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1. Introduction

The Verlinde formula computes the dimension of the space of conformal blocks. It is 
fundamentally important in conformal field theory and algebraic geometry. The formula 
was originally conjectured by Verlinde [35] in conformal field theory. It was mathe-
matically derived by combining the efforts of mathematicians including Tsuchiya-Ueno-
Yamada [33], Faltings [4]. It was proved by Beauville-Laszlo [2], Kumar-Narasimhan-
Ramanathan [23], Faltings [4], that conformal blocks can be identified with the general-
ized theta functions on the moduli stack of G-bundles on projective curves where G is a 
simply-connected simple algebraic group. Therefore the Verlinde formula also computes 
the dimension of the spaces of generalized theta functions. For a survey on Verlinde 
formula, see Sorger’s Bourbaki talk [30].

Let (C, �p) be a stable k-pointed curve. Let g be a simple Lie algebra over C. Let � be 
a positive integer. Put

P� = {λ ∈ P+ | 〈λ, θ̌〉 ≤ �〉}, (1)

where θ is the highest root of g and θ̌ is the coroot of θ. Given a tuple of dominant weights 
�λ = (λ1, λ2, · · · , λk) such that λi ∈ P� for each i. We can attach the space V

g,�,�λ(C, �p)
of conformal blocks of level � to (C, �p) and �λ. We will recall the definition of conformal 
blocks in Section 3.4.

Let σ be a diagram automorphism on a simple Lie algebra g. One can attach another 
simple Lie algebra gσ as the orbit Lie algebra of g (see Section 2 for details). If σ is 
trivial, then g = gσ. Let Φ (resp. Φσ) be the set of roots of G (resp. Gσ). We put

Δ =
∏

(eα − 1), Δσ =
∏

(eα − 1). (2)

α∈Φ α∈Φσ
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There is a natural correspondence between σ-invariant weights (resp. dominant 
weights) of g and weights (resp. dominant weights) of gσ (see Section 2.1). In this in-
troduction we will identify them if no confusion occurs. For any dominant weight λ of 
g (resp. gσ), we denote by Vλ (resp. Wλ) the irreducible representation of g (resp. gσ) 
of highest weight λ. Let ȟ (resp. ȟσ) be the dual Coxeter number of g (resp. gσ). Let 
G (resp. Gσ) be the associated simply-connected simple algebraic group of g (resp. gσ). 
Let T (resp. Tσ) be a maximal torus of G (resp. Gσ). Let W (resp. Wσ) denote the Weyl 
group of G (resp. Gσ).

Throughout this paper, we denote by tr(A|V ) the trace of an operator A on a finite 
dimensional vector space V . The following is the celebrated Verlinde formula.

Theorem 1.1 (Verlinde formula). Let (C, �p) be a stable k-pointed curve of genus g. Given 
any tuple �λ = (λ1, λ2, · · · , λk) of dominant weights of g such that λi ∈ P� for each i, we 
have

dimV
g,�,�λ(C, �p) = |T�|g−1

∑
t∈T reg

� /W

tr(t|V�λ)
Δ(t)g−1 , (3)

where V�λ denotes the tensor product Vλ1 ⊗ · · · ⊗ Vλk
of representations of g and

T� = {t ∈ T | eα(t) = 1, α ∈ (� + ȟ)Ql}

is a finite abelian subgroup in the maximal torus T , T reg
� denotes the set of regular 

elements in T� and T reg
� /W denotes the set of W -orbits in T reg

� . Here Ql denotes the 
lattice spanned by long roots of g, and for any α ∈ Ql, eα is the associated character 
of T .

From now on we always assume σ is nontrivial. When the tuple �λ of dominant weights 
of g is σ-invariant, one can define a natural operator on the space V

g,�,�λ(C, �p) of conformal 
blocks, which we still denote by σ, see Section 3.4. A natural question is how to compute 
the trace of σ as an operator on the space of the conformal blocks. In this paper, we 
derive a formula for the trace of σ, which is very similar to the Verlinde formula for the 
dimension of the space of conformal blocks. Very surprisingly, in the formula the role of 
g is replaced by gσ. The following is the main theorem of this paper.

Theorem 1.2. Let (C, �p) be a stable k-pointed curve of genus g. Let σ be a nontrivial 
diagram automorphism on a simple Lie algebra g which has dual Coxeter number ȟ. 
Given a tuple �λ = (λ1, λ2, · · · , λk) of σ-invariant dominant weights of g such that for 
each i, λi ∈ P�, we have the following formula

tr(σ|V
g,�,�λ(C, �p)) = |Tσ,�|g−1

∑
t∈T reg/W

tr(t|W�λ)
Δσ(t)g−1 , (4)
σ,� σ
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where W�λ denotes the tensor product W�λ := Wλ1 ⊗ · · · ⊗Wλk
of representations of gσ

and

Tσ,� = {t ∈ Tσ | eα(t) = 1, α ∈ (� + ȟ)Qσ}.

Here T reg
σ,� denotes the set of regular elements in Tσ,�, and T reg

σ,� /Wσ denotes the set of 
W -orbits in T reg

σ,� and

Qσ =
{

root lattice of gσ if g �= A2n

weight lattice of gσ if g = A2n.

Since the space of conformal blocks can be identified with the space of generalized 
theta functions, Theorem 1.2 implies the same formula for the trace of diagram auto-
morphisms on the space of generalized theta functions.

Remark 1.3. By the basic representation theory of finite groups, we have the following 
formula

dimV
g,�,�λ(C, �p)σ = 1

r

r∑
i=1

tr(σi|V
g,�,�λ(C, �p)),

where r is the order of σ, and V
g,�,�λ(C, �p)σ denotes the space of σ-invariants in 

V
g,�,�λ(C, �p). Combining Theorem 1.1 and Theorem 1.2, we immediately get a formula 

for the dimension of V
g,�,�λ(C, �p)σ.

The proof of Theorem 1.2 will be completed in Section 5.5. Our proof closely follows 
[4,1,22] for the derivation of the usual Verlinde formula, where the fusion ring plays 
essential role. In the standard approach to the Verlinde formula for general stable pointed 
curves, the factorization rules for conformal blocks and degeneration of projective smooth 
curves allow a reduction to projective line with three points case. Our basic idea is that 
we replace the dimension by the trace of the diagram automorphism everywhere. In 
our taking trace setting, we explain in Section 3.4 that factorization rules for conformal 
blocks and degeneration of curves are compatible well with the trace operation on the 
space of conformal blocks.

By replacing the dimension by the trace, we introduce σ-twisted fusion rings R�(g, σ)
in Section 3.5. We also introduce the σ-twisted representation ring R(g, σ) of g (see 
Section 5.1). For the usual fusion ring R�(g) and the representation ring R(g), it is 
important to establish a ring homomorphism from R(g) to R�(g). Similarly, we establish 
a ring homomorphism from R(g, σ) to R�(g, σ) in Section 5.3. One of important technical 
tools is that we interpret σ-twisted fusion product via affine analogue of Borel-Weil-Bott 
theorem, where the new product is introduced in Section 5.2. A vanishing theorem of Lie 
algebra cohomology by Teleman [32] plays a key role in our arguments as in the dimension 
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setting (cf. [22, Chapter 4]). We describe all characters of the ring R�(g, σ) in Section 5.4. 
The Verlinde formula for the trace of diagram automorphism will be a consequence of 
the characterization of the ring R�(g, σ) and the determination of the Casimir element in 
R�(g, σ). As a byproduct we obtain an analogue of Kac-Walton formula (Theorem 5.11) 
in Section 5.2.

In the process of proving the coincidence of two products in the ring R�(g, σ) and estab-
lishing the ring homomorphism from R(g, σ) to R�(g, σ), some interesting sign problems 
occur on the higher cohomology groups of vector bundles on affine Grassmannian and 
affine flag variety, also in affine BBG-resolution and affine Kostant homologies. The reso-
lution of these sign problems is very crucial for the characterization of the ring R�(g, σ).

Let L�(Vλ) be the vector bundle on the affine Grassmannian GrG of G associated to the 
level � and the representation Vλ of G. By affine Borel-Weil-Bott theorem (cf. [21]) there is 
only one nonzero cohomology Hi(GrG, L�(Vλ)) and the restricted dual Hi(GrG, L�(Vλ))∨

is the irreducible integrable representation Hλ of the affine Lie algebra ĝ of level �. The 
action of σ on the highest weight vectors of Hi(GrG, L�(Vλ))∨ is determined in Section 4.1
and Section 4.2. This problem is closely related to similar problem on the cohomology 
of line bundle on affine flag variety. The answer is very similar to the finite-dimensional
situation which is due to Naito [28] where Lefschetz fixed point formula is used. In the 
affine setting, we don’t know how to apply Lefschetz fixed point formula since the affine 
Grassmannian and affine flag variety are infinite-dimensional. Instead, our method is 
inspired by Lurie’s short proof of Borel-Weil-Bott theorem [26]. Our method should be 
applicable to similar problems for general symmetrizable Kac-Moody groups. Similar 
sign problems also appear in BGG resolution and the Kostant homology for affine Lie 
algebras. See the discussions in Section 4.3.

Our starting point of this work is the Jantzen’s twining formula (cf. [18,10,7,24,
28,29]) relating representations of g and gσ, where the term “twining” is coined by 
Fuchs-Schellekens-Schweigert [7]. Given a σ-invariant dominant weight λ of g where 
σ is the diagram automorphism as above. There is a unique operator σ on Vλ such 
that σ preserves the highest weight vector vλ ∈ Vλ and for any u ∈ g and v ∈ Vλ, 
σ(u · v) = σ(u) · σ(v). For any σ-invariant weight μ, Jantzen [18] proved the following 
formula

tr(σ|Vλ(μ)) = dimWλ(μ),

where λ and μ are also regarded as (dominant) weights of gσ. Given a tuple �λ of 
σ-invariant dominant weights of g. Let V g

�λ
(resp. W gσ

�λ
) be the tensor invariant space 

of g (resp. gσ). Induced from the action of σ on each Vλi
, σ acts on V g

�λ
diagonally. Shen 

and the author obtained the following twining formula in the setting of tensor invariant 
spaces in [13],

tr(σ|V g) = dimW gσ . (5)
�λ �λ
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A consequence of (5) is that the σ-twisted representation ring R(g, σ) of g is isomorphic 
to the representation ring R(gσ) of gσ. This is how we are able to express the trace of σ
on the space of conformal blocks by the data associated to gσ.

It is well-known that given a tuple �λ of dominant weights of g, the space V
g,�,�λ(P 1, �p)

of conformal blocks on (P 1, �p) stabilizes to the tensor co-invariant space (V�λ)g when 
the level � increases. From Formula (5), it is natural to hope that the conformal blocks 
associated to g and the conformal blocks associated to gσ are related and have a twining 
formula with a fixed level. Unfortunately this is not the case. We found the following 
counter-example using [31] (joint with P. Belkale).

Example 1.4. We have

dimVsl6,4,λ,μ,ν(P 1, 0, 1,∞) = 4,

where λ = ω2 +ω3 +ω4, μ = ω1 +ω3 +ω5 and ν = ω1 +2ω3 +ω5. Here ω1, ω2, ω3, ω4, ω5
denote the fundamental weights of sl6. Since the order of σ on sl6 is 2, this forces that 
the trace tr(σ|Vsl6,4,λ,μ,ν(P 1, 0, 1, ∞)) is even. On the other hand, we have

dimVso7,4,λ,μ,ν(P 1, 0, 1,∞) = 3,

where λ = ωσ,2 +ωσ,3, μ = ωσ,1 +ωσ,3 and ν = ωσ,1 +2ωσ,3. Here ωσ,1, ωσ,2, ωσ,3 denotes 
the fundamental weights of so7.

Actually from formula (4) in Theorem 1.2, it is quite clear that tr(σ|V
g,�,�λ(C, �p)) should 

not be the same as dimV
gσ,�,�λ

(C, �p). Nevertheless, for the special pair (sl2n+1, sp2n) we 
do have a twining formula where one needs to take different levels on both sides.

Theorem 1.5. If � is an odd positive integer, then the following formula holds

tr(σ|Vsl2n+1,�,�λ
(C, �p)) = dim Vsp2n,

�−1
2 ,�λ(C, �p). (6)

This theorem is a corollary of Theorem 1.2, and the proof will be given in Section 5.6. 
It has following interesting numerical consequences where � is assumed to be odd.

• The trace tr(σ|Vsl2n+1,�,�λ
(C, �p)) is non-negative.

• If dimVsl2n+1,�,�λ
(C, �p) is 1, then dimVsp2n,

�−1
2 ,�λ(C, �p) is also 1.

• If Vsp2n,
�−1
2 ,�λ(C, �p) is nonempty, then Vsl2n+1,�,�λ

(C, �p) is nonempty.

Theorem 1.5 establishes a bridge between the conformal blocks for sl2n+1 and sp2n.
The failure of the formula (6) in general is not really the end of the story. The combi-

natoric data appearing in the formula in Theorem 1.2 actually suggests a close connection 
with twisted affine Lie algebras. It is very natural from the point of view of the twin-
ing formula for affine Lie algebras by Fuchs-Schellekens-Schweigert [7]. Moreover the 
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σ-twisted fusion ring R�(g, σ) defined in this paper is closely related to Kac-Peterson 
formula for S-matrices of twisted affine Lie algebras (cf. [19]). The analogue of Kac-
Walton formula obtained in this paper is also a strong hint. In fact this perspective has 
recently been clarified in [11] by the author. The connection on the trace of diagram au-
tomorphism on the space of conformal blocks and certain conformal field theory related 
to twisted affine Lie algebra was predicted by Fuchs-Schweigert [5]. It seems to the au-
thor that this work has confirmed Conjecture 2 in [6] when the automorphism is induced 
from a diagram automorphism of g. This work should also be closely related to the fusion 
rules for the orbifold conformal field theory that is developed by Birke-Fuchs-Schweigert 
[3] and Ishikawa-Tani [16].

A general theory of twisted conformal blocks has been developed recently by S. Kumar 
and the author [12]. It would be interesting to investigate the connection between this 
paper and [12].
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2. The root systems and affine Weyl group of orbit Lie algebras

2.1. Root systems

Let g be a simple Lie algebra over C. Let I be the set of vertices of the Dynkin 
diagram of g. For each i ∈ I, let αi (resp. ωi) be the corresponding simple root (resp. 
fundamental weight). Let P be the weight lattice of g and let P+ be the set of dominant 
weights of g. Let Φ (resp. Φ̌) be the set of roots (resp. coroots) of g, and let Q (resp. 
Q̌) be the root lattice (resp. coroot lattice) of g. For each root α ∈ Φ, let α̌ ∈ Φ̌ be the 
associated coroot of α. Let 〈, 〉 : P × Q̌ → Z be the perfect pairing between weight lattice 
and coroot lattices. Note that the matrix (〈αi, α̌j〉) is the Cartan matrix of g.

We denote by ei, fi, hi the corresponding Chevalley generators in g for each i ∈ I. 
Let σ be a nontrivial diagram automorphism of the Dynkin diagram of g. Note that g
can only be of types An, Dn, E6 when σ is nontrivial. The automorphism σ acts on P , 
such that σ(αi) = ασ(i) and σ(ωi) = ωσ(i) for each i ∈ I. Clearly σ maps each dominant 
weight to another dominant weight.

The diagram automorphism σ defines an automorphism σ of the Lie algebra g such 
that σ(ei) = eσ(i), σ(fi) = fσ(i), σ(hi) = hσ(i) for each i ∈ I. Here we use the same 
notation σ to denote these automorphisms if no confusion occurs.
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Let Iσ be the set of orbits of σ on I. There exists a unique simple Lie algebra gσ
over C whose vertices of Dynkin diagram is indexed by Iσ (cf. [13, Section 2.2]), and the 
Cartan matrix is given as follows,

aıj =
{ |ı|

2 aij , g is of type A2n and ı is disconnected
|ı|aij , otherwise

for any ı �= j ∈ Iσ, where i ∈ ı, j ∈ j and |ı| is the cardinality of the ı. The Lie algebra 
gσ is called the orbit Lie algebra of (g, σ) in literature.

Let αı (resp. α̌ı) be the corresponding simple root (resp. simple coroot) for ı ∈ Iσ. 
Let Pσ be the weight lattice of gσ. There exists a bijection of lattices ι : Pσ 
 Pσ such 
that ι−1(ωı) =

∑
i∈ı ωi for each ı ∈ Iσ, where P σ is the fixed point lattice of σ on P . Let 

ρ (resp. ρσ) be the sum of all fundamental weights of g (resp. gσ). Note that ρ ∈ P σ, 
and ι(ρ) = ρσ. Moreover,

ι−1(αı) =
{∑

i∈ı αi for any i �= j ∈ ı, aij = 0
2(αi + αj) ı = {i, j}, aij = −1

. (7)

Let Qσ (resp. Q̌σ) be the root lattice (resp. coroot lattice) of gσ. There is a projection 
map ι̌ : Q̌ → Q̌σ. Under this projection, we have

ι̌(α̌i) = α̌ı, for any i ∈ ı.

For any λ ∈ Pσ and x ∈ Q̌σ, we have the following compatibility

〈ι(λ), ι̌(x)〉 = 〈λ, x〉σ, (8)

where 〈, 〉σ : Pσ × Q̌σ → Z is the perfect pairing between the weight lattice and dual 
root lattice for gσ. The following is a table of g and gσ for nontrivial σ ([13, Section 2.2]
or [27, 6.4]):

(1) If g = A2n−1 and σ is of order 2, then gσ = Bn, n ≥ 2.
(2) If g = A2n and σ is of order 2, then gσ = Cn, n ≥ 1, where C1 by convention means 

A1.
(3) If g = Dn and σ is of order 2, then gσ = Cn−1, n ≥ 4.
(4) If g = D4 and σ is of order 3, then gσ = G2.
(5) If g = E6 and σ is of order 2, then gσ = F4.

Let θ be the highest root of g. It is clear that σ(θ) = θ.
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Lemma 2.1. We have

ι(θ) =
{
θσ,s (g, gσ) �= (A2n, Cn)
1
2θσ (g, gσ) = (A2n, Cn)

(9)

where θσ is the highest root of gσ and θσ,s is the highest short root of gσ. Moreover,

ι̌(θ̌) =
{
θ̌σ (g, gσ) �= (A2n, Cn)
2θ̌σ,s (g, gσ) = (A2n, Cn)

(10)

where θ̌σ (resp. θ̌σ,s) is the highest coroot (the coroot of the highest root) of gσ.

Proof. We first determine ι̌(θ̌). Let ǧ be the Lie algebra with root system dual to the 
root system of g. We still denote by σ the diagram automorphism on ǧ induced from the 
diagram automorphism σ on g. It is well-known that the root system of gσ is dual to the 
root system of the fixed Lie algebra ǧσ (cf. [10,13]).

By [10, Lemma 4.3], σ acts on the highest root subspace ǧθ̌ by 1 if g is not of type 
A2n; otherwise, σ acts on ǧθ̌ by −1. It follows that if g is not A2n, then ǧθ̌ is the highest 
root subspace of the fixed point Lie subalgebra ǧσ. Thus, in this case ι̌(θ̌) = θ̌σ. When g
is of type A2n, by [19, Prop. 8.3] ι̌(θ̌) = 2θ̌σ,s.

Finally, we can determine ι(θ) from (7) and [14, Table 2, p. 88], and we get the formula 
(9). �

Note that θ̌σ is the coroot of θσ,s and θ̌σ,s is the coroot of θσ.

Lemma 2.2. Let Ik be the Dynkin diagram of type Ck with k ≥ 2, where Ik consists of 
vertices i1, i2, · · · , ik such that the simple root αi1 is a long root. Then the long root 
lattice Ql of Ck is spanned by αi1 , 2αi2 , · · · , 2αik .

Proof. For any k ≥ 1, let Ik be the Dynkin diagram of Ck (where C1 = A1), there 
exists a natural embedding Ik ↪→ Ik+1. Assume that Ik consists of vertices i1, i2, · · · , ik, 
where the simple root αi1 is the long root. Let θk be the highest long root of Ck. Then 
θk+1 − θk = 2αk+1. Therefore the lattice of long roots of Ck for k ≥ 2, is spanned by 
αi1 , 2αi2 , · · · , 2αik . �

Let Qσ denote the lattice of σ-invariant elements in the root lattice Q of g.

Lemma 2.3. With respect to the isomorphism ι : Pσ 
 Pσ, we have

ι(Qσ) =
{
Qσ if g is not of type A2n

Pσ = 1
2Qσ,l if g is A2n

where Qσ,l is the lattice spanned by the long roots of gσ.
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Proof. Clearly Qσ has a basis {
∑

i∈ı αi | ı ∈ Iσ}. In view of (7), it is easy to see when g
is not of type A2n, ι(Qσ) is the root lattice Qσ of gσ.

If g is of type A2, this is just a direct simple calculation. Otherwise, if g = A2n with 
n ≥ 2, then ι(Qσ) =

∑
ı∈Iσ

aıZαı, where

aı =
{

1 if ı is not connected
1
2 if ı is connected

.

Let ı0 be the connected σ-orbit in I. Note that ı0 corresponds to the long root of Cn. 
By Lemma 2.2, our lemma follows. �
2.2. Affine Weyl groups and diagram automorphisms

In this subsection, we refer to [15] the basics of affine Weyl groups and alcoves.
Let W be the Weyl group of g. The group W acts on the weight lattice P . Let PR be 

the space P ⊗Z R. For each root α ∈ Φ, let sα be the corresponding reflection in W , i.e. 
for any λ ∈ PR, sα(λ) = λ − 〈λ, α̌〉α.

Let W� be the affine Weyl group W � �Q for any � ∈ Q. Since g is simply-laced, the 
Coxeter number is equal to the dual Coxeter number, moreover all roots have the same 
length. For any � ∈ N, W� is the Weyl group of the affine Lie algebra ĝ of level �. Let s0
be the affine reflection sθ,1, i.e.

sθ,1(λ) = λ− (〈λ, θ̌〉 − �)θ, (11)

where θ is the highest root of g. The affine Weyl group W� is a Coxeter group generated 
by {si | i ∈ Î}. For any α ∈ Φ and n ∈ �Z, the hyperplane

Hα,n = {λ ∈ PR | 〈λ, α̌〉 = n}

is an affine wall of W�. Every component of the complements of affine walls in PR is an 
alcove. The affine Weyl group W� acts on the set of alcoves simply and transitively. Let 
A0 be the fundamental alcove, and it can be described as follows,

{λ ∈ PR | 〈λ, α̌i〉 > 0, for any i ∈ I, and 〈λ, θ̌〉 < �}.

The diagram automorphism σ acts on W . Let W σ be the fixed point group of σ on W . 
Let Wσ be the Weyl group of gσ with simple reflections {sı | ı ∈ Iσ}. Then there exists 
an isomorphism ι : W σ 
 Wσ such that for any ı ∈ Iσ,

ι−1(sı) =
{∏

i∈ı si any i �= j ∈ ı, aij = 0
sisjsi if ı = {i, j} and aij = −1

. (12)

The following lemma is obvious.
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Lemma 2.4. The group action of Wσ on Pσ is compatible with the action of W σ on P σ, 
with respect to the isomorphisms ι : Pσ 
 Pσ and ι : W σ 
 Wσ.

The diagram automorphism σ also acts naturally on W�. Let W σ
� denote the fixed 

point group of σ on W�. It is easy to see that

W σ
� = W σ

� �Qσ. (13)

Let Îσ be the set Iσ � {0}. We have the following lemma (cf. [7, Section 5.2]).

Lemma 2.5. W σ
� is a Coxeter group generated by {ι−1(sı) | ı ∈ Îσ}.

The group W σ
� naturally acts on Pσ

R. Let A denote the set of alcoves of W� in PR. 
There exists a natural action of σ on A. Let Aσ be the set of σ-stable alcoves.

Lemma 2.6.

(1) For any A ∈ Aσ, the set Aσ is not empty, where Aσ is the set of σ-invariant elements 
in A.

(2) For any two σ-stable alcoves A and A′ in A, there exists a unique w ∈ Wσ
� such that 

w(A) = A′.

Proof. We first prove (1). For any λ ∈ A, λ, σ(λ), · · ·σr−1(λ) ∈ A, where r is the order 
of σ. By the convexity of A,

λ + σ(λ) + · · · + σr−1(λ)
r

∈ A,

which is σ-invariant.
Now we prove (2). The affine Weyl group W� acts simply and transitively on A (cf. 

[15, §4.5]). Hence, given any two elements A, A′ ∈ Aσ, there exists a unique w ∈ W�

such that w(A) = A′. In particular, we have

σ(w)(A) = σwσ−1(A) = σw(A) = σ(A′) = A′ = w(A).

By the uniqueness of w, we have σ(w) = w. �
Let Pσ,R be the space Pσ ⊗Z R. We still denote by ι : W σ

� 
 Wσ � ι(�Qσ) the natural 
isomorphism of groups. By Lemma 2.3, Wσ � ι(�Qσ) is an affine Weyl group. In view of 
Lemma 2.1 and Lemma 2.3,

A0,σ = {λ ∈ Pσ,R | 〈λ, α̌ı〉σ > 0 for any ı ∈ Iσ, and 〈λ, ι̌(θ̌)〉σ < �}

is the fundamental alcove of Wσ � ι(�Qσ).
Let Aσ be the set of alcoves of Wσ � ι(�Qσ) in Pσ,R.
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Proposition 2.7.

(1) The isomorphism ι : P σ
R 
 Pσ,R induces a bijection ι : (A0)σ 
 A0,σ.

(2) There exists a bijection Aσ 
 Aσ with the map given by

A → ι(Aσ).

(3) For any λ ∈ Pσ
R, λ is in an affine wall of W� if and only if ι(λ) ∈ Pσ,R is in an 

affine wall of Wσ � ι(�Qσ).

Proof. We first prove (1). For any λ ∈ Pσ
R, λ ∈ (A0)σ if and only if ι(λ) ∈ (A0)σ, since

〈λ, α̌i〉 = 〈ι(λ), ι̌(α̌i)〉σ = 〈ι(λ), α̌ı〉σ > 0,

for any ı ∈ Iσ and i ∈ ı, and 〈λ, θ̌〉 = 〈ι(λ), ̌ι(θ̌)〉σ < �.
The second part (2) of proposition follows from Lemma 2.6 and the first part of the 

proposition. The third part (3) of the proposition follows from the first and second part 
of proposition. �

Let �σ : W σ
� → N denote the length function on the Coxeter group Wσ

� . For any 
λ ∈ �Qσ, let τλ be the translation on Pσ

R by λ. The following lemma will be used in the 
proofs of Proposition 5.15 and Lemma 5.18 in Section 5.

Lemma 2.8. The length �σ(τλ) is even.

Proof. When g is not A2n, by Lemma 2.3 ι(Qσ) = Qσ. The Coxeter group W σ
� is 

isomorphic to the affine Weyl group Wσ �Qσ. The problem is reduced to show that for 
any λ ∈ Qσ, τλ has even length in Wσ � Qσ. If λ is dominant, then �σ(τλ) = 〈λ, 2ρ̌σ〉
(cf. [17]), where ρ̌σ is the sum of all fundamental weights of gσ. Hence �σ(τλ) is even. 
For general λ, λ = w(λ) for some w ∈ Wσ and some dominant weight λ+ ∈ Qσ. Then 
τλ = wτλ+w−1, and hence τλ is even.

When g is of type A2n, by Lemma 2.3 ι(Qσ) = 1
2Qσ,l. The normalized Killing form 

on gσ can identify �
2Qσ,l with �

2Q̌σ (cf. [1, Proof of Lemma 9.3 (b)]), where Q̌σ is the 
coroot lattice of gσ. This identification is compatible with the action of Wσ. Hence W σ

�

is isomorphic to Wσ � Q̌σ. By the same argument as above, the length �σ(τλ) is also 
even. �
3. Conformal blocks

3.1. Affine Lie algebra

Let g be a simple Lie algebra. Let C((t)) be the field of Laurent series over C. Let g̃
be the associated affine Kac-Moddy algebra g((t)) ⊕Cc ⊕ Cd, where g((t)) denotes the 
loop Lie algebra g ⊗C C((t)). The Lie bracket [, ] on g̃ is given by
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[u⊗ f, v ⊗ g] := [u, v] ⊗ fg + (u|v)Rest=0(
df

dt
g)c,

and [u ⊗ tn, d] = nu ⊗ tn, [d, c] = 0, [u ⊗ f, c] = 0, for any u, v ∈ g and f, g ∈ C((t)), 
where [u, v] is the Lie bracket on g and (·|·) is the normalized invariant bilinear form 
on g. For convenience, we identify u ⊗ 1 with u for any u ∈ g, and hence g is naturally 
a Lie subalgebra of g̃.

Put ĝ = g((t)) ⊕Cc. Clearly ĝ is a Lie subalgebra of g̃. The affine Kac-Moody algebra 
g̃ corresponds to the extended Dynkin diagram Î = I �{0} of g. The Cartan subalgebra 
t̃ associated to g̃ is t ⊕Cc ⊕Cd. For any λ ∈ P we view it as a weight of g̃ in the following 
way, λ extends to t̃ such that λ(d) = λ(c) = 0. Let δ be the linear functional on t̃ such 
that

δ|t = 0, δ(c) = 0, δ(d) = 1.

Let α0 = −θ + δ, where θ is the highest root of g. Then {αi | i ∈ Î} is the set of simple 
roots of g̃. The fundamental weight Λ0 of g̃ is given by the linear functional on t̃ such 
that

Λ0|t = 0, Λ0(c) = 1, Λ0(d) = 0.

3.2. Affine Weyl groups and Weyl groups of affine Kac-Moody algebras

In the following we describe the relationship between the affine Weyl groups of simple 
Lie algebras and the Weyl groups of affine Kac-Moody algebras. For more details, one 
can refer to [19, §6]. These two different perspectives are both crucial in this paper.

Let Ŵ be the Weyl group of the affine Kac-Moody algebra g̃ (cf. [19, §3.7]). Set 
t̃∗R := PR +RΛ0 +Rδ. The Weyl group Ŵ acts on ̃t∗R. Note that Ŵ keep δ invariant (cf. 
[19, §6.5]). Hence the Weyl group Ŵ acts on P̂R,� for any � ∈ R, where

P̂R,� := {x ∈ t̃∗R | 〈x, c〉 = �}/Rδ.

With respect to the isomorphism PR 
 P̂R,� given by λ → λ + �Λ0, we have the 
following lemma (cf. [19, §6.5,§6.6]).

Lemma 3.1. There exists an isomorphism af : Ŵ 
 W� of groups such that for any 
Λ = λ + �Λ0 ∈ P̂R,� and w ∈ Ŵ , the following formula holds,

w · Λ = af(w) · λ + �Λ0 in P̂R,�.

Let ρ̂ be the sum 
∑

i∈Î Λi of all fundamental weights of g̃. By [19, §6.2.8], ρ̂ = ρ + ȟΛ0
where ρ is the sum 

∑
i∈I ωi of all fundamental weights of g, and ȟ is the dual Coxeter 

number of g.
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We define � action of Ŵ on P̂R,� as follows,

w � Λ = w · (Λ + ρ̂) − ρ̂, w ∈ Ŵ ,Λ ∈ P̂R,�.

Similarly, we still denote by � the following action of W� on PR,

w � λ = w · (λ + ρ) − ρ, w ∈ W�, λ ∈ PR.

Lemma 3.2. Given Λ = λ + �Λ0 ∈ P̂R,� and w ∈ Ŵ , we have

w � Λ = af(w) � λ + �Λ0, where af(w) ∈ W�+ȟ.

Proof. It follows from Lemma 3.1 and the formula ρ̂ = ρ + ȟΛ0. �
3.3. Diagram automorphisms as intertwining operators of representations

We denote by Vλ the irreducible representation of g of highest weight λ for each 
λ ∈ P+. From now on we always fix a highest weight vector vλ ∈ Vλ for each λ. There 
exists a unique operator σ : Vλ → Vσ(λ) such that σ(vλ) = vσ(λ), and σ(u ·v) = σ(u) ·σ(v)
for any u ∈ g and v ∈ Vλ.

When σ(λ) = λ, σ acts on Vλ. Given any σ-invariant dominant weight of g and any 
r-th root of unity ξ ∈ C where r is the order of σ, we denote by Vλ,ξ the representation 
of g � 〈σ〉, i.e. it consists of Vλ as representation of g and an operator σ : Vλ → Vλ such 
that σ acts on vλ by ξ, and σ(u · v) = σ(u) · σ(v).

Given a tuple �λ = (λ1, · · · , λk) of dominant weights of g. We denote by V�λ the tensor 
product Vλ1 ⊗ · · · ⊗ Vλk

. Denote by V g

�λ
the invariant space of g on V�λ. The collection of 

operators {σ : Vλ → Vσ(λ)} induce

σ : V�λ → Vσ(�λ), σ : V g

�λ
→ V g

σ(�λ)
,

where σ(�λ) = (σ(λ1), · · · , σ(λk)).
Recall the set P� defined in (1). The following lemma is well-known (cf. [19, §12.4]).

Lemma 3.3. For any λ ∈ P+ and � ∈ N, λ + �Λ0 is a dominant weight of g̃ if and only 
if λ ∈ P�.

For any λ ∈ P�, let M̂(Vλ) denote the generalized Verma module U(ĝ) ⊗U(p̂) Vλ of ĝ, 
where p̂ = g[[t]] ⊕C · c acts on Vλ by evaluating t = 0 and c acts by �. Then the unique 
maximal irreducible quotient Hλ is an irreducible integrable representation of ĝ of level �. 
The action of ĝ on Hλ extends uniquely to the irreducible integrable representation of g̃
of highest weight λ + �Λ0 by letting d act trivially on the highest weight vectors.

From the construction of Hλ, there exists a natural inclusion Vλ → Hλ. Denote by v̄λ
the image of vλ ∈ Vλ in Hλ, which is again a highest weight vector in Hλ.
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The diagram automorphism σ : g → g extends to an automorphism on ĝ (by abuse 
of notation we still use σ) such that σ(u ⊗ f) = σ(u) ⊗ f for any u ∈ g and f ∈ C((t)), 
and σ(c) = c. As in the case of Vλ, there exists a unique operator σ : Hλ → Hσ(λ) such 
that σ(v̄λ) = v̄σ(λ), and σ(X · v) = σ(X)σ(v) for any X ∈ ĝ and v ∈ Hλ. In particular 
σ acts on Hλ when σ(λ) = λ. As in the case of Vλ, for any σ-invariant dominant weight 
λ of g and for any r-th root of unity ξ, we denote by Hλ,ξ the representation of ĝ� 〈σ〉
which satisfies similar conditions for Vλ,ξ.

Given a tuple �λ of dominant weights, denote by H�λ the tensor product Hλ1⊗· · ·⊗Hλk
. 

The operators {σ : Hλ → Hσ(λ)} induce the operator σ : H�λ → Hσ(�λ) such that

σ(v1 ⊗ · · · ⊗ vk) = σ(v1) ⊗ · · · ⊗ σ(vk),

for any vi ∈ Hλk
, i = 1, · · · , k.

The inclusion Vλ ↪→ Hλ is compatible with the diagram automorphism, i.e.

Vλ

σ

Hλ

σ

Vσ(λ) Hσ(λ)

. (14)

Let ĝ− denote the Lie subalgebra t−1g[t−1]. We denote by (Hλ)ĝ− the coinvariant 
space of Hλ with respect to the action of ĝ−. The Lie algebra g acts naturally on (Hλ)ĝ− . 
The following lemma is well-known.

Lemma 3.4. As representations of g, we have a natural isomorphism Vλ 
 (Hλ)ĝ− . More-
over the following diagram commutes

Vλ

σ

(Hλ)ĝ−

σ

Vσ(λ) (Hσ(λ))ĝ−

. (15)

Let τ be the Cartan involution of g such that τ(ei) = −fi, τ(fi) = −ei, τ(hi) = −hi, 
where ei, fi, hi for i ∈ I, are Chevalley generators of g. Then τ is an automorphism on g. 
For any finite dimensional representation V of g, by composing τ we can redefine a new 
representation structure on V , X ∗ v := τ(X) · v, for any X ∈ g and v ∈ V . We denote 
by V τ this τ -twisted representation.

For any dominant weight λ, let λ∗ be the dominant weight −ω0(λ) where ω0 is the 
longest element in the Weyl group W . The space V τ

λ is isomorphic to Vλ∗ as representa-
tions of g.

The Cartan involution τ on g extends to an automorphism on ĝ (by abuse of notation 
we still use τ) such that τ(u ⊗ f) = τ(u) ⊗ f and τ(c) = c for any u ∈ g, f ∈ C((t)). 
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Denote by Hτ
λ the representation of ĝ by composing the automorphism τ : ĝ → ĝ. Then 

Hτ
λ 
 Hλ∗ .
Summarizing the above discussions, we have the following lemma.

Lemma 3.5.

(1) There exists a unique C-linear isomorphism τλ : Vλ → Vλ∗ such that

τλ(vλ) = vλ∗ , τλ(u · v) = τ(u) · τλ(v), for any u ∈ g and v ∈ Vλ.

(2) There exists a unique C-linear isomorphism τλ : Hλ → Hλ∗ such that

τλ(vλ) = vλ∗ , τλ(X · v) = τ(X) · τλ(v), for any X ∈ ĝ and v ∈ Hλ.

The isomorphism τλ : Vλ → Vλ∗ for each λ induces an isomorphism τ�λ : V g

�λ
→ V g

�λ∗ for 
any tuple of dominant weights �λ. Since for any weight λ, we have σ(λ∗) = σ(λ)∗, and 
σ ◦ τ = τ ◦ σ, we have the following lemma.

Lemma 3.6. Let �λ∗ denote (λ∗
1, · · · , λ∗

k). The following diagram commutes:

V g

�λ

σ

τ
V g

�λ∗

σ

V g

σ(�λ)
τ

V g

σ(�λ)∗

,

3.4. Conformal blocks and diagram automorphisms

A k-pointed projective curve consists of a projective curve C and k-distinct smooth 
points �p = (p1, · · · , pk) in C. Given a k-pointed projective curve (C, �p), we associate a 
dominant weight λi ∈ P� to each point pi. Let g(C\�p) be the space of g-valued regular 
functions on C\�p. The space g(C\�p) is naturally a Lie algebra induced from g. There 
exists a Lie algebra action of g(C\�p) on H�λ, and the space V

g,�,�λ(C, �p) of conformal 
blocks associated to �p and �λ is defined as follows:

V
g,�,�λ(C, �p) := (H�λ)g(C\�p) = H�λ/g(C\�p)H�λ.

Let τ�λ : H�λ → H�λ∗ be the C-linear isomorphism τλ1 ⊗· · ·⊗ τλk
. The map τ�λ descends 

to an isomorphism on the space of conformal blocks

τ�λ : V
g,�,�λ(C, �p) → V

g,�,�λ∗(C, �p).



J. Hong / Advances in Mathematics 354 (2019) 106731 17
Lemma 3.7. We have the following commutative diagram:

V
g,�,�λ(C, �p)

σ

τ�λ
V
g,�,�λ∗(C, �p)

σ

V
g,�,σ(�λ)(C, �p)

τ�λ
V
g,�,σ(�λ∗)(C, �p)

.

Proof. The automorphism σ commutes with the automorphism τ on g, i.e. τ ◦σ = σ ◦ τ . 
Then commutativity easily follows. �
Proposition 3.8. Let �p = {p1, p2, · · · , ps}, �q = {q1, q2, · · · , qt} be two finite nonempty 
subsets smooth points of C, without common points; let λ1, · · · , λs, μ1, · · · , μt be elements 
in P�. We let g(C\�p) act on Vμj

through the evaluation map X ⊗ f → f(qj)X. The 
inclusions Vμj

↪→ Hμj
induce an isomorphism

(H�λ ⊗ V�μ)g(C\�p) 
 (H�λ ⊗H�μ)g(C\�p∪�q) = V
g,�,�λ,�μ(C, �p, �q), (16)

and this isomorphism is compatible with the diagram automorphism σ, i.e. the following 
diagram commutes

(H�λ ⊗ V�μ)g(C\�p)
�

σ

V
g,�,�λ,�μ(C, �p, �q)

σ

(Hσ(�λ) ⊗ Vσ(�μ))g(C\�p)
�

V
g,�,σ(�λ),σ(�μ)(C, �p, �q)

. (17)

Proof. Isomorphism (16) is a well-known theorem (cf. [1, Proposition 2.3]). The commu-
tativity of diagram (17) follows from the commutativity (15). �

When �q = q and μ = 0. Isomorphism (16) is the so-called “propogation of vacua”. 
Proposition 3.8 shows that the propagation of vacua is compatible with the action of the 
diagram automorphism.

Lemma 3.9.

(1) For any p ∈ P 1, one has Vg,�(P 1) 
 Vg,�,0(P 1, p) 
 C by 1, and the automorphism 
σ acts on Vg,�(P 1) and Vg,�,0(P 1, p) by 1.

(2) For any p �= q in P 1, one has Vg,�,λ,λ∗(P 1, p, q) 
 (Vλ⊗Vλ∗)g = C. As a consequence, 
the automorphism σ acts on Vg,�,λ,λ∗(P 1, p, q) by 1 for any σ-invariant dominant 
weight λ.
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Proof. By Proposition 3.8, there exists a map C → VP1(p; 0) compatible with the action 
of σ where C is viewed as a trivial representation of g and σ acts on C trivially. By 
[1, Corollary 4.4], this map is an isomorphism. By Proposition 3.8 again, Vg,�(P 1) 

Vg,�,0(P 1, p) 
 C and this isomorphism is also compatible with the action of σ. Hence, 
σ acts on Vg,�(P 1) and Vg,�,0(P 1, p) by 1. This proves (1).

Similarly, by Proposition 3.8 there exists a map (Vλ⊗Vλ∗)g → Vg,�,λ,λ∗(P 1, p, q) which 
is compatible with the action of σ. This map is an isomorphism in view of [1, Corollary 
4.4]. On the other hand, it is easy to see that σ acts on (Vλ ⊗ Vλ∗)g by 1. Hence it also 
acts on Vg,�,λ,λ∗(P 1, p, q) by 1. �

Given a stable k-pointed curve (C, �p). Assume that q ∈ C is a nodal point in C. Let 
π : C̃ → C be the normalization of C at q. Denote by {q+, q−} the preimage of q via π. 
Without confusion, we will still denote by p1, · · · , pk the preimages of p1, p2, · · · , pk ∈ C

in C̃.
We choose a system of g-equivariant maps κμ : C → Vμ ⊗ Vμ∗ for μ ∈ P+, such that 

the following diagram commutes

C
κμ

κσ(μ)

Vμ ⊗ Vμ∗

σ

Vσ(μ) ⊗ Vσ(μ∗)

,

for any dominant weight μ. Note that the map κμ induces the following map

κ̂μ : V
g,�,�λ(C, �p) 
 V

g,�,�λ,0(C, �p, q) → V
g,�,�λ,μ,μ∗(C, �p, q+, q−).

Moreover, it is easy to see that the following diagram commutes

V
g,�,�λ(C, �p)

κ̂μ

σ

V
g,�,�λ,μ,μ∗(C, �p, q+, q−)

σ

V
g,�,σ(�λ)(C, �p)

κ̂σ(μ)
V
g,�,σ(�λ),σ(μ),σ(μ∗)(C, �p, q+, q−)

. (18)

Theorem 3.10. The map

V
g,�,�λ(C, �p)

(κ̂μ) ⊕
μ∈P�

V
g,�,�λ,μ,μ∗(C̃, �p, q+, q−) (19)

is an isomorphism. Moreover the following diagram commutes,
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V
g,�,�λ(C, �p)

(κ̂μ)

σ

⊕
μ∈P�

V
g,�,�λ,μ,μ∗(C̃, �p, q+, q−)

σ

V
g,�,σ(�λ)(C, �p)

(κ̂μ) ⊕
μ∈P�

V
g,�,σ(�λ),σ(μ),σ(μ∗)(C̃, �p, q+, q−)

. (20)

Proof. Isomorphism (19) is the well-known factorization theorem on conformal blocks 
(cf. [34, Theorem 3.19]), and the commutativity (20) follows from the commutativity 
(18). �

Recall that P σ
� is the set of σ-invariant dominant weights in P�.

Corollary 3.11. With the same setup as above. If σ(�λ) = �λ, then the following equality 
holds

tr(σ|V
g,�,�λ(C, �p)) =

∑
μ∈Pσ

�

tr(σ|V
g,�,�λ,μ,μ∗(C̃, �p, q+, q−)).

Proof. This is an immediate consequence of Theorem 3.10. �
Given a family (π : C → X, �p) of stable k-pointed curves where π is a family of 

projective curves with at most nodal singularities over a smooth variety X and �p =
(p1, · · · , pk) is a collection of sections pi : X → C with disjoint images such that pi(x)
is a smooth point in Cx := π−1(x) for each i and x ∈ X, one can attach a sheaf 
of conformal blocks V

g,�,�λ(C, �p) on X which is locally free and of finite rank, see [25]
for the coordinate-free approach to the sheaf of conformal blocks. For each x ∈ X, 
the fiber V

g,�,�λ(C, �p)|x is the space of conformal blocks V
g,�,�λ(Cx, �p(x)), where �p(x) =

(p1(x), · · · , pk(x)) are the k-distinct smooth points in Cx as the image of x via �p.
From the construction the sheaf of conformal blocks (cf. [25]), one can see the dia-

gram automorphism σ acts algebraically on V
g,�,�λ(C, �p). Denote by 〈σ〉 the cyclic group 

generated by σ. Then the group 〈σ〉 is isomorphic to Z/rZ, where r is the order of σ.

Lemma 3.12. For any family (π : C → X, �p) of stable pointed curves, the function x ∈
X → tr(σ|V

g,�,�λ(Cx, �p(x))) is constant.

Proof. Given any irreducible representation ρ of 〈σ〉, we denote by ch(ρ) and
ch(V

g,�,�λ(Cx, �p(x))) the characters of ρ and V
g,�,�λ(Cx, �p(x)) respectively as represen-

tations of 〈σ〉. For any two functions φ, ψ on 〈σ〉, we define the bilinear form

(φ, ψ) = 1
r

r−1∑
i=0

φ(σi)ψ(σ−i),

where r is the order of σ. For any x ∈ X, let mρ(x) be the multiplicity of ρ appearing 
in V � (Cx, �p(x)). By representation theory of finite groups, we have
g,�,λ
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mρ(x) = (chρ, chV
g,�,�λ(Cx,�p(x))).

This is a continuous function on X with integer values. This is forced to be constant. 
Hence

tr(σ|V
g,�,�λ(Cx,�p(x))) =

∑
mρ(x)tr(σ|ρ)

is constant along x ∈ X. �
The following theorem shows that the trace of the diagram automorphism on the 

space of conformal blocks satisfies factorization properties.

Theorem 3.13.

(1) For any stable k-pointed curve (C, �p), let �λ be a tuple of dominant weights in Pσ
�

attached to �p. Then the value tr(σ|V
g,�,�λ(C, �p)) only depends on �λ and the genus 

of C.
(2) Given a stable k-pointed curve (C, �p) of genus g ≥ 1 and a stable (k + 2)-pointed 

curve (C ′, �q) of genus g − 1. We have the following formula

tr(σ|V
g,�,�λ(C, �p)) =

∑
μ∈Pσ

�

tr(σ|V
g,�,�λ,μ,μ∗(C ′, �q)),

where a tuple �λ = (λ1, · · · , λk) of dominant weights in Pσ
� , is attached to �p and the 

first k points of �q.
(3) Given any tuples of dominant weights �λ = (λ1, λ2, · · · , λs) and �μ = (μ1, · · · , μt) in 

P σ
� where s, t ≥ 2, we have the following equality

tr(σ|V
g,�,�λ,�μ(P 1, �p1)) =

⊕
ν∈Pσ

�

tr(σ|V
g,�,�λ,ν(P

1, �p2))tr(σ|Vg,�,�μ,ν∗(P 1, �p3)),

where �p1 is any tuple of s + t distinct points, �p2 is any tuple of s + 1 distinct points 
and �p3 is any tuple of t + 1 distinct points in P 1.

Proof. We first prove part (1). By the standard theory of moduli of curves (cf. [9, The-
orem 2.15]), there exists a chain of families of stable k-pointed curves over smooth bases 
connecting any two stable k-pointed curves with the same genus. In view of Lemma 3.12, 
(1) follows.

From the theory of moduli of curves again (cf. [9, Theorem 2.15]) and the dimension 
formula for the space of nodal curves with fixed nodal types (see the discussions after 
[9, Theorem 2.15]), we know that any smooth pointed stable curve can be degenerated 
to an irreducible stable pointed curve with only one nodal point. Then part (2) follows 
from part (1) and Corollary 3.11.
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We now proceed to prove part (3). Let C be the union of two projective lines C =
C1 ∪ C2 where C1 and C2 intersect at one point z. Let �p = (p1, · · · , ps) be a set of 
s distinct points in C1\{z} and �q = {q1, · · · , qt} be another set of t distinct points in 
C2\{z} where s, t ≥ 2. Clearly (C, �p ∪ �q) is a stable (s + t)-pointed curve of genus zero. 
Again by the theory of moduli of curves, there exists a family π : C → X of stable 
(s + t)-pointed curves over a smooth variety X such that Cx0 = C with �p ∪ �q and any 
other fiber is a projective line with a tuple �p1 of s + t points. By Lemma 3.12,

tr(σ|V
g,�,�λ,�μ(C, �p, �q)) = tr(σ|V

g,�,�λ,�μ(P 1, �p1).

Let π : C̃ → C be the normalization of C at z with the preimage (z+, z−) of z. The 
pointed curve (C̃, �p, �q, z+, z−) = (P 1, �p, z+) � (P 1, �q, z−) is a disjoint union of a (s +
1)-points projective line and a (t + 1)-pointed projective line. Finally, part (3) follows 
from Corollary 3.11 and Lemma 3.12. �
Remark 3.14. By Theorem 3.13, the computation of the trace of the diagram automor-
phism on the space of conformal blocks can be reduced to the trace of the diagram 
automorphism on the space of conformal blocks on the pointed curve (P 1, (0, 1, ∞)).

3.5. σ-twisted fusion ring

Let J be a finite set with an involution λ → λ∗. We denote by NJ the free commutative 
monoid generated by J , that is, the set of sums 

∑
λ∈J nλλ with nλ ∈ N. The involution 

of J extends by linearity to an involution x → x∗ of NJ . We first recall the definition of 
fusion rule (cf. [1, §5]).

Definition 3.15. A fusion rule on J is a map N : NJ → Z satisfying the following 
conditions:

(1) One has N(0) = 1, and N(λ) > 0 for some λ ∈ J ;
(2) N(x∗) = N(x) for every x ∈ NJ ;
(3) For x, y ∈ NJ , one has N(x + y) =

∑
λ N(x + λ)N(y + λ∗).

The kernel of a fusion rule N by definition is the set of elements λ ∈ J such that 
N(λ + x) = 0 for all x ∈ NI . A fusion rule on J is called non-degenerate if the kernel is 
empty.

Lemma 3.16. If σ(�λ) = �λ, then the trace tr(σ|V
g,�,�λ(C, �p)) is an integer.

Proof. When the order of σ is 2, this is obvious. In general, it follows from Theorem 5.11, 
Formula (5) in the introduction and part (3) of Theorem 3.13. �
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Theorem 3.17. The map trσ : NPσ
� → Z given by

∑
λi → tr(σ|V

g,�,�λ(P 1, �p)),

where �λ = (λ1, · · · , λk) and �p = (p1, · · · , pk) is the set of any k-distinct points in P 1, is 
a non-degenerate fusion rule. Here the set Pσ

� is equipped with the involution λ → λ∗ :=
−w0(λ), where w0 is the longest element in the Weyl group W .

Proof. By Lemma 3.16, the trace map trσ indeed always takes integer values.
Condition (1) of Definition 3.15 follows from part (1) of Lemma 3.9. Condition (2) 

follows from Lemma 3.7. Condition (3) follows from part (3) of Theorem 3.13. The 
non-degeneracy follows from part (2) of Lemma 3.9. �

Let R�(g, σ) be a free abelian group with the set Pσ
� as a basis. As a consequence 

of Theorem 3.17 and [1, Proposition 5.3], we can define a ring structure on R�(g, σ) by 
putting

λ · μ :=
∑
ν∈Pσ

�

tr(σ|Vg,�,λ,μ,ν∗(P 1, 0, 1,∞))ν, for any λ, μ ∈ Pσ
� . (21)

Let Sσ be the set of characters (i.e. ring homomorphisms) of R�(g, σ) into C. The 
following proposition is a consequence of general facts on fusion ring by Beauville [1, 
Corollary 6.2].

Proposition 3.18.

(1) R�(g, σ) ⊗C is a reduced commutative ring.
(2) The map R�(G, σ) ⊗ C → CSσ given by x → (χ(x))x∈Sσ

is an isomorphism of 
C-algebras.

(3) We have χ(x∗) = χ(x), where χ(x) denotes the complex conjugation of χ(x) for any 
χ ∈ Sσ and x ∈ R�(g, σ).

Let ωσ be the Casimir element in R�(g, σ) defined as follows

ωσ =
∑
λ∈Pσ

�

λ · λ∗. (22)

Proposition 3.19. For any k-pointed stable curve (C, �p) and for any σ-invariant tuple �λ
of dominant weights in P�, we have the following formula

tr(σ|V
g,�,�λ(C, �p)) =

∑
χ∈Sσ

χ(λ1) · · ·χ(λk)χ(ωσ)g−1,

where g is the genus of C and χ(ωσ) =
∑

λ∈Pσ |χ(λ)|2.

�
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Proof. This is a consequence of part (2) of Theorem 3.13 and [1, Proposition 6.3]. �
From this proposition, if we can determine the set Sσ and the value χ(ωσ) for each 

χ ∈ Sσ, then the trace tr(σ|V
g,�,�λ(C, �p)) is known.

4. Sign problems

4.1. Borel-Weil-Bott theorem on the affine flag variety

Let G be a connected and simply-connected simple algebraic group associated to a 
simple Lie algebra g. Let G((t)) be the loop group of G, and let Ĝ be the nontrivial 
central extension of G((t)) by the center C×. Then ĝ is the Lie algebra of Ĝ. Let G̃ be 
the group G̃ = Ĝ�C× whose Lie algebra is the affine Kac-Moody algebra g̃.

Let I be the Iwahori subgroup of G((t)), i.e. I = ev−1
0 (B), where B is the Borel 

subgroup of G. Let FlG be the affine flag variety G((t))/I of G. Let Î be the group 
I × C×, where C× is the center of Ĝ. Let Ĩ be the product Î � C× as subgroup of G̃. 
Then we have

FlG 
 Ĝ/Î 
 G̃/Ĩ.

Given any algebraic representation V of Ĩ, we can attach a G̃-equivariant vector 
bundle L(V ) on FlG as L(V ) := G̃×Ĩ V ∗, where V ∗ is the dual representation of Ĩ. Let 
Λ be a character of Ĩ and let CΛ be the associated 1-dimensional representation of Ĩ. 
We denote by L(Λ) the G̃-equivariant line bundle L(CΛ) on FlG.

For any ind-scheme X and any vector bundle F on X, the cohomology groups 
H∗(X, F) carry a topology. We put H∗(X, F)∨ the restricted dual of H∗(X, F), i.e. 
H∗(X, F)∨ consists of continuous functional on H∗(X, F) where we take discrete topol-
ogy on C. The affine flag variety FlG is an ind-scheme of ind-finite type. We refer the 
reader to [21] for the foundation of flag varieties of Kac-Moody groups.

Recall the following affine analogue of Borel-Weil-Bott theorem (cf. [21, Theorem 
8.3.11]).

Theorem 4.1. Given any dominant weight Λ of G̃ and any w ∈ Ŵ , the space 
H�(w)(FlG, L(w � Λ))∨ is naturally the integrable irreducible representation HΛ of g̃ of 
highest weight Λ, where w�Λ = w·(Λ +ρ̂) −ρ̂ and H�(w)(FlG, L(w � Λ)) is the cohomology 
of the line bundle L(w � Λ) on FlG. Moreover, Hi(FlG, L(w � Λ)) = 0 if i �= �(w).

Let σ be a diagram automorphism on G. It induces an action on G((t)) by acting 
trivially on t. It also induces actions on Ĝ and G̃ by acting trivially on the center and 
degree component. Note that σ preserves Ĩ. For any σ-invariant character Λ of Ĩ, we 
have a natural σ-equivariant structure on L(Λ), since

G̃� 〈σ〉 ×Ĩ�〈σ〉 (CΛ)∗ 
 G̃×Ĩ (CΛ)∗,
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where the action of σ on CΛ is by the scalar 1. Let ξ be an r-th root of unity, where r
is the order of σ. We denote by L(Λ, ξ) the following G̃� 〈σ〉-equivariant line bundle,

L(Λ, ξ) := G̃� 〈σ〉 ×Ĩ�〈σ〉 (CΛ,ξ)∗

where Î acts on CΛ,ξ by Λ and σ acts on CΛ,ξ by ξ. By this convention the natural 
G̃� 〈σ〉-equivariant structure on L(Λ) is isomorphic to L(Λ, 1).

For any σ-orbit ı in the affine Dynkin diagram Î, let Gı be the simply-connected 
algebraic group associated to the sub-diagram ı and let Bı be the Borel subgroup of Gı. 
We have the following possibilities

Gı =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

SL2 ı = {i}
SL2 × SL2 ı = {i, j} and i, j are not connected
SL2 × SL2 × SL2 ı = {i, j, k} and i, j, k are not connected
SL3 ı = {i, j} and i, j are connected

.

We still denote by σ the diagram automorphism on Gı which preserves Bı. Any 
σ-invariant weight λ of Gı can be written as nρı for some integer n ∈ Z, where ρı is the 
sum of all fundamental weights of Gı. Let Bı := Gı/Bı be the flag variety of Gı. Put 
dı = dimGı/Bı.

As in the affine case for any r-th root of unity and any σ-invariant character λ of Bı, 
we set

L(λ, ξ) = Gı ×Bı
(Cλ,ξ)∗

as a Gı � 〈σ〉-equivariant line bundle on Bı. Let Ωı be the canonical bundle of Bı. Note 
that the canonical bundle Ωı is naturally a Gı � 〈σ〉-equivariant line bundle.

Lemma 4.2. We have the following isomorphism of Gı � 〈σ〉-equivariant line bundles 
Ωı 
 L(−2ρı, εı), where εı = (−1)dı−1.

Proof. The canonical bundle Ωı is naturally isomorphic to Gı ×Bı
(∧dı(gı/bı))∗, where 

gı (resp. bı) is the Lie algebra of Gı (resp Bı). Hence, it suffices to determine the action 
of Tı and σ on ∧dı(gı/bı), where Tı is the maximal torus of Gı contained in Bı. Note 
that

∧dı(gı/bı) 
 ∧dın−ı ,

where n−ı is the nilpotent radical of the negative Borel subalgebra of gı. Hence, as 
1-dimensional representation of Tı, it is isomorphic to −2ρı, and by case-by-case analysis 
it is easy to check σ acts on it exactly by εı. This finishes the proof of the lemma. �
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Only when ı consists of two vertices and ı = {i, j} is not connected, εı = −1; otherwise 
εı = 1.

Lemma 4.3. Given any n ∈ Z and any r-th root of unity ξ, there exists a unique isomor-
phism up to a scalar

Hdı(Bı,L(nρı, ξ)) 
 H0(Bı,L((−n− 2)ρı, εı · ξ)),

as representations of Gı � 〈σ〉. Moreover,

Hk(Bı,L(nρı, ξ)) = 0 if k �= 0, dı.

Proof. By Borel-Weil-Bott theorem we have the following isomorphism of representations 
of Gı � 〈σ〉

H0(Bı,L(nρı, ξ))∗ =
{
Vnρı,ξ n ≥ 0
0 n < 0

, (23)

for any n ∈ Z and r-th root of unity ξ, where Vnρı,ξ is the irreducible representation 
of Gı of highest weight nρı with the compatible action of σ which acts on the highest 
weight vectors by ξ.

By Serre duality we have the following canonical isomorphism

Hdı(Bı,L(nρı, ξ)) 
 H0(Bı,L(−nρı, ξ
−1) ⊗ ΩBı

)∗ (24)

as representations of Gı � 〈σ〉. In view of Lemma 4.2,

H0(Bı,L(−nρı, ξ
−1) ⊗ ΩBı

) 
 H0(Bı,L((−n− 2)ρı, εı · ξ−1)).

In view of (23), by Schur lemma there exists a unique isomorphism up to a scalar

H0(Bı,L((−n− 2)ρı, εı · ξ−1))∗ 
 H0(Bı,L((−n− 2)ρı, εı · ξ)) (25)

as representations of Gı � 〈σ〉. Therefore we have an isomorphism

Hdı(Bı,L(nρı, ξ)) 
 H0(Bı,L((−n− 2)ρı, εı · ξ)) (26)

as representations of Gı � 〈σ〉.
Now we prove the second part of the lemma. When n ≥ 0, nρı is dominant, then 

Borel-Weil-Bott theorem implies that Hk(Bı, L(nρı, ξ)) = 0 unless k = 0. In view of 
isomorphism (26), when n ≤ −2, Hk(Bı, L(nρı, ξ)) = 0 unless k = dı. When n = −1, we 
have si � ρı = ρı. Thus, Hk(Bı, L(−ρı, ξ)) = 0 for any k. �
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Let P̃ı be the parabolic subgroup of G̃ containing Ĩ and Gı. We have an isomorphism of 
varieties P̃ı/Ĩ 
 Bı. Let πı : FlG → G̃/P̃ı be the projection map. The fiber is isomorphic 
to Bı. There exists the following natural isomorphism as G̃�〈σ〉-equivariant ind-schemes

G̃� 〈σ〉 ×P̃ı�〈σ〉 Bı 
 FlG.

From the Gı � 〈σ〉-equivariant line bundle L(nρı, ξ) on Bı, by descent theory one can 
attach a G̃� 〈σ〉-equivariant line bundle Lπı

(nρı, ξ) on FlG, i.e.

Lπı
(nρı, ξ) := G̃� 〈σ〉 ×P̃ı�〈σ〉 L(nρı, ξ),

where the action of P̃ı�〈σ〉 on L(nρı, ξ) factors through Gı�〈σ〉. Let Ωπı
be the relative 

canonical line bundle of FlG over G̃/P̃ı. By Lemma 4.2 as a G̃� 〈σ〉-equivariant bundle, 
we have

Ωπı

 Lπı

(−2ρı, εı). (27)

Let Rk(πı)∗ be the k-th derived functor of the pushforward functor (πı)∗. The follow-
ing lemma is a relative version of Lemma 4.3.

Lemma 4.4. There exists a natural isomorphism of G̃� 〈σ〉-equivariant vector bundles

Rdı(πı)∗(Lπı
(nρı, ξ)) 
 (πı)∗(Lπı

((−n− 2)ρı, ξ · εı)).

Proof. By relative Serre duality for the morphism πı : FlG → G̃/P̃ı, there exists a 
canonical isomorphism of G̃� 〈σ〉-equivariant sheaves on G̃/P̃ı,

Rdı(πı)∗(Lπı
(nρı, ξ)) 
 (πı)∗(Lπı

(−nρı, ξ
−1) ⊗ Ωπı

)∨,

where ∨ denotes the dual of coherent sheaf. From isomorphism (27), it gives rise to the 
following isomorphism of G̃� 〈σ〉-equivariant sheaves on G̃/P̃ı,

Rdı(πı)∗(Lπı
(nρı, ξ)) 
 (πı)∗(Lπı

((−n− 2)ρı, ξ−1εı))∨. (28)

We look at the fiber of the sheaf (πı)∗(Lπı
((−n − 2)ρı, ξ−1εı))∨ at the base point eP̃ı ∈

G̃/P̃ı. This is the representation of P̃ı�〈σ〉 on H0(Bı, L((−n −2)ρı, εı ·ξ−1))∗ by factoring 
through the map P̃ı� 〈σ〉 → Gı� 〈σ〉. From isomorphism (25), the G̃� 〈σ〉-equivariance 
gives rise to an isomorphism of G̃� 〈σ〉-vector bundles

(πı)∗(Lπı
((−n− 2)ρı, ξ−1εı))∨ 
 (πı)∗(Lπı

((−n− 2)ρı, ξ · εı)).

Combining with (28), the lemma follows. �
By Lemma 2.5, the affine Weyl group (Ŵ )σ consists of simple reflections {sı | ı ∈ Îσ}.
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Lemma 4.5. For any σ-invariant weight Λ of g̃ and for any σ-orbit in Î, we have

sı · Λ =
{

Λ − 〈Λ, α̌i〉
∑

i∈ı αi if aij = 0 for any i �= j ∈ ı,

Λ − 2〈Λ, αi〉(αi + αj) if ı = {i, j} is connected.

Proof. For any σ-orbit ı in I, this is routine to check, in particular we use the formula 
(7). When ı = {0}, this is simply the definition of s0. �
Proposition 4.6. For any σ-invariant weight Λ, and for any σ-orbit in the affine Dynkin 
diagram Î and any r-th root of unity ξ, we have the following isomorphism

Hk+dı(FlG,L(sı � Λ, ξ)) 
 Hk(FlG,L(Λ, εı · ξ))

as representations of G̃� 〈σ〉, for all integer k.

Proof. Note that the restriction L(Λ, ξ)|Bı
of the G̃� 〈σ〉-equivariant line bundle L(Λ, ξ)

to the fiber Bı is isomorphic to L(〈Λ, α̌i〉ρı, ξ) as a Gı � 〈σ〉-equivariant line bundle for 
any i ∈ ı. Note that for any i, j ∈ ı, 〈Λ, α̌i〉 = 〈Λ, α̌j〉. In view of Lemma 4.5, we have

sı � Λ =
{

Λ − (〈Λ, α̌i〉 + 1)
∑

i∈ı αi if ı is not connected
Λ − 2(〈Λ, αi〉 + 1)(αi + αj) if ı = {i, j} is connected

.

Hence for any σ-orbit ı in Î and i ∈ ı, we have

〈sı � Λ, α̌i〉 = −〈Λ, α̌i〉 − 2.

It follows that

L(sı � Λ, ξ)|Bı
= L(−(〈Λ, α̌i〉 + 2)ρı, ξ).

By Lemma 4.4, we have the following natural isomorphism of G̃ � 〈σ〉-equivariant 
vector bundles

Rdıπ∗(L(Λ, ξ)) 
 π∗(L(sı � Λ, εı · ξ). (29)

By Lemma 4.3, we have

Rkπ∗(L(Λ, ξ)) = 0 if k �= 0, dı. (30)

In view of (29) and (30), Leray’s spectral sequence implies that

Hk+dı(FlG,L(Λ, ξ)) 
 Hk(FlG,L(Λ, εı · ξ))

as representations of G̃� 〈σ〉. �



28 J. Hong / Advances in Mathematics 354 (2019) 106731
For any w ∈ (Ŵ )σ, put

εw = (−1)�(w)−�σ(w). (31)

For any reduced expression w = sıksık−1 · · · sı1 of w in the Coxeter group (Ŵ )σ where 
ı1, · · · , ık are σ-orbits in Î and each sı is defined in (12) for any ı ∈ Iσ and s{0} = s0, we 
have εw = εık · · · εı1 , where εı is introduced in Lemma 4.2.

Finally, we are now ready to prove the following theorem.

Theorem 4.7. For any w ∈ (Ŵ )σ and for any σ-invariant dominant weight Λ of G̃. We 
have the following isomorphism of representations of G̃� 〈σ〉

H�(w)(FlG,L(w � Λ, ξ)) 
 H0(FlG,L(Λ, εw · ξ)).

Proof. We can write w = sıksık−1 · · · sı1 as a reduced expression in the Coxeter group 
(Ŵ )σ, where ı1, · · · , ık are σ-orbits in Î. Then

Λ, sı1 � Λ, (sı2sı1) � Λ, · · · , w � Λ

are all σ-invariant weights of G̃.
Note that as an element in Ŵ , the length �(w) of w is equal to 

∑k
i=1 dıi . In view of 

Proposition 4.6, we get a chain of isomorphisms of G̃� 〈σ〉-representations

H�(w)(FlG,L(w � Λ, ξ)) 
 H�(w)−dı1 (FlG,L((sı1w) � Λ, εı1ξ))


 H�(w)−dı1−dı2 (FlG,L((sı2sı1w) � Λ, εı2εı1ξ))

· · · · · ·


 H0(FlG,L(Λ, εw · ξ)).

This finishes the proof of the theorem. �
For any dominant weight Λ of g̃ and an r-th root of unity, as always we denote by 

HΛ,ξ the irreducible integrable representation of g̃ of highest weight Λ together with a 
compatible action of σ which acts on the highest weight vectors of HΛ,ξ by ξ.

Corollary 4.8. In the same setting as in Theorem 4.7, we have the following isomorphism 
of representations of g̃� 〈σ〉,

H�(w)(FlG,L(w � Λ, ξ))∨ 
 HΛ,εw·ξ.

Proof. This is an immediate consequence of Theorem 4.1 and Theorem 4.7. �



J. Hong / Advances in Mathematics 354 (2019) 106731 29
Remark 4.9. For any σ-invariant weight λ of G, let L(λ) be the associated line bundle 
on G/B. By Borel-Weil-Bott theorem, Hi(G/B, L(λ)) carries an action of the diagram 
automorphism. The action was determined by Naito. Theorem 4.7 and Theorem 4.13
are the affine analogues of the results of Naito [28].

4.2. Borel-Weil-Bott theorem on affine Grassmannian

For any weight λ of G, let L�(λ) be the Ĝ-equivariant line bundle on FlG defined as 
follows,

L�(λ) := Ĝ×Î I�(Cλ)∗,

where I�(Cλ) is the 1-dimensional representation of Î such that I factors through the 
character λ : B → C× and the center C× acts by t → t�, and I�(λ)∗ is the dual of I�(λ)
as the representation of I.

For any character Λ of Ĩ, if Λ = λ + �Λ0 where Λ is a weight of G̃ and λ is a weight 
of G, then as Ĝ-equivariant line bundles, L(Λ) = L�(λ).

If λ is σ-invariant, then L�(λ) has a natural σ-equivariant structure as in the case of 
L(Λ). Similarly, to an r-th root of unity ξ where r is the order of σ, we can associate a 
Ĝ � 〈σ〉-equivariant line bundle L�(λ, ξ). If Λ = λ + �Λ0 where λ ∈ P σ, then L(Λ, ξ) =
L�(λ, ξ) as Ĝ� 〈σ〉-equivariant line bundles.

Recall from Lemma 3.3, the weight Λ = λ + �Λ0 is dominant for G̃ if and only if 
λ is dominant for G and 〈λ, θ̌〉 ≤ �. Recall the affine Weyl group W�+ȟ discussed in 
Section 2.2, the action of W�+ȟ on the weight lattice P of G is compatible with the 

action of Ŵ on the space of weights of G̃ of level �, see Lemma 3.1 and Lemma 3.2. 
Therefore we can translate Theorem 4.7 into the following equivalent theorem.

Theorem 4.10. For any w ∈ W�+ȟ such that σ(w) = w and for any σ-invariant dominant 
weight λ ∈ P�, we have the following isomorphism

H�(w)(FlG,L�(w � λ, ξ)) 
 H0(FlG,L�(λ, εw · ξ))

as representations of Ĝ� 〈σ〉.

Let P̂ be the subgroup G[[t]] × C× of Ĝ where C× is the center torus. The affine 
Grassmannian GrG := G((t))/G[[t]] is isomorphic to the partial flag variety Ĝ/P̂. For 
any finite dimensional representation V of G, let I�(V ) be the representation of P̂ such 
that G[[t]] acts via the evaluation map ev0 : G[[t]] → G given by evaluating t = 0, and 
the center C× acts by t → t�. Let L�(V ) be the induced Ĝ-equivariant vector bundle on 
GrG, i.e. L�(V ) := Ĝ×P̂ I�(V )∗, where I�(V )∗ is the dual of I�(V ) as the representation 
of P̂.
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The diagram automorphism σ on G induces an automorphism on Ĝ and it preserves P̂. 
For any λ ∈ (P+)σ, the vector bundle L�(Vλ) is naturally equipped with a σ-equivariant 
structure, since

Ĝ� 〈σ〉 ×P̂�〈σ〉 I�(Vλ)∗ 
 Ĝ×P̂ I�(Vλ)∗.

Similarly, for any r-th root of unity ξ, we have the Ĝ � 〈σ〉-equivariant vector bundle 
L�(Vλ,ξ) on GrG.

The following lemma is well-known.

Lemma 4.11. Let H1 be a linear algebraic group and H2 be a subgroup of H1. Let V1 be a 
finite dimensional representation of H1 and let V2 be a finite dimensional representation 
of H2. Then we have an isomorphism of H1-equivariant vector bundles

H1 ×H2 (V2 ⊗ V1|H2) 
 (H1 ×H2 V2) ⊗ V1,

given by (h1, v2 ⊗ v1) → (h1, v2) ⊗ h1 · v1, where h1 ∈ H1, v1 ∈ V1 and v2 ∈ V2.

Lemma 4.12. Let λ be a σ-invariant dominant weight of G, and let V be a finite dimen-
sional representation of G � 〈σ〉. There is an isomorphism of Ĝ� 〈σ〉-representations

Hk(GrG,L�(Vλ,ξ ⊗ V )) 
 Hk(FlG,L�(Cλ,ξ ⊗ V |B�〈σ〉),

for any k ≥ 0 and ξ an r-th root of unity.

Proof. We have the following isomorphisms of Ĝ� 〈σ〉-equivariant vector bundles

L�(Cλ,ξ ⊗ V |B�〈σ〉) 
 Ĝ� 〈σ〉 ×Î�〈σ〉 (Cλ,ξ ⊗ V |B�〈σ〉)∗


 Ĝ� 〈σ〉 ×P̂�〈σ〉 (P̂ � 〈σ〉 ×Î�〈σ〉 I�(Cλ,ξ ⊗ V |B�〈σ〉))∗


 Ĝ� 〈σ〉 ×P̂�〈σ〉 ((P̂ � 〈σ〉 ×Î�〈σ〉 I�(Cλ,ξ)) ⊗ V )∗,

where the last isomorphism follows from Lemma 4.11.
It is a Ĝ�〈σ〉-equivariant vector bundle on FlG. By Borel-Weil-Bott theorem for finite 

type algebraic group, we have

Rkπ∗L�(Cλ,ξ ⊗ V |B�〈σ〉) 

{

0 k > 0
L�(Vλ,ξ ⊗ V ) k = 0

,

where Rkπ∗ is the right derived functor of π∗. By Leray’s spectral sequence, the lemma 
follows. �
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Let W †
�+ȟ

denote the set of the minimal representatives of the left cosets of W in W�+ȟ, 
then for any w1 ∈ W and w2 ∈ W †

�+ȟ
, we have �(w1w2) = �(w1) + �(w2). Moreover for 

any w ∈ W�+ȟ and λ ∈ P�

w � λ ∈ P+ if and only if w ∈ W †
�+ȟ

, (32)

see [20, Remark 1.3]. Since P� is the set of integral points in the fundamental alcove of 
the affine Weyl group W�+ȟ, for any dominant weight λ ∈ P+, there exists a unique 

w ∈ W †
�+ȟ

such that w−1 � λ ∈ P�. By Lemma 2.6, for any σ-invariant dominant weight 
λ ∈ P+, there exists a unique w ∈ (W †

�+ȟ
)σ such that w−1 � λ ∈ P σ

� .
Recall that we defined in Section 3.3 the representation Vλ,ξ of g �〈σ〉 as the represen-

tation Vλ of g together with an operator σ such that σ acts on the highest weight vectors 
by ξ, where λ ∈ (P+)σ and ξ is an r-th root of unity. Similarly, the representation Hλ,ξ

is the representation Hλ of ĝ � 〈σ〉 of level � together with an operator σ such that σ
acts on the highest weight vectors by ξ. We have the following theorem

Theorem 4.13. For any w ∈ W †
�+ȟ

such that σ(w) = w and for any λ ∈ Pσ
� , we have the 

following isomorphism of representations of Ĝ� 〈σ〉,

H�(w)(GrG,L�(Vw�λ,ξ)) 
 H0(GrG,L�(Vλ,εwξ)).

Proof. This follows from Theorem 4.10 and Lemma 4.12. �
Corollary 4.14. With the same assumption as in Theorem 4.13.

(1) There exists an isomorphism of representations of ĝ� 〈σ〉

H�(w)(GrG,L�(Vλ))∨ 
 Hλ,εw .

(2) There exists an isomorphism of representations of g � 〈σ〉

(H�(w)(GrG,L�(Vw�λ))∨)ĝ− 
 Vλ,εw ,

where ĝ− = t−1g[t−1].

Proof. This proposition follows from Theorem 4.13, combining with Corollary 4.8, 
Lemma 4.12 and Lemma 3.4. �
4.3. Affine analogues of BBG resolution and Kostant homology

We first recall the construction of BGG resolution in the setting of affine Lie algebra, 
we refer the reader to [21, Section 9.1] for more details, in particular Theorem 9.1.3 
therein. There exists a Koszul resolution of the trivial representation C of ĝ,



32 J. Hong / Advances in Mathematics 354 (2019) 106731
· · · → Xp
δp−−→ · · · δ1−→ X0

δ0−→ C,

where Xp = U(ĝ) ⊗U(p̂) ∧p(ĝ/p̂). From the construction of Koszul resolution, this 
complex is ĝ � 〈σ〉-equivariant. Given a σ-invariant dominant weight λ ∈ P�. Set 
Xλ,p := U(ĝ) ⊗U(p̂) (∧p(ĝ/p̂) ⊗Hλ). The complex Xλ,• is a resolution of Hλ. Set

Fλ,p :=
⊕

w∈W †
�+ȟ

,�(w)=p

M̂(Vw�λ), (33)

where M̂(Vw�λ) is the generalized Verma module introduced in Section 3.3. In fact Fλ,•
is a σ-stable subcomplex of Xλ,•, and moreover Xλ,• is quasi-isomorphic to Fλ,•. Hence 
Fλ,• is a resolution of Hλ.

The proof of the following proposition heavily replies on the work of Naito [29].

Proposition 4.15. Assume that σ(λ) = λ. Then the complex Fλ,• is a resolution of Hλ as 
representations of ĝ � 〈σ〉, where σ maps M̂(Vw�λ) to M̂(Vσ(w)�λ). In particular when 
σ(w) = w, σ acts on the highest weight vectors of M̂(Vw�λ) by the scalar εw, where 
εw = (−1)�(w)−�σ(w) as defined in (31).

Proof. First of all, we note that σ maps M̂(Vw�λ) to M̂(Vσ(w)�λ) for any w ∈ W †
�+ĥ

, 
since σ(ρ) = ρ. In particular if σ(w) = w, σ keeps M̂(w�λ) stable. We need to determine 
the action of σ at the highest weight vector mw�λ of M̂(w � λ). It is easy to see that σ
acts on mw�λ by a scalar ε′w. In the following we will show that ε′w = εw.

Recall that ĝ− denote the nilpotent Lie algebra t−1g[t−1]. It is standard that M̂(Vw�λ)
is a free U(ĝ−)-module, for each w ∈ W †

�+ȟ
. Thus, the resolution Fλ,• can be used to 

compute the ĝ−-homologies of Hλ, in other words,

Hp(ĝ−,Hλ) 
 Hp((Fλ,•)ĝ−), (34)

where the LHS is the p-th ĝ−-homology of Hλ, and the RHS is the p-th homology of the 
complex (Fλ,•)ĝ− obtained from taking ĝ−-coinvariants on the complex Fλ,•. Moreover, 
the isomorphism (34) is g � 〈σ〉-equivariant. As a consequence, we get the following 
isomorphism of g � 〈σ〉-representations,

Hp(ĝ−,Hλ) 

⊕

w∈W †
�+ȟ

,�(w)=p

Vw�λ (35)

for each p ≥ 0, since (M̂(Vw�λ))ĝ− 
 Vw�λ as representations of g (cf. Lemma 3.4). As 
mentioned above, σ acts on mw�λ ∈ M̂(Vw�λ) by the scalar ε′w if σ(w) = w. It follows 
that σ acts on the highest weight vector vw�λ of Vw�λ by ε′w if σ(w) = w.

Let n− be the nilpotent radical of the negative Borel subalgebra b− of g. Put

n̂− := ĝ− ⊕ n−.
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i

Note that n̂− is the nilpotent radical of the opposite affine Borel subalgebra b̂− := ĝ−⊕b−

of ĝ, and n̂− is σ-stable. Since ĝ− is an ideal in the Lie algebra n̂−, we have the following 
spectral sequence which is compatible with the actions of σ,

Hi(n−, Hj(ĝ−,Hλ)) ⇒ Hi+j(n̂−,Hλ). (36)

Meanwhile, Hi(n−, Hj(ĝ−, Hλ)) and Hi+j(n̂−, Hλ) both carry the actions of the Cartan 
subalgebra h ⊂ b−. In fact the spectral sequence (36) degenerates at E1 page, since we 
have the following sequence of isomorphisms of h-modules:

⊕
i+j=p

Hi(n−, Hj(ĝ−,Hλ)) 

⊕

i+j=p

⊕
w∈W †

�+ȟ
,�(w)=j

Hi(n−, Vw�λ)



⊕

i+j=p

⊕
w∈W †

�+ȟ
,�(w)=j

⊕
y∈W,�(y)=i

Cy�(w�λ)



⊕

w∈W�+ȟ,�(w)=p

Cw�λ


 Hp(n̂−,Hλ),

where the first isomorphism follows from (34), the second isomorphism follows from 
Kostant homology formula for n−, the last isomorphism follows from the affine version 
of Kostant homology formula for n̂− (cf. [8]), and the third isomorphism follows since 
W †

�+ȟ
is the set of minimal representatives of the left cosets of W in W�+ȟ. The set W †

�+ȟ

satisfies the following property: for any u ∈ W�+ȟ, there exist unique w ∈ W †
�+ȟ

and 
y ∈ W such that u = yw and �(u) = �(y) + �(w).

We now make a digression on twining characters. Let V be a finite dimensional h �
〈σ〉-representation such that h acts on V semi-simply. Define

chσ(V ) :=
∑

μ∈h∗,σ(μ)=μ

tr(σ|V (μ))eμ,

where V (μ) denotes the μ-weight space in V . Then
∑
+j=p

chσ(Hi(n−, Hj(ĝ−,Hλ))) =
∑

i+j=p

∑
w∈(W †

�+ȟ
)σ,�(w)=j

ε′wchσ(Hi(n−, Vw�λ)) (37)

=
∑

i+j=p

∑
w∈(W †

�+ȟ
)σ,�(w)=j

ε′w
∑

y∈Wσ,�(y)=i

cy(σ, Vw�λ)ey�(w�λ)

(38)

=
∑

i+j=p

∑
w∈(W †

�+ȟ
)σ,�(w)=j

y∈Wσ,�(y)=i

ε′wcy(σ, Vw�λ)e(yw)�λ, (39)
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where cy(σ, Vw�λ) := tr(σ|Hi(n−, Vw�λ)(yw)�λ). Here Hi(n−, Vw�λ)(yw)�λ denotes the 
(yw) �λ-weight space in Hi(n−, Vw�λ). In the above sequence of equalities, the first equal-
ity follows from (35) and the discussions after that, the second equality follows from [29, 
Prop.3.2.1] for the Kostant homology of n−. By [29, Prop.3.2.1] for the Kostant homology 
of n̂−, we have

chσ(Hp(n̂−,Hλ)) =
∑

u∈(W�+ȟ)σ,�(u)=p

cu(σ,Hλ)eu�λ, (40)

where cu(σ, Hλ) := tr(σ|Hp(n̂−, Hλ)u�λ). Here Hp(n̂−, Hλ)u�λ denotes the u � λ-weight 
space in Hp(n̂−, Hλ). Since the spectral sequence (36) degenerates at E2, we have

∑
i+j=p

chσ(Hi(n−, Hj(ĝ−,Hλ))) = chσ(Hp(n̂−,Hλ)). (41)

Comparing formulae (39) and (40) via (41), we see that for any w ∈ (W †
�+ȟ

)σ, 
cw(σ, Hλ) = ε′wce(σ, Vw�λ), where e is the identity element in the Weyl group W . Clearly 
ce(σ, Vw�λ) = 1, hence cw(σ, Hλ) = ε′w. We can read further from [29, Corollary 3.2.3], 
in fact cw(σ, Hλ) = εw. Hence ε′w = εw. Thus, this finishes the proof. �

For any finite dimensional representation V of g and for any z ∈ C×, we denote by V z

the representation of ĝ− that is obtained by evaluating t at z. Let Hi(ĝ−, Hλ ⊗ V z
μ ) be 

the i-th ĝ−-homology on Hλ ⊗ V z
μ where ĝ− acts on Hλ ⊗ V z

μ diagonally. The following 
theorem will be used in the proof of Theorem 5.10.

Theorem 4.16. For any λ ∈ P σ
� and μ ∈ (P+)σ, the ĝ−-homology groups H∗(ĝ−, Hλ⊗V 1

μ )
can be computed by the cohomology groups of a complex of g � 〈σ〉-representations,

· · · → Dp
δp−−→ · · ·D1

δ1

−−→ D0
δ0

−−→ 0,

where as representations of g, Dp =
⊕

w∈W †
�+ȟ

, �(w)=p Vw�λ ⊗ Vμ, and σ maps Vw�λ ⊗ Vμ

to Vσ(w)�λ ⊗ Vμ. In particular if σ(w) = w, then σ acts on the highest weight vectors of 
Vw�λ by εw = (−1)�(w)−�σ(w).

Proof. From the resolution Fλ,• → Hλ, by tensoring with V 1
μ we get a resolution of 

Hλ ⊗ V 1
μ as representations of ĝ� 〈σ〉

· · · → Fλ,p ⊗ V 1
μ

δp−−→ · · ·Fλ,1 ⊗ V 1
μ

δ1

−−→ Fλ,0 ⊗ V 1
μ

δ0

−−→ 0.

As g-modules, we have

(M̂(Vw�λ) ⊗ V 1
μ )ĝ− 
 (Vw�λ ⊗C U(ĝ−)) ⊗U(ĝ−) V

1
μ 
 Vw�λ ⊗ Vμ.
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Hence the complex

· · · → (Fλ,p ⊗ V 1
μ )ĝ−

δp−−→ · · · (Fλ,1 ⊗ V 1
μ )ĝ−

δ1

−−→ (Fλ,0 ⊗ V 1
μ )ĝ−

δ0

−−→ 0

is quasi-isomorphic to

· · · → Dp
δp−−→ · · ·D1

δ1

−−→ D0
δ0

−−→ 0.

By Proposition 4.15, σ maps Vw�λ ⊗ Vμ to Vσ(w)�λ ⊗ Vμ. In particular if σ(w) = w, then 
σ acts on the highest weight vectors of Vw�λ by εw = (−1)�(w)−�σ(w). �
5. σ-twisted representation ring and fusion ring

5.1. σ-twisted representation ring

Let V be a finite dimensional representation of g. For any irreducible representation 
Vλ of g of highest weight λ, we denote by Homg(Vλ, V ) the multiplicity space of Vλ in 
V . In particular we have the following natural decomposition

V =
⊕
λ∈P+

Homg(Vλ, V ) ⊗ Vλ.

Let R(g, σ) be the free abelian group with the symbols [Vλ]σ as a basis, where λ ∈
(P+)σ. Given any finite dimensional representation V of g � 〈σ〉, V can be decomposed 
as follows

V =
⊕

λ∈(P+)σ
Homg(Vλ, V ) ⊗ Vλ ⊕

⊕
λ/∈(P+)σ

Homg(Vλ, V ) ⊗ Vλ,

as a representation of g. Put

[V ]σ :=
∑

λ∈(P+)σ
tr(σ|Homg(Vλ, V ))[Vλ]σ ∈ R(g, σ).

Let X be a finite dimensional representation of the cyclic group 〈σ〉, and for any 
representation V of g � 〈σ〉, X ⊗ V is naturally a representation of g � 〈σ〉, which is 
defined as follows

(u, σi) · x⊗ v = σi · x⊗ (u, σi) · v,

where u ∈ g, x ∈ X, v ∈ V and i ∈ Z. Similarly, V ⊗X is also naturally a representation 
of g � 〈σ〉. The following lemma is obvious.

Lemma 5.1. We have [X ⊗ V ]σ = tr(σ|X)[V ]σ, and [V ⊗X]σ = tr(σ|X)[V ]σ.
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We define a multiplication ⊗ on R(g, σ), [Vλ]σ ⊗ [Vμ]σ := [Vλ ⊗ Vμ]σ, for any λ, μ ∈
(P+)σ. By definition, we have

[Vλ ⊗ Vμ]σ =
∑

σ(ν)=ν

tr(σ|Homg(Vν , Vλ ⊗ Vμ))[Vν ]σ.

Proposition 5.2. R(g, σ) is a commutative ring with [V0]σ as the unit.

Proof. The commutativity is clear. We first show that the product ⊗ on R(g, σ) satisfies 
the associativity, i.e. for any λ, μ, ν ∈ (P+)σ,

([Vλ]σ ⊗ [Vμ]σ) ⊗ [Vν ]σ = [Vλ]σ ⊗ ([Vμ]σ ⊗ [Vν ]σ).

It suffices to show that for any λ ∈ (P+)σ and any representation V of g � 〈σ〉,

[Vλ]σ ⊗ [V ]σ = [Vλ ⊗ V ]σ, and [V ]σ ⊗ [Vλ]σ = [V ⊗ Vλ]σ.

We have the following equalities

[Vλ]σ ⊗ [V ]σ =
∑

σ(μ)=μ

tr(σ|Homg(Vμ, V ))([Vλ]σ ⊗ [Vμ]σ)

=
∑

σ(μ)=μ

tr(σ|Homg(Vμ, V ))[Vλ ⊗ Vμ]σ

=
∑

σ(μ)=μ

[Vλ ⊗ Vμ ⊗ Homg(Vμ, V )]σ

= [
⊕
μ

Vλ ⊗ Vμ ⊗ Homg(Vμ, V )]σ = [Vλ ⊗ V ]σ,

where the third equality follows from Lemma 5.1, and others follows from definition of 
the multiplication ⊗. The equality [V ]σ ⊗ [Vλ]σ = [V ⊗ Vλ]σ can be proved similarly. In 
the end [V0]σ is the unit since for any λ ∈ (P+)σ,

[Vλ]σ ⊗ [V0]σ = [V0]σ ⊗ [Vλ]σ = [Vλ ⊗ V0]σ = [Vλ]σ. �
Recall that Wλ denotes the representation of gσ of highest weight ι(λ), and Wλ(μ) is 

the ι(μ)-weight space of Wλ, where ι is defined in Section 2.1. The following theorem is 
due to Jantzen [18].

Theorem 5.3. Let λ ∈ (P+)σ and μ ∈ P σ. We have tr(σ|Vλ(μ)) = dimWλ(μ).

For any finite dimensional representation V of g �〈σ〉, we define the σ-twisted character 
chσ(V ) of V as follows
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chσ(V ) :=
∑
μ∈Pσ

tr(σ|V (μ))eμ,

where V (μ) denotes the μ-weight space of V . The following lemma is obvious.

Lemma 5.4. For any two finite dimensional g � 〈σ〉-representations V, V ′, we have

chσ(V ⊗ V ′) = chσ(V )chσ(V ′).

Lemma 5.5. Let �λ be a tuple of σ-invariant dominant weights of g and let ν be another 
σ-invariant dominant weight of g. The following equality holds

tr(σ|Homg(Vν , V�λ)) = tr(σ|(V�λ ⊗ Vν∗)g).

Proof. Let w0 be the longest element in the Weyl group W of g. There exists a representa-
tive w̄0 of w0 in G such that σ(w̄0) = w̄0 (see [13, Section 2.3]). Hence σ(w0 ·vν) = w0 ·vν , 
where vν ∈ Vν is the highest weight vector. The vector w0 · vν is of the lowest weight 
w0(ν). Let V ∗

ν denote the dual representation of Vν, and let σ∗ be the action on V ∗
ν in-

duced by the action σ on Vν . Then σ∗ keeps the highest weight vectors in V ∗
ν invariant.

As representations of g, there is an isomorphism V ∗
ν 
 V−w0(ν) = Vν∗ which is unique 

up to a scalar. It intertwines the action of σ∗ on V ∗
ν and the action of σ on Vν∗ . Note 

that there is a natural isomorphism Homg(Vν , V�λ) 
 (V�λ ⊗V ∗
ν )g, which is σ-equivariant. 

This concludes the proof. �
The following theorem was proved in [13]. We give a simple proof here using Jantzen 

formula directly.

Theorem 5.6 ([13]). Let �λ be a tuple of dominant weights of g. We have tr(σ|V g

�λ
) =

dimW gσ

�λ
.

Proof. On one hand, from the decomposition V�λ 

⊕

ν∈P+ Homg(Vμ, V�λ) ⊗ Vμ, we have

chσ(V�λ) =
∑

μ∈(P+)σ
tr(σ|Homg(Vμ, V�λ))chσ(Vμ).

On the other hand, we have the following equalities

chσ(V�λ) = chσ(Vλ1) · · · chσ(Vλk
) = ch(Wλ1) · · · ch(Wλk

)

= ch(W�λ) =
∑

dim Homgσ
(Wμ,W�λ)ch(Wμ),

where the first equality follows from Lemma 5.4 and the second equality follows from 
Theorem 5.3. In view of Lemma 5.5, the theorem follows. �

Let R(gσ) denote the representation ring of gσ.
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Proposition 5.7. There is a natural ring isomorphism R(g, σ) 
 R(gσ) by sending 
[Vλ]σ → [Wλ] for any σ-invariant dominant weight λ.

Proof. For any λ, μ ∈ (P+)σ, consider the following two decompositions

[Vλ]σ ⊗ [Vμ]σ =
∑

σ(μ)=μ

tr(σ|Homg(Vν , Vλ ⊗ Vμ))[Vν ]σ,

[Wλ] ⊗ [Wμ] =
∑

σ(μ)=μ

dim Homg(Wν ,Wλ ⊗Wμ)[Wν ].

In view of Theorem 5.6 and Lemma 5.5, we have

tr(σ|Homg(Vν , Vλ ⊗ Vμ)) = dim Homgσ
(Wν ,Wλ ⊗Wμ).

Hence the proposition follows. �
5.2. A new definition of σ-twisted fusion ring via Borel-Weil-Bott theory

Lemma 5.8. The operation [·]σ satisfies Euler-Poincaré property, i.e. for any complex of 
finite dimensional g � 〈σ〉-representations

V • := · · · di−1−−−→ V i di−→ V i+1 di+1−−−→ · · ·

such that only finite many V i are nonzero, we have

[V •]σ =
∑
i

(−1)i[Hi(V •)]σ,

where [V •]σ :=
∑

i(−1)i[V i]σ, and Hi(V •) is the i-th cohomology of this complex.

Proof. First of all, we have Euler-Poincaré property in the representation ring R(g �〈σ〉)
of g � 〈σ〉, i.e.

∑
i

(−1)i[V i] =
∑
i

(−1)i[Hi(V •)].

Secondly we can define a linear map R(g � 〈σ〉) → R(g, σ) given by [V ] → [V ]σ. It 
is well-defined and additive, since any finite dimensional representation of g � 〈σ〉 is 
completely reducible. Hence the lemma follows. �

Recall the σ-twisted fusion ring R�(g, σ) defined in Section 3.5. We embed R�(g, σ)
into R(g, σ) as free abelian groups by simply sending λ to [Vλ]σ for any λ ∈ P σ

� . From 
now on we view R�(g, σ) as a free abelian group with basis {[Vλ]σ |λ ∈ P σ

� }. The fusion 
product λ · μ in R�(g, σ) will be written as [Vλ]σ · [Vμ]σ.
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Given any integrable representation H of ĝ, we denote by Hĝ− the coinvariant space 
of ĝ− on H. If H is a representation of ĝ � 〈σ〉, then the space Hĝ− is naturally a 
representation of g � 〈σ〉. For any λ, μ ∈ Pσ

� , we define

[Vλ]σ ⊗� [Vμ]σ := [(H∗(GrG,L�(Vλ ⊗ Vμ))∨)ĝ− ]σ ∈ R�(g, σ), (42)

where we view (H∗(GrG, L�(Vλ ⊗ Vμ))∨)ĝ− as a complex of g � 〈σ〉-representations with 
zero differentials.

Note that all representations of ĝ appearing in H∗(GrG, L�(Vλ ⊗ Vμ))∨ are of level �, 
and only finite many cohomology groups are nonzero. Hence the above definition makes 
sense.

Recall the representation Hν ⊗V z
μ defined in Section 4.3. The following is a vanishing 

theorem of Lie algebra cohomology due to Teleman [32].

Theorem 5.9. For any λ, μ, ν ∈ P� and for any i ≥ 1, Vλ does not occur in Hi(ĝ−, Hν ⊗
V z
μ ) as a g-representation.

We now show that the product defined in (42) is exactly the fusion product.

Theorem 5.10. Two products on R�(g, σ) coincide, i.e. for any λ, μ ∈ P σ
� , we have 

[Vλ]σ ⊗� [Vμ]σ = [Vλ]σ · [Vμ]σ.

Proof. Consider the following decomposition

Vλ ⊗ Vμ =
⊕
ν

Homg(Vν , Vλ ⊗ Vμ) ⊗ Vν .

By the fact (32), we may in further write

Vλ ⊗ Vμ 

⊕

w∈W †
�+ȟ

,ν∈P�

Homg(Vw�ν , Vλ ⊗ Vμ) ⊗ Vw�ν . (43)

We have the following chain of equalities

[Vλ]σ ⊗� [Vμ]σ =
∑
i

(−1)i[(Hi(GrG,L�(Vλ ⊗ Vμ))∨)ĝ− ]σ

=
∑
i

(−1)i
∑

w∈(W †
�+ȟ

)σ

�(w)=i,ν∈Pσ
�

[Homg(Vw�ν , Vλ ⊗ Vμ) ⊗ (Hi(GrG,L�(Vw�ν))∨)ĝ− ]σ

=
∑

w∈(W †
�+ȟ

)σ,ν∈Pσ
�

(−1)�(w)[Homg(Vw�ν , Vλ ⊗ Vμ) ⊗ Vν,εw)]σ

=
∑

w∈(W †
�+ȟ

)σ,ν∈Pσ
�

(−1)�σ(w)tr(σ|Homg(Vw�ν , Vλ ⊗ Vμ))[Vν ]σ,
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where the second equality follows from the decomposition (43), the third equality follows 
from Corollary 4.14 and the fourth equality follows from Lemma 5.1. By Lemma 3.7 and 
Proposition 3.8, we have the following σ-equivariant isomorphisms:

Vg,�,λ,μ,ν∗(P 1, 0, 1,∞) 
 Vg,�,λ∗,μ∗,ν(P 1, 0, 1,∞)


 (Hν ⊗ V ∞
λ∗ ⊗ V 1

μ∗)g[t−1]


 Homg(Vλ, H0(ĝ−,Hν ⊗ V 1
μ∗)).

The following formula follows immediately from Theorem 5.9

tr(σ|Homg(Vλ, H0(ĝ−,Hν ⊗ V 1
μ∗))) =

∑
i

(−1)itr(σ|Homg(Vλ, Hi(ĝ−,Hν ⊗ V 1
μ∗))).

By Lemma 5.8 and Theorem 4.16, we have
∑

(−1)itr(σ|Homg(Vλ, Hi(ĝ−,Hν ⊗ V 1
μ )))

=
∑
i

(−1)i
∑

w∈(W †
�+ȟ

)σ,�(w)=i

tr(σ|Homg(Vλ, Vw�ν,εw ⊗ Vμ∗))

=
∑

w∈(W †
�+ȟ

)σ

(−1)�σ(w)tr(σ|Homg(Vλ, Vw�ν ⊗ Vμ∗)).

It follows that

[Vλ]σ · [Vμ]σ =
∑
ν∈Pσ

�

tr(σ|Vg,�,λ,μ,ν∗(P 1, 0, 1,∞))[Vν ]σ

=
∑

w∈(W †
�+ȟ

)σ,ν∈Pσ
�

(−1)�σ(w)tr(σ|Homg(Vλ, Vw�ν ⊗ Vμ∗))[Vν ]σ.

In the end, we need to check that

tr(σ|Homg(Vw�ν , Vλ ⊗ Vμ)) = tr(σ|Homg(Vλ, Vw�ν ⊗ Vμ∗)).

In view of Lemma 5.5, it reduces to show that the trace of σ on V g

w�ν∗,λ,μ and V g

λ∗,w�ν,μ∗

are equal. This is a consequence of Lemma 3.6. �
From the proof of Theorem 5.10, we get the following twisted analogue of Kac-Walton 

formula (in the usual setting, see [19,36]).

Theorem 5.11. For any λ, μ, ν ∈ P σ
� , we have

tr(σ|Vg,λ,μ,ν(P 1, 0, 1,∞)) =
∑

w∈(W †
�+ȟ

)σ

(−1)�σ(w)tr(σ|V g

λ,μ,w�ν).
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Remark 5.12. The proofs of Theorem 5.10, 5.11 do not rely on the fact that the trace on 
conformal blocks is a fusion rule. In fact Theorem 5.11 is used to show that the trace on 
conformal blocks gives a fusion rule, see Lemma 3.16.

5.3. Ring homomorphism from σ-twisted representation ring to σ-twisted fusion ring

We first construct a Z-linear map

πσ : R(g, σ) → R�(g, σ).

For any finite dimensional g � 〈σ〉-representation V , we define

πσ([V ]σ) := [(H∗(GrG,L�(V ))∨)ĝ− ]σ ∈ R�(g, σ).

Lemma 5.13. For any w ∈ (W †
�+ȟ

)σ and λ ∈ (P+)σ, we have

[(H∗(FlG,L�(w � λ))∨)ĝ− ]σ = (−1)�σ(w)[(H∗(FlG,L�(λ))∨)ĝ− ]σ.

Proof. We can write λ = y�λ0 where y ∈ (W †
�+ȟ

)σ and λ0 ∈ (P�)σ. Then w�λ = (wy) �λ0. 
In view of Theorem 4.1 and Theorem 4.10, we have

[(H∗(FlG,L�(w � λ))∨)ĝ− ]σ = (−1)�σ(wy)[(H∗(FlG,L�(λ0))∨)ĝ− ]σ
= (−1)�σ(w)[(H∗(FlG,L�(λ))∨)ĝ− ]σ.

Hence the lemma follows. �
Proposition 5.14. Given a finite dimensional representation V of g �〈σ〉. For any λ ∈ Pσ

�

and w ∈ (W+
�+ȟ

)σ, the following equality holds in R�(g, σ)

[(H∗(GrG,L�(Vw�λ ⊗ V ))∨)ĝ− ]σ = (−1)�σ(w)[(H∗(GrG,L�(Vλ ⊗ V ))∨)ĝ− ]σ.

Proof. In view of Lemma 4.12, it suffices to show that

[(H∗(FlG,L�(Cw�λ ⊗ V |B�〈σ〉))∨)ĝ− ]σ = (−1)�σ(w)[(H∗(FlG,L�(Cλ ⊗ V |B�〈σ〉))∨)ĝ− ]σ.

Note that there exists a filtration of B � 〈σ〉-representations

0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vk = V

on V , such that for each i,

Vi/Vi−1 

{
V (μ) if σ(μ) = μ⊕r−1

V (σi(μ)) otherwise
,

i=0
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where V (μ) denotes the μ-weight space of V . By Lemma 5.1, it is easy to check that

[(H∗(FlG,L�(Cλ ⊗
r−1⊕
i=0

V (σi(μ)))∨)ĝ− ]σ

=
{

tr(σ|V (μ))[(H∗(FlG,L�(λ + μ))∨)ĝ− ]σ if σ(μ) = μ

0 otherwise
.

Hence we get the following isomorphisms

[(H∗(FlG,L�(Cλ ⊗ V |B�〈σ〉))∨)ĝ− ]σ =
∑
i

[(H∗(FlG,L�(Cλ ⊗ Vi/Vi−1))∨)ĝ− ]σ

=
∑
μ∈Pσ

tr(σ|V (μ))[(H∗(FlG,L�(λ + μ))∨)ĝ− ]σ.

Similarly, we have

[(H∗(FlG,L�(Cw�λ⊗V |B�〈σ〉))∨)ĝ− ]σ =
∑
μ∈Pσ

tr(σ|V (μ))[(H∗(FlG,L�(w�λ+μ))∨)ĝ− ]σ.

We can write w as w = τβy
−1, where y ∈ W σ and τβ is the translation for β ∈

(� + ȟ)Qσ. It is easy to check that w � λ + μ = w � (λ + y · μ).
Since V is a representation of g � 〈σ〉, for any y ∈ W σ we have tr(σ|V (μ)) =

tr(σ|V (y · μ)), where V (μ) and V (y · μ) denote the weight spaces of V as representation 
of g. We have the following chain of equalities

[(H∗(FlG,L�(Cw�λ ⊗ V |B�〈σ〉))∨)ĝ− ]σ

=
∑
μ∈Pσ

tr(σ|V (μ))[(H∗(FlG,L�(w � (λ + μ)))∨)ĝ− ]σ

=
∑
μ∈Pσ

tr(σ|V (μ))(−1)�σ(w)[(H∗(FlG,L�(λ + μ))∨)ĝ− ]σ

= (−1)�σ(w)[(H∗(FlG,L�(Cλ ⊗ V |B�〈σ〉))∨)ĝ− ]σ,

where the second isomorphism follows from Lemma 5.13. This finishes the proof. �
Proposition 5.15. If λ ∈ (P+)σ and λ + ρ is in an affine wall of W�+ȟ, then

[(H∗(GrG,L�(Vλ ⊗ V ))∨)ĝ− ]σ = 0.

Proof. By Part (3) of Proposition 2.7, λ + ρ is in an affine wall of W σ
�+ȟ

, where by (13), 
W σ

�+ȟ

 W σ

� (� + ȟ)ι(Qσ). Hence in view of Lemma 2.3, we can assume that λ + ρ is 
in the following affine wall of W σ

ˇ in P σ ⊗R,

�+h
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Hασ,a = {λ + ρ ∈ Pσ ⊗R | 〈λ + ρ, α̌σ〉 = a},

where α̌σ is the coroot of a root ασ of gσ, and

a ∈
{

(� + ȟ)Z if g is not of type A2n
�+ȟ
2 Z if g = A2n

.

Equivalently,

(τaασ
· sασ

) � (λ) = (sασ
· τ−aασ

) � (λ) = λ, (44)

where sασ
is the reflection with respect to ασ in W σ

�+ȟ
and τaασ

is the translation by 
aασ. Moreover,

(−1)�σ(τaασ ·sασ ) = (−1)�σ(τaασ )(−1)�σ(sασ ) = −1,

since by Lemma 2.8, �σ(τaασ
) is an even integer.

By Proposition 5.14 we have

[(H∗(GrG,L�(Vλ ⊗ V ))∨)ĝ− ]σ = −[(H∗(GrG,L�(Vλ ⊗ V ))∨)ĝ− ]σ.

Hence [(H∗(GrG, L�(Vλ ⊗ V ))∨)ĝ− ]σ = 0. �
Theorem 5.16. The linear map πσ : R(g, σ) → R�(g, σ) is a ring homomorphism.

Proof. By Theorem 5.10, we can use the product ⊗� for R�(g, σ). We need to check that 
for any λ, μ ∈ (P+)σ,

πσ([Vλ ⊗ Vμ]σ) = πσ([Vλ]σ) ⊗� πσ([Vμ]σ). (45)

If λ + ρ or μ + ρ is in an affine Wall, then by Proposition 5.15, both sides of (45) are 
zero. Hence (45) holds.

If λ + ρ and μ + ρ are not in any affine Wall, let λ0 ∈ P σ
� such that wλ � λ0 = λ and 

let μ0 ∈ P σ
� such that wμ � μ0 = μ where wλ, wμ ∈ (W †

�+ȟ
)σ, then

πσ([Vλ ⊗ Vμ]σ) = [(H∗(GrG,L�(Vλ ⊗ Vμ))∨)ĝ− ]σ
= (−1)�σ(wλ)[(H∗(GrG,L�(Vλ0 ⊗ Vμ))∨)ĝ− ]σ
= (−1)�σ(wλ)+�σ(wμ)[(H∗(GrG,L�(Vλ0 ⊗ Vμ0))∨)ĝ− ]σ
= (−1)�σ(wλ)+�σ(wμ)[Vλ0 ]σ ⊗� [Vμ0 ]σ
= πσ([Vλ]σ) ⊗� πσ([Vμ]σ),

where the second, the third and the fifth equalities follows from Proposition 5.14, and 
the fourth equality is the definition (42). This finishes the proof of the theorem. �
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We can explicitly describe the map πσ.

Corollary 5.17. The map πσ : R(g, σ) → R�(g, σ) can be described as follows, for any 
λ ∈ (P+)σ we have

πσ([Vλ]σ) =
{

0 if λ + ρ belongs to an affine Wall of W�+ȟ in PR

(−1)�σ(w)[Vw−1�λ]σ if w−1 � λ ∈ P σ
� for some w ∈ (W †

�+ȟ
)σ.

Proof. The corollary is an immediate consequence of Corollary 4.14, Proposition 5.14
and Proposition 5.15. �
5.4. Characters of the σ-twisted fusion ring

In Section 5.4 and Section 5.5 we basically follow the arguments in [1, Section 9]. 
However our arguments of Lemma 5.21 and Proposition 5.23 are substantially different, 
since in our setting there is no natural identification between Pσ/(� + ȟ)ι(Qσ) and Tσ,�.

Recall that Pσ (resp. Qσ) is the weight lattice (resp. root lattice) of gσ, and the 
bijection map ι : Pσ 
 Pσ defined in Section 2.1.

Let Z[Pσ] be the group ring of Pσ; we denote by (eλ)λ∈Pσ
its basis so that the 

multiplication in Z[Pσ] obeys the rule eλeμ = eλ+μ. The action of Wσ and W σ
�+ȟ



Wσ � (� + ȟ)ι(Qσ) on Pσ extends to Z[Pσ]. We denote by Z[Pσ]Wσ (resp. Z[Pσ]Wσ

�+ȟ
) 

the quotient of Z[Pσ] by the sublattice spanned by eλ − (−1)�σ(w)ew�λ for any w ∈ Wσ

(resp. w ∈ W σ
�+ȟ

). Let p : Z[Pσ]Wσ
→ Z[Pσ]Wσ

�+ȟ
be the projection map.

Lemma 5.18. The kernel ker(p) is spanned by the class of eλ+α − eλ in Z[Pσ]Wσ
, for 

λ ∈ Pσ and α ∈ (� + ȟ)ι(Qσ).

Proof. We first define a group action • of W σ
�+ȟ

on Z[Pσ]. For any eλ ∈ Z[Pσ] and 

wτα ∈ W σ
�+ȟ

where w ∈ Wσ and α ∈ (� + ȟ)ι(Qσ), define

wτα • eλ := (−1)�σ(wτα)ew�(λ+α).

It is easy to see that this gives a group action of W σ
�+ȟ

on Z[Pσ]. Note that in the above 

formula, (−1)�σ(wτα) = (−1)�σ(w), since by Lemma 2.8, �σ(τα) is even.
Let Z[Pσ](�+ȟ)ι(Qσ) denote the space of coinvariants of Z[Pσ] with respect to the 

translation action of (� + ȟ)ι(Qσ). Consider the following short exact sequence

0 K Z[Pσ] Z[Pσ](�+ȟ)ι(Qσ) 0 ,

where K is the sublattice of Z[Pσ] spanned by eλ+α−eλ for λ ∈ Pσ and α ∈ (� +ȟ)ι(Qσ). 
With respect to the action • of Wσ, we apply the functor of Wσ-coinvariants to the above 
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short exact sequence. Since coinvariant functor is right exact, we get the following exact 
sequence

KWσ
Z[Pσ]Wσ

(Z[Pσ](�+ȟ)ι(Qσ))Wσ
0 .

Observe that

Z[Pσ]Wσ
�+ȟ

= (Z[Pσ](�+ȟ)ι(Qσ))Wσ
.

This concludes the proof of the lemma. �
By Proposition 5.7 and Theorem 5.16 we get a ring homomorphism π̃σ : R(gσ) 


R(g, σ) → R�(g, σ). Let φσ be the map R(gσ) → Z[Pσ]Wσ
sending [Wλ] to the class 

of eλ. Similarly, let φσ,� be the map R�(g, σ) → Z[Pσ]Wσ
�+ȟ

sending [Vλ]σ to the class eλ

for any λ ∈ P σ
� . By the same arguments as in [1, Section 8], φσ and φσ,� are bijections. 

As a consequence of Corollary 5.17, the following diagram commutes

R(gσ)
π̃σ

φσ

R�(g, σ)

φσ,�

Z[Pσ]Wσ

p
Z[Pσ]Wσ

�+ȟ

. (46)

For any λ ∈ Pσ, put

J(eλ+ρ) =
∑

w∈Wσ

(−1)�σ(w)ew(λ+ρσ), (47)

where ρσ is the sum of all fundamental weights of gσ. Recall that ι(ρ) = ρσ via the 
bijection ι : Pσ 
 Pσ. By Weyl character formula, for any λ ∈ P+

σ and t ∈ Tσ, we have 

tr(t|Wλ) = J(eλ+ρσ )(t)
J(eρσ )(t) . Let Tσ,� be the finite subgroup of Tσ given by

Tσ,� := {t ∈ Tσ | eα(t) = 1, α ∈ (� + ȟ)ι(Qσ)}.

Proposition 5.19. For any t ∈ Tσ,�, the character tr(t|·) factors through π̃σ : R(gσ) →
R�(g, σ).

Proof. Let jt : Z[Pσ]Wσ → C be the additive map such that for any λ ∈ Pσ, 
jt(eλ) = J(eλ+ρσ )(t)

J(eρσ )(t) . By the definition of Z[Pσ]Wσ and J(·), it is easy to check that 
jt is well-defined. By Weyl character formula, the following diagram commutes:
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R(gσ)
φσ

tr(t|·)

Z[Pσ]Wσ

jt

C

.

By the commutativity of the diagram (46) and Lemma 5.18, to show tr(t|·) factors 
through π̃σ, we need to check that jt takes the value zero on eλ+α − eλ for any λ ∈ Pσ

and α ∈ (� + ȟ)ι(Qσ). Since t satisfies that eα(t) = 0 for any α ∈ (� + ȟ)ι(Qσ), it is clear 
that jt takes the value zero on eλ+α − eλ. This concludes the proof. �

An element t ∈ Tσ is regular if the stabilizer of Wσ at t is trivial. We denote by T reg
σ,�

the set of regular elements in Tσ,�. Let ρ̌σ denotes the sum of all fundamental coweights 
of gσ. Consider the short exact sequence

0 → 2πiQ̌σ → tσ → Tσ → 1,

where Q̌σ denote the dual root lattice of gσ and tσ denotes the Cartan subalgebra of gσ. 
Let Ľσ be the dual lattice of ι(Qσ) in tσ. We have the following natural isomorphism

Tσ,� 
 ( 1
� + ȟ

Ľσ)/Q̌σ 
 Ľσ/(� + ȟ)Q̌σ. (48)

For any μ̌ ∈ Ľσ, we denote by tμ̌ the associated element of μ̌ + ρ̌σ in Tσ,�.
We put P̌σ,� := {μ̌ ∈ P̌+

σ | 〈μ̌, θσ〉σ ≤ �}, where θσ denotes the highest root of gσ and 
P̌+
σ denotes the set of dominant coweights of gσ.

Lemma 5.20. Assume that g �= A2n. There exists a bijection P̌σ,� 
 T reg
σ,� /Wσ with the 

map given by μ̌ → tμ̌,

Proof. When g �= A2n, by Lemma 2.3 ι(Qσ) = Qσ. Thus Ľσ = P̌σ. We observe that 
〈ρ̌σ, θσ〉 = ȟ − 1 where ȟ is the dual Coxeter number of g. This can be read from [14, 
Table 2, p. 66]). It follows that

P̌σ,� = {μ̌ ∈ P̌+
σ | 〈μ̌ + ρ̌σ, θσ〉σ < � + ȟ},

i.e. P̌σ,� consists of all points of P̌+
σ sitting in the interior of the fundamental alcove with 

respect to the action of the affine Weyl group Wσ � (� + ȟ)Q̌σ. From the isomorphism 
(48), we can see that any Wσ-orbit in T reg

σ,� has a unique representative in P̌σ,�. Hence 
the lemma follows. �
Lemma 5.21. The cardinality of T reg

σ,� /Wσ is the equal to the cardinality of Pσ
� .
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Proof. When g is of type A2n, by Lemma 2.3, ι(Qσ) = 1
2Qσ,� where Qσ,� is the lattice 

spanned by long roots of Gσ. The proof of this lemma is exactly the same as the proof 
of [1, Lemma 9.3]. We omit the detail.

Now we assume g �= A2n. Put

Pσ,� := {λ ∈ P+
σ | 〈λ, θ̌σ〉σ ≤ �},

where θ̌σ denotes the highest coroot of gσ. In view of (8) and Lemma 2.1, the map ι
induces a natural bijection ι : Pσ

� 
 Pσ,�.
In view of Lemma 5.20, we are reduced to show that P̌σ,� and Pσ,� have the same 

cardinality. If gσ is not of type Bn or Cn, it is true, since in this case weight lattice and 
coweight lattice, root lattice and coroot lattice can be identified. Otherwise, if gσ is of 
type Bn or Cn, by comparing the highest roots of Bn and Cn (see [14, Table 2, p. 66]), 
we conclude that P̌σ,� and Pσ,� indeed have the same cardinality. �

The following proposition completely describes all characters of R�(g, σ).

Proposition 5.22. {tr(t|·) | t ∈ T reg
σ,� /Wσ} gives a full set of characters of R�(g, σ).

Proof. This is an immediate consequence of Proposition 5.19 and Lemma 5.21. �
5.5. Proof of Theorem 1.2

Let Ťσ,� denote the finite abelian subgroup Ťσ,� := Pσ/(� + ȟ)ι(Qσ). For any λ ∈ Pσ, 
we denote by ťλ the element in Ťσ,� associated to λ + ρσ.

Recall that Φσ is the set of roots of gσ. In the following lemma we determine χ(ωσ)
for each χ = tr(t|·), where ωσ is the Casimir element defined in (22).

Proposition 5.23. For any t ∈ T reg
σ,� , we have 

∑
λ∈Pσ

�
|tr(t|Wλ)|2 = |Tσ,�|

Δσ(t) , where Δσ =∏
α∈Φσ

(eα − 1).

Proof. When g = A2n, the proof of this lemma is identical to the proof of [1, Lemma 
9.7]. We omit the detail.

Now we assume g �= A2n. In this case, we have

Ťσ,� = Pσ/(� + ȟ)Qσ, and Tσ,� 
 P̌σ/(� + ȟ)Q̌σ.

For any λ ∈ Pσ and μ̌ ∈ Ľσ = P̌σ, we have

J(eλ+ρσ )(tμ̌) =
∑

w∈Wσ

(−1)�σ(w)e
2πi 〈λ+ρσ,w(μ̌+ρ̌σ)〉σ

�+ȟ = J(eμ̌+ρ̌σ )(ťλ),

where we put J(eμ̌+ρ̌σ ) =
∑

w∈Wσ
(−1)�σ(w)ew(μ̌+ρ̌σ). By Weyl character formula, we 

have
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. 
∑
λ∈Pσ

�

|tr(tμ̌|Wλ)|2 = 1
Δσ(tμ̌)

∑
λ∈Pσ

�

|J(eμ̌+ρ̌σ )(ťλ)|2.

We now introduce an inner product (·, ·) on the space L2(Ťσ,�) of functions on the 
finite abelian group Ťσ,�,

(φ, ψ) := 1
|Ť�|

∑
ť∈Ťσ,�

φ(ť)ψ(ť), for any functions φ, ψ on Ťσ,�.

The function J(eμ̌+ρ̌σ ) on Ťσ,� is Wσ-antisymmetric, i.e. J(ew·(μ̌+ρ̌σ)) = (−1)�σ(w)J(eμ̌+ρ̌σ )
It shows that if t is not regular, then for any ť ∈ Ťσ,�, J(eμ̌+ρ̌σ )(ť) = 0. It follows that

∑
λ∈Pσ

�

|J(eμ̌+ρ̌σ )(ťλ)|2 = |Ťσ,�|
|Wσ|

||J(eμ̌+ρ̌σ )||,

where ||J(eμ̌+ρ̌σ )|| =
√

(J(eμ̌+ρ̌σ ), J(eμ̌+ρ̌σ )).
If t is regular, in view of Lemma 5.20 we can assume t = tμ̌ where μ̌ ∈ P̌σ,�. Now 

we show that the restriction of ew·(μ̌+ρ̌σ) on Ťσ,� are all distinct. For any two distinct 
elements w, w′ ∈ Wσ, if ew(μ̌+ρ̌σ) and ew

′(μ̌+ρ̌σ) are equal on Ťσ,�, it means that the 
pairing 〈w(μ̌ + ρ̌σ) − w′(μ̌ + ρ̌σ), λ〉σ ∈ (� + ȟ)Z for any λ ∈ Pσ. Equivalently, w(μ̌ +
ρ̌σ) −w′(μ̌ + ρ̌σ) ∈ (� + ȟ)Q̌σ. It is impossible as μ̌ + ρ̌σ is in the fundamental alcove of 
the affine Weyl group Wσ � (� + ȟ)Q̌σ.

By the orthogonality relation for the characters of Ťσ,�, we have ||J(eμ̌+ρ̌σ )|| = |Wσ|. 
Hence,

∑
λ∈Pσ

�

|tr(tμ̌|Wλ)|2 = |Ťσ,�|
Δσ(tμ̌) .

From the non-degeneracy of the pairing Ťσ,� × Tσ,� → C× given by (ťλ, tμ̌) →
e
2πi 〈λ+ρσ,μ̌+ρ̌σ〉σ

�+ȟ , we have |Tσ,�| = |Ťσ,�|. This concludes the proof of the proposition. �
Finally Theorem 1.2 follows from Proposition 3.19, Proposition 5.23, and Proposi-

tion 5.22.

5.6. A corollary of Theorem 1.2

Let σ be a nontrivial diagram automorphism on g = sl2n+1. Then the orbit Lie algebra 
gσ is isomorphic to sp2n.

Theorem 5.24. With the same setting as in Theorem 1.2. If � is an odd positive integer, 
then we have the following formula
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tr(σ|Vsl2n+1,�,�λ
(C, �p)) = dim Vsp2n,

�−1
2 ,�λ(C, �p).

Proof. By assumption, 〈λi, θ̌〉 ≤ � for any λi. In view of (8) and Lemma 2.1, we have 
〈ι(λi), θ̌σ,s〉σ ≤ �/2, where θ̌σ,s is the coroot of the highest root θσ of gσ. Since � is odd 
and 〈ι(λ), θ̌σ,s〉σ is an integer, it follows that 〈ι(λ), θ̌σ,s〉σ ≤ �−1

2 .
Note that Pσ = 1

2Qσ,� where Qσ,� is the lattice spanned by long roots of gσ. Moreover, 
ȟ = 2n + 1 and ȟσ = n + 1 where ȟσ is the dual Coxeter number of gσ. Combining the 
Verlinde formula (3) and Theorem 1.2, the corollary follows. �
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