A, €)) = H*(Flg, L(A, € - €))
as representations of G x (o), for all integer k.

Proof. Note that the restriction £(A, €)|s, of the G x (o)-equivariant line bundle £(A, €)
to the fiber B, is isomorphic to L({A, &;)p,, &) as a G, x {(o)-equivariant line bundle for

any ¢ € 1. Note that for any 7,7 € ¢, (A, &;) = (A, &;). In view of Lemma 4.5, we have

A A—((A, &) +1)> ,c,a; if2is not connected
s, %A=
A—2((A, ;) + 1)(a; + ) if 2 = {4, 4} is connected

Hence for any o-orbit 2 in / and i € 7, we have
(se % A, &) = —(A, a;) — 2.
It follows that
L(six A, )|, = LI=((A, &) +2)p, §).

By Lemma 4.4, we have the following natural isomorphism of G x (o)-equivariant
vector bundles

RUm, (L(A,€)) = mu(L(s, x A€, - €). (29)
By Lemma 4.3, we have
RFm (L(A€) =0 ifk#0,d,. (30)
In view of (29) and (30), Leray’s spectral sequence implies that
H¥ 4 (Flg, L(A,€)) ~ H"(Flg, L(A e, - €))

as representations of G x (o). O
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For any w € (W)?, put

e = (1)) —tr (), (31)
For any reduced expression w = s,,5,,_, -+ 5, of w in the Coxeter group (W)? where
11, -+ , 1 are g-orbits in I and each s, is defined in (12) for any 2 € I, and s¢o} = 5o, we
have €, = €, - - €, , where ¢, is introduced in Lemma 4.2.
Finally, we are now ready to prove the following theorem.

Theorem 4.7. For any w € (W)" and for any o-invariant dominant weight A of G. We
have the following isomorphism of representations of G x (o)

HZ(w)(FlGa‘C(w*Aag)) =~ HO(FIG"C(Aacw : f))

Proof. We can write w = s, s,, , ---5,, as a reduced expression in the Coxeter group
(W)?, where 21, - -+ , 1, are o-orbits in I. Then

A,ysyy *x A (84,8, ) x Ay - Jwx A
are all o-invariant weights of G.

Note that as an element in W, the length £(w) of w is equal to 3, d,,. In view of
Proposition 4.6, we get a chain of isomorphisms of G x (o)-representations

H' ™) (Flg, L(w * A, €)) ~ H W= (Flg, L((s,,w) x A, €,,£))
~ FHw)—diy —diy (Flg, L((84,8,,w) * A, €,,6,,&))

~ H°(Flg, L(A, €y - €)).
This finishes the proof of the theorem. 0O
For any dominant weight A of g and an r-th root of unity, as always we denote by
Ha ¢ the irreducible integrable representation of g of highest weight A together with a

compatible action of ¢ which acts on the highest weight vectors of H ¢ by &.

Corollary 4.8. In the same setting as in Theorem 4.7, we have the following isomorphism
of representations of § X (o),

H ) (Flg, Liwx A, €)Y =~ Ha e, ¢

Proof. This is an immediate consequence of Theorem 4.1 and Theorem 4.7. O
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Remark 4.9. For any o-invariant weight A of G, let £(A) be the associated line bundle
on G/B. By Borel-Weil-Bott theorem, H'(G/B, L(\)) carries an action of the diagram
automorphism. The action was determined by Naito. Theorem 4.7 and Theorem 4.13
are the affine analogues of the results of Naito [28].

4.2. Borel- Weil-Bott theorem on affine Grassmannian

For any weight A of G, let £y(\) be the G-equivariant line bundle on Flg defined as
follows,

L) =G x5 I,(Cy)",

where I;(C)) is the 1-dimensional representation of 7 such that Z factors through the
character A : B — C* and the center C* acts by ¢ ~— t¢, and I,(\)* is the dual of I,(\)
as the representation of 7.

For any character A of Z, if A = X\ + Ay where A is a weight of G and X is a weight
of G, then as G-equivariant line bundles, £L(A) = L¢()\).

If A is o-invariant, then £,(\) has a natural o-equivariant structure as in the case of
L(A). Similarly, to an r-th root of unity £ where r is the order of o, we can associate a
G % (0)-equivariant line bundle Ly(\,€). If A = X + £Ag where A € P?, then L(A,¢) =
Li(\€) as G x (0)-equivariant line bundles.

Recall from Lemma 3.3, the weight A = XA 4+ ¢A( is dominant for G if and only if
A is dominant for G and (A,é} < £. Recall the affine Weyl group W, ; discussed in
Section 2.2, the action of W, ; on the weight lattice P of G is compatible with the
action of W on the space of weights of G of level £, see Lemma 3.1 and Lemma 3.2.
Therefore we can translate Theorem 4.7 into the following equivalent theorem.

Theorem 4.10. For any w € W, ; such that o(w) = w and for any o-invariant dominant
weight X € Py, we have the following isomorphism

H ) (Flg, Lo(w X, €)) = HO(Flg, Lo w - €))
as representations ofé' x (o).

Let P be the subgroup G[[t]] x C* of G where C* is the center torus. The affine
Grassmannian Grg := G((t))/G/[t]] is isomorphic to the partial flag variety G/P. For
any finite dimensional representation V' of G, let I;(V') be the representation of P such
that G[[t]] acts via the evaluation map evyg : G[[t]] — G given by evaluating ¢ = 0, and
the center C* acts by ¢ — t*. Let £,(V) be the induced G-equivariant vector bundle on
Grg, ie. Lo(V) =G X5 I,(V)*, where I,(V)* is the dual of I,;(V') as the representation
of P.
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The diagram automorphism ¢ on G induces an automorphism on G and it preserves P.
For any A € (P1), the vector bundle £,(V}) is naturally equipped with a o-equivariant
structure, since

A

G~ <O'> ><75>4<0> IZ(V)\)* ~ é X75 Ig(v,\)*.
Similarly, for any r-th root of unity &, we have the G x (o)-equivariant vector bundle
EZ(V)\75) on GI"G,
The following lemma is well-known.
Lemma 4.11. Let Hy be a linear algebraic group and Hy be a subgroup of Hy. Let V1 be a

finite dimensional representation of Hi and let Vo be a finite dimensional representation
of Hy. Then we have an isomorphism of Hi-equivariant vector bundles

Hy xpg, V2@ WVi|g,) ~ (Hy Xm, Vo) @ V1,
given by (hi,ve @ v1) = (h1,v2) ® hy - v1, where hy € Hy, v1 € Vi and vy € V.

Lemma 4.12. Let A be a o-invariant dominant weight of G, and let V be a finite dimen-
sional representation of G x (o). There is an isomorphism of G % (o)-representations

Hk(Grg, ﬁg(V)\é ®V)) ~ Hk(Flg,[:z((CAg & V‘B)d(o’))a
for any k > 0 and £ an r-th root of unity.

Proof. We have the following isomorphisms of G x (0)-equivariant vector bundles

1

Eg((ck’g ®V‘B><1<0'>) é X <0’> Xfx(a) (Ckaﬁ ®V|B><l<o'>)*

(o) X P (o) (P x (o) X750y 1e(Cre @ ViBx(o)))"

A

XA(0) Xpoy oy (P 1 (0) X700y Le(Cr)) @ V),

[ [
o O
X

where the last isomorphism follows from Lemma 4.11.
It is a G x (o)-equivariant vector bundle on Flg. By Borel-Weil-Bott theorem for finite
type algebraic group, we have

0 k>0
RFT.Ly(Cre® VIBu(o)y) = ’
L(Vae®V) k=0

where R*r, is the right derived functor of m,. By Leray’s spectral sequence, the lemma
follows. O
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Let W;Jrﬁ denote the set of the minimal representatives of the left cosets of W in W,
then for any wy € W and wy € WZJF we have {(wiwsz) = £(wr) + ¢(ws). Moreover for

any w € W, ; and A € Py

ﬁ?

w* A € Pt if and only if w € WZTH}’ (32)

see [20, Remark 1.3]. Since P is the set of integral points in the fundamental alcove of

the affine Weyl group W, for any dominant weight A € PT, there exists a unique

+h
w € Wg+h such that w™! « X\ € Py. By Lemma 2.6, for any o-invariant dominant weight

A € PT, there exists a unique w € <WZT+E)U such that w™!* X € P¢.

Recall that we defined in Section 3.3 the representation V) ¢ of g x (o) as the represen-
tation V), of g together with an operator ¢ such that ¢ acts on the highest weight vectors
by &, where A € (P1)? and £ is an r-th root of unity. Similarly, the representation H ¢
is the representation Hy of g x (o) of level ¢ together with an operator o such that o
acts on the highest weight vectors by €. We have the following theorem

Theorem 4.13. For any w € WZTHE such that o(w) = w and for any X\ € PJ, we have the

following isomorphism of representations ofé x (o),
H ) (Grg, Lo(Viprg)) = H(Gra, Le(Vae,e))-
Proof. This follows from Theorem 4.10 and Lemma 4.12. 0O
Corollary 4.14. With the same assumption as in Theorem /.15.
(1) There exists an isomorphism of representations of § X (o)
H' ™) (Grg, Lo(VA))Y =~ Hae,, -

(2) There exists an isomorphism of representations of g X (o)

(H")/(Gra, Le(Vipoa)) g = Vaews

where §~ =t~ 1g[t™1].

Proof. This proposition follows from Theorem 4.13, combining with Corollary 4.8,
Lemma 4.12 and Lemma 3.4. O

4.3. Affine analogues of BBG resolution and Kostant homology
We first recall the construction of BGG resolution in the setting of affine Lie algebra,

we refer the reader to [21, Section 9.1] for more details, in particular Theorem 9.1.3
therein. There exists a Koszul resolution of the trivial representation C of g,
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[ 8 S
_>Xp_p>_1>X0_O>(C7

where X, = U(g) ®up) /A\P(8/p). From the construction of Koszul resolution, this
complex is § X (o)-equivariant. Given a o-invariant dominant weight A € Pp. Set
Xop = U(8) @u(p) (AP(§/p) @ Ha). The complex X o is a resolution of . Set

Frp = P M (Vigir), (33)
wewﬁlh,aw):p
where M (Viwxr) is the generalized Verma module introduced in Section 3.3. In fact F) o
is a o-stable subcomplex of X o, and moreover X o is quasi-isomorphic to F} ,. Hence
F) e is a resolution of Hj.
The proof of the following proposition heavily replies on the work of Naito [29].

Proposition 4.15. Assume that o(X) = . Then the complex F o is a resolution of Hy as
representations of § x (o), where o maps M(Vw*,\) to M(Vg(w)*x). In particular when
o(w) = w, o acts on the highest weight vectors of M (V) by the scalar e, where
€w = (=)@ =t(W) 45 defined in (31).
Proof. First of all, we note that o maps M(Vw*x) to M(Vg(w)ﬂ) for any w € WLE,
since o(p) = p. In particular if o(w) = w, o keeps M(w+\) stable. We need to determine
the action of ¢ at the highest weight vector m,y of M(w * A). It is easy to see that o
acts on My by a scalar € . In the following we will show that €, = €.

Recall that §~ denote the nilpotent Lie algebra t~g[t~1]. It is standard that M (Vi)
is a free U(g~)-module, for each w € W£T+B' Thus, the resolution F) . can be used to

compute the g~-homologies of H, in other words,

Hp(@_a/H/\) = Hp((F)\,O)@—)v (34)

where the LHS is the p-th §~-homology of #H,, and the RHS is the p-th homology of the
complex (F o)z~ obtained from taking g~ -coinvariants on the complex F) ,. Moreover,
the isomorphism (34) is g x (o)-equivariant. As a consequence, we get the following
isomorphism of g x (o)-representations,

Hp(§7, Ha) ~ P Viosa (35)

T —
wGWe_*_h,Z(w)fp

~

for each p > 0, since (M (Vipsr))g- = Vs as representations of g (cf. Lemma 3.4). As
mentioned above, o acts on My € M (Vi) by the scalar €, if o(w) = w. It follows
that o acts on the highest weight vector vy of Viun by €, if o(w) = w.

Let n™ be the nilpotent radical of the negative Borel subalgebra b~ of g. Put
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Note that i~ is the nilpotent radical of the opposite affine Borel subalgebra b~ = g~ @®b~
of g, and A~ is o-stable. Since g~ is an ideal in the Lie algebra i~, we have the following
spectral sequence which is compatible with the actions of o,

Hi(nw Hj(§7 Hy)) = Hiyj (R, Hy). (36)

Meanwhile, H;(n™, H;(§~,H,)) and H;4; (7™, H,) both carry the actions of the Cartan
subalgebra h C b~. In fact the spectral sequence (36) degenerates at E7 page, since we
have the following sequence of isomorphisms of h-modules:

P Hiw Hj G, M) = D D HEVew)

it+j=p it+j= pwewT oL (w)=j

b b D  Cownr

i+j= T — i yeEW,L(y)=i
J pwEWeJril,Z(w)_] yEWL(y)=i
@ Cw*)\
wGW[Jrh,Z(w):p

= Hp(ﬁ77H)\)?

1

1

12

where the first isomorphism follows from (34), the second isomorphism follows from
Kostant homology formula for n~, the last isomorphism follows from the affine version
of Kostant homology formula for i~ (cf. [8]), and the third isomorphism follows since
VVJr 1s the set of minimal representatives of the left cosets of W in W,_ ;. The set W;Jrﬁ

Satlsﬁes the following property: for any u € W, +j,» there exist unique w € WLE and
y € W such that u = yw and £(u) = £(y) + {(w).

We now make a digression on twining characters. Let V' be a finite dimensional § x
(o)-representation such that b acts on V' semi-simply. Define

ch, (V) := Z tr(o|V(w))et,
peh*,o(p)=p
where V(1) denotes the p-weight space in V. Then

> cho(Hi(w™ Hy(@™, Ha) = > € cho (Hi(n™, Vipia)) (37)

i+j=p i+j:pw€(W’j+h)U,E(’w):j

Z Z e, Z ¢y(o, Vigir )V (@)

i+j:pw€(WeT+h)U,Z(w):j YyEW L(y)=i

(38)
> > €1 Cy (0, Vipan ) e VA, (39)

TIEPwe(W/), )7 b(w)=]
yeEW? L(y)=i
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where ¢, (0, Viper) = tr(o|Hi(n™, Vipsr) (yuwysr)- Here Hi(n™, Viya) (yuw)«x denotes the
(yw)*A-weight space in H;(n™, Viy5x). In the above sequence of equalities, the first equal-
ity follows from (35) and the discussions after that, the second equality follows from [29,
Prop.3.2.1] for the Kostant homology of n~. By [29, Prop.3.2.1] for the Kostant homology
of i~, we have

cho (H, (7, Hy)) = > cu(o, Ha)e™™, (40)
u€(W, )7 ,€(u)=p

where ¢, (0, Hy) = tr(o|Hp(A™, Ha)usr). Here Hp(™, Ha)yuxr denotes the u x A-weight
space in H, (7, H,). Since the spectral sequence (36) degenerates at E,, we have

Y cho(Hi(n™ Hj(87, Ha))) = cho (Hy(R7, H)). (41)
i+j=p
Comparing formulae (39) and (40) via (41), we see that for any w € (W;+B)g’
cw(o, ") = €.,¢c(0, Vipxr ), where e is the identity element in the Weyl group W. Clearly
Ce(0, Vipsr) = 1, hence ¢y, (0, Hy) = €,,. We can read further from [29, Corollary 3.2.3],
in fact ¢y, (0, Ha) = €. Hence €, = €,,. Thus, this finishes the proof. O

For any finite dimensional representation V of g and for any z € C*, we denote by V*
the representation of g~ that is obtained by evaluating ¢ at z. Let H;(§~,Hx ® V/7) be
the i-th g~-homology on H, ® V7 where g~ acts on H ® V7 diagonally. The following
theorem will be used in the proof of Theorem 5.10.

Theorem 4.16. For any A € P and € (P1)?, the §~-homology groups H,(§~, Hx ®Vul)
can be computed by the cohomology groups of a complex of g X (o)-representations,

5P 5t 50
o= Dp— - Dy — Dy — 0,

where as representations of g, Dp = @ ,cppt 0(w)=p
o+h’ -

to Vo (wyxr ® V. In particular if o(w) = w, then o acts on the highest weight vectors of
Visr by €4 = (—]_)Z(w)—fa(w)'

Vir ® Vi, and 0 maps Vo @ V),

Proof. From the resolution F . — H, by tensoring with Vul we get a resolution of
Hx ® V! as representations of § x (o)

1 6 1 o 1 80
o @V, — PV, — F\o®V, —0.
As g-modules, we have

(M(Viper) @ Vg =~ (Var ®c U(E7)) Qug—) Vi = Viwir @ V.
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Hence the complex

1 5P 1 st 1 §°
o= (F>\7p®Vu)gf — ~"(F,\,1®Vu)gf — (FA,()@VM)gf — 0

is quasi-isomorphic to
P st 50
o= Dy, — Dy — Dy — 0.

By Proposition 4.15, ¢ maps Vi @V t0 Vo(w)ea ® V. In particular if o(w) = w, then
o acts on the highest weight vectors of Vi« by €, = (—1)5(“’)_20(“’). O

5. o-twisted representation ring and fusion ring
5.1. o-twisted representation ring

Let V be a finite dimensional representation of g. For any irreducible representation
Vi of g of highest weight A, we denote by Homg(V), V') the multiplicity space of V3 in
V. In particular we have the following natural decomposition

V= P Homy(Vx,V) @ Vi.
AepP+

Let R(g,0) be the free abelian group with the symbols [V)], as a basis, where A €
(PT)?. Given any finite dimensional representation V of g x (o), V can be decomposed
as follows

V= @ Hom,(,,V)eVie P Homy(Vy,V)®Vy,
Ae(Pt)e Ag(PH)e

as a representation of g. Put

Vo= tr(o[Homg(Vy,V))[Vals € R(g,0).
AE(PT)e

Let X be a finite dimensional representation of the cyclic group (o), and for any
representation V of g x (o), X ® V is naturally a representation of g x (o), which is
defined as follows

(u,0) - z@v=0"2® (u,0") v,

where u € g,z € X,v € V and ¢ € Z. Similarly, V ® X is also naturally a representation
of g x (o). The following lemma is obvious.

Lemma 5.1. We have [X ®@ V], = tr(c]|X)[V]s, and [V ® X], = tr(a]|X)[V],.
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We define a multiplication ® on R(g,0), [Vile @ [Vuls = [Va ® V,,]o, for any A, €
(PT)?. By definition, we have

V@ Vie = Y tr(o[Homg(V,, Va © V,))[Vilo

o(v)=v
Proposition 5.2. R(g,0) is a commutative ring with [Vos as the unit.

Proof. The commutativity is clear. We first show that the product ® on R(g, o) satisfies
the associativity, i.e. for any A\, u,v € (P1)“,

(Mo @ [Vilo) @ [Vi]o = Valo @ (Vi © [Vilo)-
It suffices to show that for any A\ € (PT)° and any representation V of g x (o),
Mo @ [V]e = [Va ® V]y, and [V], @ [Val, = [V @ Vil,.
We have the following equalities
Vilo®[Vle = > tr(o[Homg(Vi, V))([Vals © [Vi]o)

o(p)=p

Y tr(o|Homg(V, V) [VA ® Vil
o(p)=p
> [Va @V, ® Homg(Vi, V)],

o(m)=p

=[P Vr®V, @ Homg(V,,, V)]s = [Va ® Vs,
I

where the third equality follows from Lemma 5.1, and others follows from definition of
the multiplication ®. The equality [V], ® [Vl = [V ® V)], can be proved similarly. In
the end [Vp], is the unit since for any A € (P1)7,

[VA]J ® [VO]G = [VO]J ® [V)\]a = [VA & VO]O’ = [V)\]0~ O
Recall that W) denotes the representation of g, of highest weight ¢(\), and Wy () is
the ¢(u)-weight space of W), where ¢ is defined in Section 2.1. The following theorem is
due to Jantzen [18].

Theorem 5.3. Let A € (PT)? and p € P?. We have tr(o|Vy(p)) = dim Wy ().

For any finite dimensional representation V of gx (o), we define the o-twisted character
chy (V) of V as follows
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chy, (V) := Z tr(o|V(p))et,
wepe

where V(1) denotes the p-weight space of V. The following lemma is obvious.
Lemma 5.4. For any two finite dimensional g x {o)-representations V, V', we have
chy (V @ V') = ch, (V)ch, (V7).

Lemma 5.5. Let X be a tuple of o-invariant dominant weights of g and let v be another
o-invariant dominant weight of g. The following equality holds

tr(o|Homg(V,, Vy)) = tr(o|(Vy @ V,x)9).

Proof. Let wg be the longest element in the Weyl group W of g. There exists a representa-
tive wy of wo in G such that o(wg) = wy (see [13, Section 2.3]). Hence o (wp-v,,) = Wo - vy,
where v, € V,, is the highest weight vector. The vector wy - v, is of the lowest weight
wo(v). Let V* denote the dual representation of V,,, and let o* be the action on V* in-
duced by the action o on V,,. Then o* keeps the highest weight vectors in V,} invariant.

As representations of g, there is an isomorphism Vs ~ V_,, ) = V.~ which is unique
up to a scalar. It intertwines the action of o* on V' and the action of o on V. Note
that there is a natural isomorphism Homg(V,,, V;) ~ (Vi ® V¥)®, which is o-equivariant.
This concludes the proof. O

The following theorem was proved in [13]. We give a simple proof here using Jantzen
formula directly.

Theorem 5.6 ([13]). Let X be a tuple of dominant weights of g. We have tr(cr|V;) =
dim W)f\’”,

Proof. On one hand, from the decomposition V; ~ @, p+ Homgy(V,, Vy) @ V,,, we have

chs (Vi) = Z tr(o|Homg(Vy,, Vi))chos (V).
ne(Pt)e

On the other hand, we have the following equalities
Chg(Vx) = Chg(v,\l) e Chg(V)\k) = Ch(WAl) e Ch(W,\k,)
= ch(Wy) = ) _ dim Homg, (W,,, Wy)ch(W,,),

where the first equality follows from Lemma 5.4 and the second equality follows from
Theorem 5.3. In view of Lemma 5.5, the theorem follows. O

Let R(g,) denote the representation ring of g,.
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Proposition 5.7. There is a natural ring isomorphism R(g,0) =~ R(g,) by sending
[WAlo > [Wh] for any o-invariant dominant weight X.

Proof. For any A, u € (P)?, consider the following two decompositions

Wo ® [V#}U = Z tr(U‘Homg(Vvv i ® Vu))[vu]m
o(u)=p

Wal@ W] = Y dimHomg(W,, Wy @ W,)[W,].
o(u)=p

In view of Theorem 5.6 and Lemma 5.5, we have
tr(o[Homgy(V,, Vi ® V},)) = dim Homg_ (W, W)\ @ W,,).
Hence the proposition follows. O
5.2. A new definition of o-twisted fusion ring via Borel- Weil-Bott theory

Lemma 5.8. The operation [], satisfies Euler-Poincaré property, i.e. for any complex of
finite dimensional g x (o)-representations

Ve o= dim i A i di
such that only finite many V* are nonzero, we have
Ve]o =D (1) H (V)]
where [V®]y := >, (=1)"[V'],, and H'(V*) is the i-th cohomology of this complex.

Proof. First of all, we have Euler-Poincaré property in the representation ring R(gx (o))
of g x (o), i.e.

DDV = Y (CY)THA(V)

i i

Secondly we can define a linear map R(g x (o)) — R(g,0) given by [V] — [V],. It
is well-defined and additive, since any finite dimensional representation of g x (o) is
completely reducible. Hence the lemma follows. O

Recall the o-twisted fusion ring Ry(g, o) defined in Section 3.5. We embed Ry(g, o)
into R(g,0) as free abelian groups by simply sending A to [Vi], for any A € Pf. From
now on we view Ry(g,0) as a free abelian group with basis {[Vi]s | A € P/ }. The fusion
product A - p in Ry(g, o) will be written as [Vi]o - [Vi]o-
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Given any integrable representation #H of g, we denote by H;- the coinvariant space
of g7 on H. If H is a representation of g x (o), then the space Hz- is naturally a
representation of g x (o). For any A, u € P7, we define

(VAo ®¢ [Vilo := [(H*(Gra, Le(VA ® V)Y )g- 1o € Re(g, 0), (42)

where we view (H*(Grg, Li(VA®V,))Y)s- as a complex of g x (o)-representations with
zero differentials.

Note that all representations of § appearing in H*(Grg, L¢(Vy ® V,,))¥ are of level ¢,
and only finite many cohomology groups are nonzero. Hence the above definition makes
sense.

Recall the representation H, ® V7 defined in Section 4.3. The following is a vanishing
theorem of Lie algebra cohomology due to Teleman [32].

Theorem 5.9. For any A\, u,v € Py and for any i > 1, V\ does not occur in H;(§~, H, ®
Vlf) as a g-representation.

We now show that the product defined in (42) is exactly the fusion product.

Theorem 5.10. Two products on Ry(g,0) coincide, i.e. for any \,p € PJ, we have
[VA]G ®e [VM]U = [VA]U ’ [VM]U'

Proof. Consider the following decomposition

Va®V, = @ Homy(V,, VA @ V,) @ V.

By the fact (32), we may in further write

Vi ® ‘/;L = @ HOng(V;u*u, \® ‘//L) ® Vi - (43)

weWw!

ori V€D

We have the following chain of equalities

VAo ®¢ [Vilo = Z(—l)i[(Hi(Grc, Le(Va® Vi) )s-lo
=> (1" > [Homg(Vipww, Va ® V) @ (H'(Gra, Le(Vis)) ¥ )g-o
i we(w! )°

L+h
L(w)=i,veP]

= Z (_1)6(10)[H0mg(vw*1/7 V)\ ® VIJ«) ® Vwew)]a

we(W;+i,,)U’V€Pf

= (_1)20(w)tr(0|H0mg<Vw*ua V/\ ® VH))[VV]O'7

Yo o
“’G(We+h) ,VEP;
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where the second equality follows from the decomposition (43), the third equality follows
from Corollary 4.14 and the fourth equality follows from Lemma 5.1. By Lemma 3.7 and
Proposition 3.8, we have the following o-equivariant isomorphisms:
Vg,e,)\,u,l/* (Pla 07 17 OO) = Vg,é,)\*,u*,V(Plv Oa 17 OO)

~ (H, @ VX ® Vul*)g[t—l]

~ Homgy(V, Ho(§™, H, ® Vul*)).
The following formula follows immediately from Theorem 5.9

tr(o|Homg (Va, Ho(§™, Hy @ V1)) = > _(—1)'tr(o[Homg(Vy, Hi(§™, 1, @ V1))
i

By Lemma 5.8 and Theorem 4.16, we have
> (=1)'tr(o|Homg(Va, Hi(§™, 1y @ V1))
=> (-1 > tr(o|Homg (Vx, Visv.e, @ Viir))

T s
wG(WM_h)",Z(w)_z

= Y (—)"tr(oHomg(Vy, Vipwr @ Vir)).
wE(WLJl)‘7

It follows that

[V)\]U : [VM]U Z tr(aﬂ/gwl-,)\#,l/* (P17 0,1, OO))[VV]U

vePy

= > (=1)4 tr(g[Homg (Va, Visw @ Vs N[V -
wG(WeT_H.L)U,VGPé’

In the end, we need to check that
tr(o[Homg(Vipsw, Vi ® V,,)) = tr(o|Homg(Va, Vipsw @ Vyix)).

In view of Lemma 5.5, it reduces to show that the trace of o on V.2, . | u

and V&

YWAV, ™
are equal. This is a consequence of Lemma 3.6. O

From the proof of Theorem 5.10, we get the following twisted analogue of Kac-Walton
formula (in the usual setting, see [19,36]).

Theorem 5.11. For any A\, u,v € P7, we have

tr(U|V97A,#,V(]P1707 ].,OO)) = Z (_1)£0(W)tr(o'|v)\g,u,w*u)'
we(W

l+iz)a
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Remark 5.12. The proofs of Theorem 5.10, 5.11 do not rely on the fact that the trace on
conformal blocks is a fusion rule. In fact Theorem 5.11 is used to show that the trace on
conformal blocks gives a fusion rule, see Lemma 3.16.

5.8. Ring homomorphism from o-twisted representation ring to o-twisted fusion ring
We first construct a Z-linear map
7o : R(g,0) = Re(g,0).
For any finite dimensional g x (o)-representation V', we define
o ([V]e) == [(H*(Gre, Le(V))")s-1o € Re(g,0).

+
Lemma 5.13. For any w € (W€+h

)7 and X € (P1)?, we have
[(H*(Flg, Le(wx X)Y)g-]o = (1) [(H* (Flg, Le(A)Y)g- Lo

Proof. We can write A = y*\o where y € (W2+B)U and Ag € (P;)?. Then wx\ = (wy)*\o.
In view of Theorem 4.1 and Theorem 4.10, we have

[(H*(Flg, Lo(w * \)Y)g-1o = (1) [(H*(Flg, Lo(X)))g-1o
= (=) “(H* (Flg, Le(N)Y)g-o-

Hence the lemma follows. O

Proposition 5.14. Given a finite dimensional representation V of gx (o). For any \ € Py

and w € (We—:-h)a’ the following equality holds in Re(g,0)

[(H*(Gre, Lo(Var @ V) )g-1o = (=) [(H* (Gre, Lo(Va @ V)Y )g- 1o
Proof. In view of Lemma 4.12, it suffices to show that
[(H* (Flg, Le(Caer @ VBs(e))) Vg-lo = (=1 [(H (Flg, Le(Cx @ Vips)))g-lo-
Note that there exists a filtration of B x (o)-representations
0=VWwcWcWc---CcVp,=V

on V', such that for each ¢,

Vip) ifo(p)=p

Vi/Vieq ~ o _ .
P, V(e*(n)) otherwise
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where V(1) denotes the p-weight space of V. By Lemma 5.1, it is easy to check that

[(H* (Flg, £4(C © @D V(0 (1) )-Jo
1=0
[tV ) (Flo Lo+ ) )g Lo i o) = p
0 otherwise

Hence we get the following isomorphisms

[(H*(Flg, Le(Ca @ Vo)) )a-lo = Z[(H*(Flc,ﬁz(CA @ Vi/Vic1))Y)a-1o
= Z tr(o|V () [(H* (Flg, LA + 1) )g-1o-

nepPe

Similarly, we have

[(H*(Fla, LoCaumn ®@Vpuio))s-lo = Y tr(oV () [(H* (Fla, Le(wr A+ )Y )g-]o-
nepP

We can write w as w = 75y~ ', where y € W7 and 75 is the translation for 3 €
(¢ + Rh)Q°. It is easy to check that wx A+ p=w*(A+y-p).
Since V is a representation of g x (o), for any y € W7 we have tr(c|V(u)) =

tr(o|V(y - p)), where V(u) and V(y - ) denote the weight spaces of V' as representation
of g. We have the following chain of equalities

[(H*(Fla, Lo(Cuwir @ Vpsio)Y )g-lo

= Y t(e[V()[(H* (Fla, Lo(wx A+ 1)) )g- 1o

HEPT

= Y (ol V() (1) [(H* (Flo, Lo+ 1) )g-1o

pnePT

= (1) [H*(Flg, Lo(Cr @ Vpu(o)) g os
where the second isomorphism follows from Lemma 5.13. This finishes the proof. O

Proposition 5.15. If A € (P1)7 and A+ p is in an affine wall of W, then

+h
[(H*(Gra, Li(Va®@ V)Y )g-1o = 0.

Proof. By Part (3) of Proposition 2.7, A+ p is in an affine wall of W7, where by (13),

Wy, = W7 x (¢ + h)1(Q7). Hence in view of Lemma 2.3, we can assume that A + p is
in the following affine wall of Wé:_ ;, in PR,
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Ho,oa={A+pe P OR|(A+p,d,) = a},
where &, is the coroot of a root «, of g,, and

. (0 +R)Z if g is not of type Aa,

a .
Hhz  ifg= Aoy,

Equivalently,

(Taa, * San) * (N) = (Say * T—aa, ) * (A) = A, (44)

where s,, is the reflection with respect to o, in WZFE and Tgq, is the translation by

acas. Moreover,

(_1)£0(7aaa-sug) _ (_1)£0(7aaa)(_1)£g(sag) -1

)

since by Lemma 2.8, £,(7T4q, ) is an even integer.
By Proposition 5.14 we have

[(H*(Gra, Lo(Va @ V)V )s-1o = —[(H*(Gra, Le(Va @ V)Y )5~ 1o
Hence [(H*(GrG7 Eg(V)\ & V))V)@*]o’ =0. O
Theorem 5.16. The linear map 7, : R(g,0) — R(g,0) is a ring homomorphism.

Proof. By Theorem 5.10, we can use the product ®, for Ry(g, o). We need to check that
for any A\, u € (PT)7,

WU([VA ® V#]U) = WJ([VA]CI) Y WJ([V#]J)~ (45)

If A+ p or pu+ p is in an affine Wall, then by Proposition 5.15, both sides of (45) are
zero. Hence (45) holds.
If A+ p and p + p are not in any affine Wall, let A\g € PJ such that wy * Ao = A and

let po € Py such that w, x po = p where wy,w, € (WT )7, then

0+h

o ([VA ® Vu]a)

(H*(Crg, Le(VA @ V) )a-1o

—1)f e V[(H*(Grg, Lo(Vay @ Vi) )a-1o

—1)fe e [(H*(Gra, Lo(Vag @ Vi)Y )-lo
_1)ZU(TU>\)+£U(7UM)[V>\O]O_ =Y [VNO]U

o(WAlo) @ o ([Vio),

—~ o~

Il
3

where the second, the third and the fifth equalities follows from Proposition 5.14, and
the fourth equality is the definition (42). This finishes the proof of the theorem. O
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We can explicitly describe the map 7.

Corollary 5.17. The map 7, : R(g,0) — R(g,0) can be described as follows, for any
A € (PT)? we have

0 if A+ p belongs to an affine Wall of W, ; in Pr

(—1D) [V 1n]e  ifw tx A€ PY for some w € (Wg+h)".

WU([VX]U) = {

Proof. The corollary is an immediate consequence of Corollary 4.14, Proposition 5.14
and Proposition 5.15. O

5.4. Characters of the o-twisted fusion ring

In Section 5.4 and Section 5.5 we basically follow the arguments in [1, Section 9].
However our arguments of Lemma 5.21 and Proposition 5.23 are substantially different,
since in our setting there is no natural identification between P, /(¢ + h)1(Q?) and T} ,.

Recall that P, (resp. Q,) is the weight lattice (resp. root lattice) of g,, and the
bijection map ¢ : P, ~ P? defined in Section 2.1.

Let Z[P,] be the group ring of P,; we denote by (e*)xcp, its basis so that the

multiplication in Z[P,] obeys the rule e*e = e*#. The action of W, and ZHE ~

W, % (€4 h)u(Q%) on P, extends to Z[P,]. We denote by Z[P,]we (resp. Z[Pywe )

4R

the quotient of Z[P,] by the sublattice spanned by e* — (—1)Zf’(w)ew*’\ for any w € W,

(resp. w € Z;-h)' Let p: Z[P,|lw, — Z[PU}W;% be the projection map.

Lemma 5.18. The kernel ker(p) is spanned by the class of e*™ — e* in Z[P,|w,, for
A€ P, and o€ (04 h)(Q).

Proof. We first define a group action e of W7, on Z|P,]. For any e € Z[P,] and
wro € W7 where w € W, and a € (¢ + h)(Q7), define

WT, ® e)\ — (_1)50(1117'@)610*()\-&-04).

It is easy to see that this gives a group action of We:iz on Z[P,]. Note that in the above
formula, (—1)% (WTe) = (=1)% () gince by Lemma 2.8, £, (7,) is even.
Let Z[Ps] 445y, (q-) denote the space of coinvariants of Z[P,] with respect to the

translation action of (£+ h)u(Q7). Consider the following short exact sequence

0—— K —— Z[P,] —— Z[Pg](H;L)L(QG) — 0,

where K is the sublattice of Z[P,] spanned by e’ —e* for A € P, and a € (£+7)u(Q°).
With respect to the action e of W, we apply the functor of W,-coinvariants to the above
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short exact sequence. Since coinvariant functor is right exact, we get the following exact
sequence

Kw, — Z[Pslw, — (Z[P:) g iy igr)we — 0 -

o

Observe that

LPslwy, = (Z1Fo] e hyuqm) IWe-

Wl:»iz
This concludes the proof of the lemma. O

By Proposition 5.7 and Theorem 5.16 we get a ring homomorphism 7, : R(g,) =~
R(g,0) — Ry(g,0). Let ¢, be the map R(g,) — Z[P,]w, sending [W,] to the class
of e*. Similarly, let ¢, be the map Ry(g,0) — Z[PU]W;% sending [V3], to the class e
for any A € PJ. By the same arguments as in [1, Section 8|, ¢, and ¢, are bijections.
As a consequence of Corollary 5.17, the following diagram commutes

R(gy) ——=— Re(g,0) - (46)

l(ba J/ti?o,z

P
Z[PU]WG — Z[PG]W;%

For any A € P,, put

J(e/\er) _ Z (71)46(10)6100&%)’ (47)
weW,

where p, is the sum of all fundamental weights of g,. Recall that t(p) = p, via the
bijection ¢ : P7 ~ P,. By Weyl character formula, for any A € P}t and t € T, we have

tr(t|Wy) = % Let T, ¢ be the finite subgroup of T, given by

Typ:={teT,|e(t)=1,a € ({+h)Q%)}.

Proposition 5.19. For any t € T, 4, the character tr(t|-) factors through 7, : R(g,) —
Ré(gﬂ 0)'

Proof. Let j; : Z[P,Jwe — C be the additive map such that for any A € P,,

je(er) = % By the definition of Z[P,|w- and J(-), it is easy to check that

j¢ is well-defined. By Weyl character formula, the following diagram commutes:
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R(gs) —2 Z[P,)w, -

ls

C

By the commutativity of the diagram (46) and Lemma 5.18, to show tr(¢|-) factors
through 7, we need to check that j; takes the value zero on e*t® — e for any \ € P,
and a € (€4 h)u(Q7). Since ¢ satisfies that e (t) = 0 for any o € (£+h)e(Q?), it is clear

Ao

that j; takes the value zero on e — e*. This concludes the proof. O

An element t € T, is regular if the stabilizer of W, at t is trivial. We denote by T,°F
the set of regular elements in 7, 4. Let p, denotes the sum of all fundamental cowelghts

of g,. Consider the short exact sequence
0= 2miQy — to — T, — 1,

where C?U denote the dual root lattice of g, and t, denotes the Cartan subalgebra of g,.
Let L, be the dual lattice of (Q?) in t,. We have the following natural isomorphism

1o .
: €+7LLU)/Q ~ Lo /(L +h)Qo- (48)

For any 1 € Ly, we denote by t; the associated element of fi + p, in 5, 4.
We put P,y := {ji € P} | {j1,0,), < £}, where 0, denotes the highest root of g, and
]5; denotes the set of dominant coweights of g, .

Lemma 5.20. Assume that g # As,. There exists a bijection ]5(,75 ~ TF /W, with the
map given by [t — ty,

Proof. When g # As,, by Lemma 2.3 +(Q°) = Q.. Thus L, = P,. We observe that
(po,05) = h — 1 where h is the dual Coxeter number of g. This can be read from [14,
Table 2, p. 66]). It follows that

PU’Z:{ﬁEP;|<ﬂ+ﬁdveo'>o’<£+h},

i.e. IBM consists of all points of Pj sitting in the interior of the fundamental alcove with
respect to the action of the affine Weyl group W, x (¢ + E)QU From the isomorphism
(48), we can see that any W,-orbit in 7,7 has a unique representative in P, . Hence
the lemma follows. O

Lemma 5.21. The cardinality of T, 5 /Wy is the equal to the cardinality of Py .
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Proof. When g is of type As,, by Lemma 2.3, ((Q%) = %sz where (), ¢ is the lattice
spanned by long roots of G,. The proof of this lemma is exactly the same as the proof
of [1, Lemma 9.3]. We omit the detail.

Now we assume g # As,. Put
Poo={Ne P ()b, <1},

where 6, denotes the highest coroot of g,. In view of (8) and Lemma 2.1, the map ¢
induces a natural bijection ¢ : PJ ~ Py, 4.

In view of Lemma 5.20, we are reduced to show that ]50,5 and P, have the same
cardinality. If g, is not of type B, or C,, it is true, since in this case weight lattice and
coweight lattice, root lattice and coroot lattice can be identified. Otherwise, if g, is of
type B, or C,, by comparing the highest roots of B,, and C,, (see [14, Table 2, p. 66]),
we conclude that 150,[ and P, indeed have the same cardinality. O

The following proposition completely describes all characters of Ry(g, o).
Proposition 5.22. {tr(t|-) [t € T,?/W,} gives a full set of characters of R(g, o).

Proof. This is an immediate consequence of Proposition 5.19 and Lemma 5.21. 0O
5.5. Proof of Theorem 1.2

Let Tgyg denote the finite abelian subgroup ng =P, /(L + ﬁ)L(Q"). For any A\ € P,,
we denote by £y the element in ng associated to A\ + p,.

Recall that @, is the set of roots of g,. In the following lemma we determine y(w, )
for each x = tr(t|-), where w, is the Casimir element defined in (22).

Proposition 5.23. For any t € T}, we have 3\ po [tr(t|Wy)|? = g:(g, where A, =

Hae% (e* —1).

Proof. When g = As,, the proof of this lemma is identical to the proof of [1, Lemma
9.7]. We omit the detail.
Now we assume g # As,. In this case, we have

Tg,g =P, /(L+ iL)Qg, and T, 4~ ]35/(5 + lvz)QJ

Forany A€ P, and i € L, = ]50, we have

Atpo,wlfit+po))o

J(EP) () = Y (1)l TR < (e ) (),
weW,

where we put J(eftPe) = Zwewﬂ(—l)za(w)ew(*”ﬁa). By Weyl character formula, we
have
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Y(EN) 2

> (e WP =

AEPY ,\ePZ

We now introduce an inner product (-,-) on the space L?*(T, ) of functions on the
finite abelian group ng,

(p,0) := Z ¢(f)(f), for any functions ¢, on ng.

fETa.z

|T%

The function J(e#*+7) on T, is W, -antisymmetric, i.e. J(e" (itpe)) = (—1)be (W) J(efitho),
It shows that if ¢ is not regular, then for any € T, 4, J(ef+P=)(f) = 0. Tt follows that

. 1,
T (I = Lt gentiy)
= .

where [|J(e+07)[| = \/(J(efiti7), J(efti7)).

If ¢ is regular, in view of Lemma 5.20 we can assume ¢ = t; where i € B, ¢ Now
we show that the restriction of e¥ (#+5s) on T, ¢ are all distinct. For any two distinct
elements w,w’ € Wy, if e?(#+pe) and ev W (i pa) are equal on ng, it means that the
pairing (w(ji + po) — W' (fi + o), Ne € (£ + h)Z for any A € P,. Equivalently, w(ji +
Po) —w' (it + po) € (£ + h)Qy. It is impossible as fi + py is in the fundamental alcove of
the affine Weyl group W, x (£ + 7)Q,.

By the orthogonality relation for the characters of T, ¢, we have |[J(e/+Pe)|| = [W,].
Hence,

> Ieaal W) = 3 %

AePy

From the non-degeneracy of the pairing Tg,g X Tge — C* given by (tVA,tﬂ) —
A+po.fitpo)o v
£+ , we have |T, ¢| = |} ¢|. This concludes the proof of the proposition. O

27i

Finally Theorem 1.2 follows from Proposition 3.19, Proposition 5.23, and Proposi-
tion 5.22.

5.6. A corollary of Theorem 1.2

Let o be a nontrivial diagram automorphism on g = sla,,+1. Then the orbit Lie algebra
g, is isomorphic to spa,.

Theorem 5.24. With the same setting as in Theorem 1.2. If £ is an odd positive integer,
then we have the following formula
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tr(aﬂ/;bnﬂ’z’x(C,ﬁ)) =dimV %,X(a@'

SP2n;s

Proof. By assumption, (Ai,é> < ¢ for any A;. In view of (8) and Lemma 2.1, we have
(t(Ni), éaﬁ)g < £/2, where éa,s is the coroot of the highest root 6, of g,. Since £ is odd
and (1(\), 0y.) is an integer, it follows that (1(\),0y.)e < =L

Note that P, = %Qg,g where (), ¢ is the lattice spanned by long roots of g,. Moreover,
h=2n+1and iLU =n+ 1 where Ba is the dual Coxeter number of g,. Combining the
Verlinde formula (3) and Theorem 1.2, the corollary follows. O
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