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NILPOTENT VARIETIES IN SYMMETRIC SPACES AND TWISTED

AFFINE SCHUBERT VARIETIES

JIUZU HONG AND KORKEAT KORKEATHIKHUN

Abstract. We relate the geometry of Schubert varieties in twisted affine Grassmannian and
the nilpotent varieties in symmetric spaces. This extends some results of Achar–Henderson in

the twisted setting. We also get some applications to the geometry of the order 2 nilpotent

varieties in certain classical symmetric spaces.

1. Introduction

Let G be a reductive group over C. Let N denote the nilpotent cone of the Lie algebra g of G.
Let GrG be the affine Grassmannian of G. Each spherical Schubert cell Grλ is parametrized by a
dominant coweight λ. When G = GLn, Lusztig [Lu] defined an embedding from N to GrG, and
showed that each nilpotent variety in gln can be openly embedded into certain affine Schubert
variety Grλ. This embedding identifies the geometry of nilpotent varieties and certain affine
Schubert varieties in type A. However, there is no direct generalization for general reductive
groups.

In [AH], Achar–Henderson took a different idea for a general algebraic simple group G. Let
Gr−0 be the opposite open Schubert cell in GrG. One can naturally define a map π : Gr−0 → g.
Achar–Henderson showed that π(Gr−0 ∩Grλ) is contained in N if and only if λ is small in the
sense of Broer [Br] and Reeder [Re], i.e. λ � 2γ0, where γ0 is the highest short coroot of G. They

also proved that π : Grsm ∩Gr−0 → π(Grsm ∩Gr−0 ) is a finite map whose fibers admits transitive
Z/2Z-actions, where Grsm is the union of all Grλ such that λ is small. Moreover, with respect
to π, Achar–Henderson [AH, AHR] related the geometric Satake correspondence and Springer
correspondence.

In this paper, we consider a twisted analogue, and we will extend some results of Achar–
Henderson in [AH]. Let σ be a diagram automorphism of order 2, and let σ act on the field
K = C((t)) via σ(t) = −t and σ|C = IdC. Then, we may define a twisted affine Grassmannian
Gr := G(K)σ/G(O)σ, where O = C[[t]]. Each twisted Schubert cell Grλ̄, i.e. a G(O)σ-orbit, is
parametrized by the image λ̄ of a dominant coweight λ in the coinvariant lattice X∗(T )σ with
respect to the induced action of σ, where X∗(T ) is the coweight lattice of G. In fact, X∗(T )σ
can be regarded as the weight lattice of a reductive group H := (Ǧ)σ, where Ǧ is the Langlands
dual group of G.

Let Gr−0 be the opposite open Schubert cell in Gr. We may naturally define a map π : Gr−0 → p,
where p is the (−1)-eigenspace of σ in g. Let Mλ̄ denote the intersection Grλ̄ ∩ Gr−0 , which is a
nonempty open subset of Grλ̄. The following theorem is the main result of this paper, and it can
follow from Proposition 2.3 in Section 2.1 and Theorem 4.2 in Section 4, based on case-by-case
analysis.

Theorem 1.1. Assume that G is of type A` or D`+1. The image π(Mλ) is contained in the
nilpotent cone Np of p, if and only if λ̄ is a small dominant weight with respect to H.
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If we replace the field C by an algebraically closed field k of positive characteristic p, this
theorem still holds for p with minor restrictions, see Theorem 4.16.

In Theorem 4.2 we describe precisely π(Mλ̄) as a union of nilpotent orbits in p for each small
λ̄. In Theorem 4.5, Theorem 4.6, and Theorem 4.14, we also determine all small λ̄ such that
π(Mλ̄) is a nilpotent orbit and π :Mλ̄ → π(Mλ̄) is an isomorphism. Furthermore, we describe
all fibers of π : M → π(M) in Proposition 4.11 and Proposition 4.15, where M is the union
of Mλ̄ for all small λ̄. The fibers are closely related to anti-commuting nilpotent varieties for
symmetric spaces. When G is of type A2`−1 (resp.D`+1), the reduced fiber π−1(0)red is actually
the minimal (resp. maximal) order 2 nilpotent variety in sp2` (resp. so2`+1). This is a very different
phenomenon from the untwisted setting in the work of Achar–Henderson [AH], and it actually
makes the twisted setting more challenging.

For general simple Lie algebra g and general diagram automorphism σ, it was proved in [HLR,
Appendix C] by Haines-Lourenço-Richarz that, when λ̄ is quasi-miniscule and O is the minimal
nilpotent variety in p, the map π : Grλ̄ ∩ Gr−0 → O is an isomorphism. In fact, we have also
obtained this result independently, cf. [Ko]. Also, under the same assumption as in Theorem 1.1,
this isomorphism is a special case of our Theorem 4.5, Theorem 4.6, and Theorem 4.14.

The geometric Satake correspondence for Gr was proved by Zhu [Zh], and it exactly recovers
the Tannakian group H. On the other hand, the Springer correspondence for symmetric spaces
is more sophisticated than the usual Lie algebra setting, see a survey on this subject [Sh]. It
would be interesting to relate these two pictures as was done in [AH, AHR]. Y. Li [Li] defined the
symmetric space analogue called σ-quiver variety in the setting of Nakajima quiver variety, and
he showed that certain σ-quiver variety can be identified with null-cone of symmetric spaces. It
is an interesting question to investigate a connection between σ-quiver variety and twisted affine
Grassmannian in the spirit of the work of Mirković-Vybornov [MV].

From Theorem 1.1, we can deduce some applications for the order 2 nilpotent varieties in
classical symmetric spaces. Let 〈, 〉 be a symmeric or symplectic non-degenerate bilinear form on
a vector space V . Let A be the space of self-adjoint linear maps with respect to 〈, 〉. We consider
Sp2n-action on A when 〈, 〉 is symplectic and dimV = 2n, and SOn-action when 〈, 〉 is symmetric
and dimV = n. In Section 5, we obtain the following results.

Theorem 1.2. (1) If 〈, 〉 is symmetric and dimV is odd, then any order 2 nilpotent variety
in A is normal.

(2) If 〈, 〉 is symplectic, then there is a bijection of order 2 nilpotent varieties in so2n+1 and
in A, such that they have the same cohomology of stalks of IC-sheaves.

(3) If 〈, 〉 is symplectic, the smooth locus of any order 2 nilpotent variety in A is the open
nilpotent orbit.

It is known that when 〈, 〉 is symplectic, any nilpotent variety in A is normal, but it is not
always true when 〈, 〉 is symmetric, cf. [Oh]. Using our methods, we can also prove that there is a
bijection of order 2 nilpotent varieties in sp2n and in the space of symmetric (2n+ 1)× (2n+ 1)
matrices, such that they have the same cohomlogy of stalks of IC-sheaves. This was already
proved earlier by Chen-Vilonen-Xue [CVX] using different methods. Also, Part 3) of Theorem
1.2 is not true when 〈, 〉 is symmetric and dimV is odd, see more detailed discussions in Section
5.

Acknowledgments: This project grew out from a conversation with Yiqiang Li in March 2019.
We would like to thank him for inspiring discussions. We also would like to thank the anonymous
referee for very careful reading and many helpful comments and suggestions.

2. Notation and Preliminaries

2.1. Root datum. Let G be a simply-connected simple algebraic group over C, and let g be its
Lie algebra. Let σ be a diagram automorphism ofG of order r, preserving a maximal torus T and a
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Borel subgroup B containing T in G. Then G has a root datum (X∗(T ), X∗(T ), 〈·, ·〉, α̌i, αi, i ∈ I)
with the action of σ, where

• X∗(T ) (resp. X∗(T ) ) is the coweight (resp. weight) lattice;
• I is the set of vertices of the Dynkin diagram of G;
• αi (resp. α̌i) is the simple root (resp. coroot) for each i ∈ I;
• 〈·, ·〉 : X∗(T )×X∗(T )→ Z is the perfect pairing.

The automorphism σ of this root datum satisfies

• σ(αi) = ασ(i) and σ(α̌i) = α̌σ(i);

• 〈σ(λ̌), σ(µ)〉 = 〈λ̌, µ〉 for any λ̌ ∈ X∗(T ) and µ ∈ X∗(T ).

As a diagram autormophism on G, σ also preserves a pinning with respect to B and T , i.e. there
exists root subgroups xi, yi associated to αi,−αi for each i ∈, such that

σ(xi(a)) = xσ(i)(a), σ(yi(a)) = yσ(i)(a), for any a ∈ C.

Let Iσ be the set of σ-orbits in I. Denote X∗(T )σ = {λ ∈ X∗(T ) | σλ = λ} and X∗(T )σ =
X∗(T )/(Id − σ)X∗(T ). For each ı ∈ Iσ, define γı = ¯̌αi ∈ X∗(T )σ for any i ∈ ı, and define
γ̌ı ∈ X∗(T )σ by

γ̌ı =


∑
i∈ı αi if no pairs in ı is adjacent,

2
∑
i∈ı αi if ı = {i, σ(i)} and i and σ(i) are adjacent,

αi if ı = {i}.

Let Ǧ denote the Langlands dual group of G, and we still denote the induced diagram automor-
phism on Ǧ by σ. Denoted by H = (Ǧ)σ the σ-fixed subgroup of Ǧ. Then, H has the root datum
(X∗(T )σ, X∗(T )σ, γ̌ı, γı, ı ∈ Iσ), cf. [HS, Section 2.2]. For λ̄, µ̄ ∈ X∗(T )σ, define the partial order
µ̄ � λ̄ if λ̄− µ̄ is a sum of positive roots of H. Let X∗(T )+

σ be the set of dominant weight of H.
In fact, X∗(T )+

σ is the image of the quotient map X∗(T )+ → X∗(T )σ, where X∗(T )+ is the set
of dominant weights of G.

2.2. Twisted affine Grassmannian. Let σ be a diagram automorphism of G of order r. Let
O denote the set of formal power series in t with coefficients in C and denote K the set of Laurent
series in t with coefficients in C. Denote the automorphism σ of order r on K and O given by σ
acts trivially on C and maps t→ εt where we fix the primitive r-root of unity ε. We consider the
following twisted affine Grassmannian attached to G and σ,

GrG = G(K)σ/G(O)σ.

This space has been studied intensively in [BH, HR, PR, Ri]. The ramified geometric Satake
correspondence [Zh] asserts that there is an equivalence between the category of spherical perverse
sheaves on GrG and the category of representations of the algebraic group H = (Ǧ)σ. If there is
no confusion, we write Gr for convenience.

Let e0 be the based point in Gr. For any λ ∈ X∗(T ), we attach an element tλ ∈ T (K) naturally
and define the norm nλ ∈ T (K)σ of tλ by

(2.1) nλ :=

r−1∏
i=0

σi(tλ) = ε
∑r−1
i=1 iσ

i(λ)t
∑
σiλ.

This construction originally occurred in [Kot, Section 7.3]. Let λ̄ be the image of λ in X∗(T )σ.
Set eλ̄ = nλ · e0 ∈ Gr. Then eλ̄ only depends on λ̄. Following [BH, Zh], Gr admits the following
Cartan decomposition

(2.2) Gr =
⊔

λ̄∈X∗(T )+σ

Grλ̄
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where Grλ̄ = G(O)σ · eλ̄ is a Schubert cell. Let Grλ̄ be the closure of Grλ̄. Then

Grλ̄ =
⊔
µ̄�λ̄

Grµ̄,

and dimGrλ̄ = 〈2ρ, λ̄〉, where ρ is the half sum of all positive coroots of H.
By abuse of notation, we still use σ to denote the induced automorphism on g of order r. Then

there is a grading on g,
g = g0 ⊕ g1 ⊕ · · · ⊕ gr−1

where gi is the εi-eigenspace. Set
p = g1.

Set O− = C[t−1]. Consider the evaluation map ev∞ : G(O−) → G. Let G(O−)0 denote
its kernel. The map ev∞ factors through G(C[t−1]/(t−2)) → G. Note that the kernel of
G(C[t−1]/(t−2)) → G is canonically identified with the vector space g ⊗ t−1 with respect to
the adjoint action of G and σ. It induces a Go 〈σ〉-equivariant map

G(O−)0 → g⊗ t−1.

Taking σ-invariants, we get a K-equivariant map

(2.3) G(O−)σ0 → p,

where K := Gσ. Note that K is a connected simply-connected simple algebraic group, as G is
simply-connected.

Set Gr−0 := G(O−)σ · e0 ' G(O−)σ0 . Then Gr−0 is the open opposite Schubert cell in Gr. From
(2.3), we have the following K-equivariant map

(2.4) π : Gr−0 → p.

Lemma 2.1. Grλ̄ ∩ Gr−0 is nonempty for any λ ∈ X∗(T )+
σ .

Proof. First note that Gr−0 is an open subset in Gr, cf. [BH][Proof of Theorem 4.2]. Moreover,

Gr−0 ∩ Grλ contains the base point e0. Thus, the intersection Gr−0 ∩ Grλ is a nonempty open

subset of Grλ. Hence Grλ̄ ∩ Gr−0 is also nonempty.
�

Following [Br, Re, AH], an element λ̄ of X∗(T )+
σ is called small, if λ̄ � 2γ0, where γ0 is the

highest short root of H. The set of all small dominant weights is a lower order ideal of X∗(T )+
σ ,

i.e., if µ̄ � λ̄ and λ̄ is small, then µ̄ is also small. Let Grsm be the union of Grλ̄ for small dominant
weights λ̄. Set

M = Grsm ∩ Gr−0 .
For each small dominant weight λ̄, set

Mλ̄ = Grλ̄ ∩ Gr−0 .
Let Np denote the nilpotent cone of p. We shall prove in Section 4 that π(M) is contained Np,
when G is of type An and Dn and σ is of order 2.

Recall that γ0 is the highest short root of H. The following lemma is a twisted analogue of
[AH, Lemma 3.3].

Lemma 2.2. If σ is a diagram automorphism of order r, then π(Gr2γ0 ∩ Gr−0 ) * Ng1
.

Proof. Let XN be the Dynkin diagram of G. Following [Ka, p.128-129], we choose the following
root of G,

θ0 =



α1 + · · ·+ α2`−2, (XN , r) = (A2`−1, 2);

α1 + · · ·+ α2`, (XN , r) = (A2`, 2);

α1 + · · ·+ α`, (XN , r) = (D`+1, 2);

α1 + α2 + α3, (XN , r) = (D4, 3);

α1 + 2α2 + 2α3 + α4 + α5 + α6, (XN , r) = (E6, 2).
4



where the label of simple roots αi follows from [Ka, TABLE Fin, p.53]. Recall from the section
2.1 that for each ι ∈ Iσ, we define simple roots of H, γı = ¯̌αi ∈ X∗(T )σ.

Let θ̌0 be the coroot of θ0. Then,

¯̌θ0 =

{
γ0 if (XN , r) 6= (A2`, 2)

2γ0 if (XN , r) = (A2`, 2)
.

Suppose (XN , r) 6= (A2`, 2). Note that θ0 ∈ X∗(T ) and θ̌0 : C× → T . Each a ∈ C×

can be identified with

(
a 0
0 a−1

)
∈ SL2. For each i = 0, ..., r − 1, define a homomorphism

φσi(θ0) : SL2 → G given by(
1 a
0 1

)
7→ xσi(θ0)(a),

(
1 0
a 1

)
7→ yσi(θ0)(a),

(
a 0
0 a−1

)
7→ σi(θ̌0)(a).

Let S be the product of r copies of SL2. Then θ̌0 can be extended to φ : S → G given by

φ(g0, ..., gr−1) =

r−1∏
i=0

φσi(θ0)(gi).

This φ can extend scalar to K. Abusing notation, define σ :
∏r
i=1(SL2(K))i →

∏r
i=1(SL2(K))i

by
σ(g1(t), g2(t), ..., gr(t)) = (gr(εt), g1(εt), ..., gr−1(εt)).

There exists an isomorphism

ϕ : SL2(K)→ (

r∏
i=1

(SL2(K))i)
σ = {(g(t), g(εt), ..., g(εr−1t)) | g(t) ∈ SL2(K)}.

Hence

φ ◦ ϕ :

(
t 0
0 t−1

)
7→
((

εit 0
0 (εit)−1

))
i=0,...,r−1

7→
r−1∏
i=0

(εit)σ
iθ̌0 = nθ̌0 .

Let s be the product of r copies of sl2. Define σ : s→ s by

σ(x1, , ..., xr−1, xr) = (εxr, εx1, ..., εxr−1).

Since σ has order r, we have s = ⊕r−1
i=0 si where si is the eigenspace of eigenvalue εi. Then

s1 = {(x, εx, ..., εr−1x) | x ∈ sl2} ∼= sl2. The derivative of φ is dφ : s→ g which induces s1 → g1.
Hence we have the map Ψ : sl2 → g1.

Consider the matrix g(t) ∈ SL2(O−),

g(t) =

(
1 + t−1 t−2

t−1 1− t−1 + t−2

)
=

(
0 1
−1 t2 − t+ 1

)(
t2 0
0 t−2

)(
1 0

t2 + t 1

)
.

Then (φ◦ϕ)(g(t)) ∈ G(O)σn2θ̌0G(O)σ. Since G is not type A2l,
¯̌θ0 = γ0 and then (φ◦ϕ)(g(t))·e0 ∈

Gr2γ0 ∩ Gr−G,0. We have the commutative diagram

Gr−SL2,0
Gr−S,0 Gr−G,0

sl2 s1 g1

g(t)·L0 7→ϕ(g(t))·e0 (gi(t))
r−1
i=0 ·e0 7→φ(gi(t))

r−1
i=0 )·e0

πSL2 π

x 7→(x,εx,...,εr−1x)

where Gr−SL2,0
:= SL2(O−)0 · e0 ⊂ GrSL2

, and Gr−S,0 is defined similarly. The commutativity
follows from

π((φ ◦ ϕ)(g(t)) · e0) = Ψ(πSL2
(g(t) · e0)) = Ψ

(
1 0
1 −1

)
,
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where the latter is not nilpotent. It follows that, π(Gr2γ0) 6⊆ Np.

Suppose that (XN , r) = (A2n, 2). In this case, ¯̌θ0 = 2γ0 and σ(θ̌0) = θ̌0. Then θ̌0 can be
extended to φ : SL2 → G defined by(

1 a
0 1

)
7→ xθ0(a),

(
1 0
a 1

)
7→ yθ0(a),

(
a 0
0 a−1

)
7→ θ̌0(a).

φ can extend the scalar to K. Define a group homomorphism σ : SL2(K)→ SL2(K) by(
a(t) b(t)
c(t) d(t)

)
7→
(
a(−t) −b(−t)
−c(−t) d(−t)

)
where a(t) ∈ K. Then φ : SL2(K) → G(K) is σ-equivariant. The induced homomorphism
σ : sl2 → sl2 is given by (

a b
c −a

)
7→
(
a −b
−c −a

)
.

The derivative dφ : sl2 → g induces the map Ψ : (sl2)1 → g1. Similar to the above arguement,
we have the commutative diagram

Gr−SL2,0
Gr−G,0

(sl2)1 g1

πSL2

Ψ

π

where (sl2)1 is the eigenspace of eigenvalue −1 under σ. Now consider g(t) ∈ SL2(O−)σ

g(t) =

(
1 t−1

t−1 1 + t−2

)
=

(
1 −t3 + t
0 1

)(
t2 0
0 t−2

)(
1 t
t 1 + t2

)
.

Then φ(g(t)) ∈ G(O)σnθ̌0G(O)σ and φ(g(t)) · e0 ∈ Gr2γ0 ∩ Gr−0 . The result follows from

π(φ(g(t)) · e0) = Ψ(πSL2(g(t) · e0)) = Ψ

(
0 1
1 0

)
where the latter is not nilpotent. It also follows that, π(Gr2γ0) 6⊆ Np. �

Proposition 2.3. For λ̄ ∈ X∗(T )+
σ , if π(Grλ̄ ∩ Gr−0 ) ⊂ Np, then λ̄ is small.

Proof. Since Gr−0 is an open subset of Gr, π(Grλ̄ ∩ Gr−0 ) ⊂ Np. By Lemma 2.2, Gr2γ0 * Grλ̄
which means λ̄ � 2γ0. �

Define the following anti-involution

ι : G(K)→ G(K), g(t) 7→ g(−t)−1.

It can be checked that ι commutes with σ, and ι preserves G(K)σ, G(O)σ and K−. This induces
the map

ι : Gr−0 → Gr
−
0 , g(t) · e0 7→ g(−t)−1 · e0.

The following lemma will be used in Section 4.

Lemma 2.4. For λ̄ ∈ X∗(T )+
σ , ι(Mλ̄) ⊂Mλ̄.

Proof. It suffices to prove ι(nλ) ∈Mλ̄ for each λ ∈ X∗(T )+.

ι(nλ) = ι(εσλ+2σ2λ+...+(r−1)σr−1λt
∑r−1
i=0 σ

iλ)

= ε−(σλ+2σ2λ+...+(r−1)σr−1λ)(−1)
∑r−1
i=0 σ

iλt−
∑r−1
i=0 σ

iλ

= (−1)
∑r−1
i=0 σ

iλn−λ.

6



Since (−1)
∑r−1
i=0 σ

iλ is fixed by σ, ι(nλ) ∈ G(O)σn−λG(O)σ. Let W be the Weyl group of G with
respect to the maximal torus T and ω0 the longest element of W . We can choose a representative
ω̇0 ∈ G of ω0 such that σ(ω̇0) = ω̇0, cf. [HS, Section 2.3].

When G is of type D2` with ` ≥ 2, w0 = −1; otherwise, w0 = −σ and σ is of order 2, cf. [Hu2,
Ex 5, p.71]. If w0 = −1, it is easy to see that n−λ = w0n

λw−1
0 . If w0 = −σ and σ has order 2,

n−λ = (−1)−σλt−(λ+σλ) = (−1)w0λtw0(λ+σλ) = w0(−1)λtλ+σλw−1
0 = w0(−1)λ+σλnλw−1

0 .

In any case, ι(nλ) ∈ G(O)σnλG(O)σ. �

3. Nilpotent orbits in the space of self-adjoint maps

In this section, we will review some facts on the nilpotent orbits in certain symmetric spaces.
These results are known, cf. [Se]. We provide proofs here, as the proofs in [Se] are omitted.

Let B = 〈·, ·〉 be a nondegenerate symmetric or skew-symmetric bilinear form on a vector space
V = Cm and A the set of self-adjoint linear maps under the bilinear form. In this section, we
describe the classification of nilpotent orbits in the space A in Theorem 3.3, Theorem 3.4 and
Theorem 3.6.

The isometry group of the form B is

IB = {g ∈ GL(V ) | 〈gu, gv〉 = 〈u, v〉 for all u, v ∈ V },

whose Lie alegbra is

(3.1) gB := {X ∈ sl(V ) | 〈Xu, v〉+ 〈u,Xv〉 = 0 for all u, v ∈ V }.

When B is symplectic, dimV is even, IB ∼= Sp2n and gB ' sp2n where m = 2n. When B is
symmetric, IB ∼= Om and gB ∼= som.

The group IB acts on the space of self-adjoint linear maps

(3.2) A = {X ∈ End(V ) | 〈Xu, v〉 = 〈u,Xv〉 for all u, v ∈ V }

by conjugation. The orbit is called nilpotent if it is the orbit of a nilpotent element of A.
Let g be a complex semisimple Lie algebra. Suppose that g has Zm-grading

g =
⊕
i∈Zm

gi

so that [gk, g`] ⊂ gk+`. We have the following graded version of Jacobson–Morozov Theorem and
Kostant Theorem.

Lemma 3.1. Let X be a nonzero nilpotent element in gi.

1) There exists an sl2-triple {H,X, Y } such that H ∈ g0 and Y ∈ g−i.
2) Let {H ′, X, Y ′} be another sl2-triple such that Y ′ ∈ g−i and H ′ ∈ g0. Then there exists

g ∈ KX such that g ·H = H ′, g ·X = X and g · Y = Y ′.

Proof. The first part follows from the usual Jacobson–Morozov Theorem, and the proof is similar
to [EK, Lemma 1.1]. We replace uX := gX ∩ [g, X] in [CM, Lemma 3.4.5] by uX0 := gX0 ∩ [g, X].
Then the proof of the second part is similar to [CM, Theorem 3.4.10]. �

For each A ∈ sl(V ), as a linear map, we denote its adjoint by A∗ under the form B. We define
an involution σ on g = sl(V ) by

(3.3) σ(A) = −A∗.

Then g is the direct sum of eigenspaces, g = g0 ⊕ g1. Thus g0 = gB and g1 = A. Fix a nonzero
nilpotent element X ∈ A. By Lemma 3.1, there exists Y ∈ A and H ∈ gB , such that X,Y,H is
an sl2-triple. This induces a representation of sl2 on V and hence we have a decomposition

(3.4) V =
⊕
r≥0

M(r)
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where M(r) is a finite direct sum of irreducible representation of sl2 of highest weight r. For
r ≥ 0, let H(r) be the highest weight space in M(r). Define a new bilinear form (·, ·) on H(r) by

(u, v)r = 〈u, Y rv〉.

Lemma 3.2. For any r ≥ 0, (·, ·)r is symplectic (resp. symmetric) if B is symplectic (resp.
symmetric).

Proof. We assume B is symplectic. The proof is similar when B is symmetric. It is easy to
see that (·, ·)r is skew-symmetric. It remains to show that (·, ·)r is nondegerate. Let Vr be an
r-weight space in C2n. For any u ∈ Vr, v ∈ Vs with s 6= −r,

(r + s)〈u, v〉 = 〈ru, v〉+ 〈u, sv〉 = 〈Hu, v〉+ 〈u,Hv〉 = 0

This implies that Vr and Vs are 〈·, ·〉-orthogonal. Let

W = Span{u ∈ Vr | u = Y v for some v ∈ C2n}.
It can be seen that Vr = H(r)⊕W . For u ∈ H(r) and v ∈W , write v = Y v′,

(u, v)r = 〈u, Y rv〉 = 〈u, Y r+1v′〉 = 〈Y r+1u, v′〉 = 0.

Hence H(r) is (·, ·)r-orthogonal to W .
We claim that 〈·, ·〉 : (Y r · H(r)) × H(r) → C is nondegenerate. Let u = Y ru′ ∈ Y r · H(r)

be such that 〈u, v〉 = 0 for all v ∈ H(r). For each w ∈ C2n, write w =
∑
s ws where each ws

belongs to Vs. Since u ∈ V−r, 〈u,ws〉 = 0 for s 6= r. Write wr = w1 + w2 where w1 ∈ H(r) and
w2 = Y w′2 ∈W . By the assumption 〈u,w1〉 = 0 and hence

〈u,wr〉 = 〈u,w2〉 = 〈Y ru′, Y w′2〉 = 〈Y r+1u′, w′2〉 = 0.

We obtain 〈u,w〉 = 0 for any w and hence u = 0. This claim implies that (·, ·)r is nondegenerate.
�

A partition of a positive integer is denoted by a tuple [d1, d2, ..., dk] of positive integers. We
use the exponent notation

[ai11 , ..., a
ir
r ]

to denote a partition where a
ij
j means there are ij copies of aj . For example, [32, 14] = [3, 3, 1, 1, 1, 1]

is a partition of 10. Put ri = |{j | dj = i}| and si = |{j | dj ≥ i}|. In fact, each partition can
be illustrated by Young diagram and then si is the i-th part of the dual diagram. The following
Theorem gives the parametrization of nilpotent IB-orbits in A.

Theorem 3.3. There exists one-to-one correspondences

{nilpotent Sp2n-orbits in A} ↔
{

partitions of 2n such that
every part occurs with even multiplicity

}
.

and
{nilpotent Om-orbits in A} ↔ {partitions of m}.

Proof. The proof is similar to [CM, Lemma 5.1.17]. For the case that B is symplectic, it suffices
to show that any nilpotent element in A gives rise to a partition of 2n such that every part occurs
with even multiplicity. Given nilponent X ∈ A, the number of Jordan blocks of size r+ 1 equals
to the multiplicity of M(r) in C2n which is exactly dimH(r). By Lemma 3.2, dimH(r) is even
for every r.

If B is symmetric, there are no constraints on dimH(r) which means there are no conditions
on partitions of m. �

Theorem 3.4. There exists one-to-one correspondence

{nilpotent SO2n+1-orbits in A} ↔ {partitions of 2n+ 1} .

Proof. Since O2n+1 = SO2n+1 × {±I2n+1}, the orbits under O2n+1 and SO2n+1 coincide. The
results immediately follows from Theorem 3.3 �

8



Consider the case that B is symmetric and m = 2n. Given nilpotent elements X,X ′ ∈ A
whose partitions are the same and have at least one odd part. Say that they are conjugated by
an element g ∈ O2n. If det g = 1, we conclude that X,X ′ are in the same SO2n-orbits. Suppose
that det g = −1. We modify this g so that it has determinant 1. By Lemma 3.1, X gives rise
to the decomposition (3.4). An odd part in the partition corresponds to an odd dimensional
irreducible representation S of sl2 in C2n. We put h = g except that h(v) = −g(v) for v ∈ S.
Therefore, deth = 1, and X and X ′ are conjugated by h. If there is no odd parts, we need the
following Lemma.

Lemma 3.5. Let X be a nilpotent element in A whose partition contains only even parts, and
k ∈ O2n such that k ·X = kXk−1 = X. Then det k = 1.

Proof. Let OX
2n be the stabilizer group of O2n at X. Then k ∈ OX

2n. By multiplicative Jordan
decomposition, cf. [Bo, Theorem 4.4, p.83], let ks ∈ OX2n be the semisimple part of k. Then
det ks = det k. Hence we may assume that k is semisimple. Let σ be an automorphism on
g = sl(V ) defined by (3.3). Then σ commutes with Adk on g, as k ∈ O2n. Then g = g0⊕ g1, and
we have the decomposition of k-stabilizers gk = gk0 ⊕ gk1 where gki = gi ∩ gk. Since gk is reductive
and X ∈ gk1 , by Lemma 3.1, there exists an sl2-triple H,X, Y such that X,Y ∈ gk1 and H ∈ gk0
and hence we have the decomposition (3.4). It is easy to see that k(M(r)) ⊂ M(r), and also, k
stabilizes each weight space of M(r).

Recall that 〈·, ·〉 is a nondegenerate symmetric form on V = C2n and a form on H(r) given by
(u, v)r = 〈u, Y rv〉 is also symmetric for any r ≥ 0. For any u, v ∈ H(r),

(ku, kv)r = 〈ku, Y rkv〉 = 〈ku, kY rv〉 = 〈u, Y rv〉 = (u, v)r.

Hence k
∣∣
H(r)

∈ O(H(r)) for any r. In particular det
(
k
∣∣
H(r)

)
= ±1.

Let M(r)` be an `-weight space, and L(r) the lowest weight space in M(r). Observe that
X
∣∣
M(r)`

is an isomorphism from M(r)` to M(r)`+2 and the diagram

L(r) M(r)` M(r)`+2 H(r)

L(r) M(r)` M(r)`+2 H(r)

X
∣∣∣
M(r)`

k
∣∣∣
M(r)`

k
∣∣∣
M(r)`+2

X
∣∣∣
M(r)`

k
∣∣∣
L(r)

k
∣∣∣
H(r)

commutes. Then k
∣∣
M(r)`

has the same determinant for all `. Since X has only even parts, the

number of weight spaces in M(r) is even for each r. Then

det k =
∏
r

det
(
k
∣∣
M(r)

)
=
∏
r

∏
`

det
(
k
∣∣
M(r)`

)
=
∏
r

(
det
(
k
∣∣
H(r)

))`
= 1

as desired. �

Now suppose that X,X ′ ∈ A have the same partition and contain only even parts. If det g = 1,
they are in the same SO2n-orbits. Suppose that det g = −1 and they are conjugated by another
element h ∈ SO2n. Say g ·X = X ′ = h ·X and let k = g−1h. Then det k = (det g−1)(deth) = −1
but this contradicts to Lemma 3.5. In this case, it means X,X ′ are conjugated by an element in
O2n of determinant −1 only. We have the following theorem:

Theorem 3.6. Nilpotent SO2n-orbits in A are parametrized by partitions of 2n except that the
partitions with only even parts correspond to two orbits.

For each nilpotent element X having the partition [d1, d2, ..., dk], we denote the IB-orbits of
X by OX ,O[d1,d2,...,dk], or simply [d1, d2, ..., dk]. We are now ready to compute the dimension of
nilpotent IB-orbits.
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Theorem 3.7. Let X be a nilpotent element in A. Then the dimension of IB-orbit of X is

dimOX =
1

2

(
m2 −

∑
i

s2
i

)
.

Proof. Suppose that B is symplectic on Cm, m = 2n. Recall that we have the decomposition
(3.4). For each Z ∈ gXB , we investigate how Z sends M(d). We consider Z(M(d)) and project
it onto M(e) for each e ≥ 0. Since Z and X commute, by theory of representations of sl2, the
projection of Z(M(d)) onto M(e) is uniquely determined by a linear map L(d) → M(e) where
L(d) is the lowest weight space in M(d).

Suppose that a linear map from L(d) to M(e) is determined for d < e. Since Z is skew-adjoint,
Z∗ = −Z where Z∗ is a conjugate transpose of Z. Hence the projection of Z(M(e)) onto M(d)
is uniquely determined. Therefore, we only consider the case d ≤ e.

Now, consider the case d < e. For v ∈ L(d), Xd+1v = 0 and then Xd+1Zv = ZXd+1v = 0.
Hence the nonzero M(e)-component of Zv must lie in the weight spaces

M(e)e−2d ⊕M(e)e−2(d−1) ⊕ · · · ⊕M(e)e−2 ⊕M(e)e

where M(e)k is the k-weight space in M(e). Note that rd+1 = dimL(d). Therefore the set of all
linear maps from L(d) to M(e) forms a vector space of dimension (d+ 1)rd+1re+1.

Assume that d = e. If Z sends L(d) to H(d), then we define a new bilinear form (·, ·)d on L(d)
given by (u, v)d = 〈u, Zv〉. It can be checked (·, ·)d is symmetric and completely determine the
action of Z on L(d). The set of all such (·, ·)d forms a vector space of dimension 1

2rd+1(rd+1 + 1).
If Z sends L(d) to (d−2)-weight space in M(d), we define the new form by (u, v)d−2 = 〈u,XZv〉.
Again, this form is symmetric and completely determine the action of Z on L(d). Continue this
process up to the case Z sends L(d) to itself. We obtain

dim gXB =
∑
d≥0

[
(d+ 1)

(∑
e>d

rd+1re+1

)
+
d+ 1

2
rd+1(rd+1 + 1)

]

=

[
r1(r2 + r3 + · · · ) +

1

2
r1(r1 + 1)

]
+

[
2r2(r3 + r4 + · · · ) +

2

2
r2(r2 + 1)

]
+

[
3r3(r4 + r5 + · · · ) +

3

2
r3(r3 + 1)

]
+ · · ·

=

[
1

2
r1(r1 + 2r2 + 2r3 + ...) +

1

2
r1

]
+

[
2

2
r2(r2 + 2r3 + 2r4 + ...) +

2

2
r2

]
+

[
3

2
r3(r3 + 2r4 + 2r5 + ...) +

3

2
r3

]
+ · · ·

=

[
1

2
(s1 − s2)(s1 + s2) +

1

2
r1

]
+

[
2

2
(s2 − s3)(s2 + s3) +

2

2
r2

]
+

[
3

2
(s3 − s4)(s3 + s4) +

3

2
r3

]
+ · · ·

=
1

2

∑
i

s2
i +

1

2
(r1 + 2r2 + 3r3 + · · · ) + · · ·

=
1

2

∑
i

s2
i +

1

2

∑
i

si.

= n+
1

2

∑
i

s2
i
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and hence

dimOX = dim gB − dim gXB = (2n2 + n)−

(
n+

1

2

∑
i

s2
i

)
=
m2

2
− 1

2

∑
i

s2
i .

If B is symmetric, the arguement is similar except that the form (u, v)d is symplectic and
hence the vector space consisting of such forms (·, ·)d has dimension 1

2rd+1(rd+1 − 1). �

Remark 3.8. The dimension of IB-orbits can also be obtained from [Se, 3.1.c, 3.2.b], where the
formulae are not uniform and the proofs are also omitted.

The closure relation on the set of nilpotent orbits in A is given by

OY � OX if OY ⊂ OX
for nilpotent elements X,Y ∈ A. Given two partitions d̄ = [d1, ..., dN ], f̄ = [f1, ..., fN ] of N (put
some di, fi = 0 if needed). We say that d̄ dominates f̄ , denoted by d̄ � f̄ if

d1 ≥ f1

d1 + d2 ≥ f1 + f2
...

d1 + ...+ dN ≥ f1 + ...+ fN .

Theorem 3.9. Let X,Y be nilpotent elements in A having partition d̄, f̄ , respectively. Then
Od̄ � Of̄ if and only if d̄ dominates f̄ .

Proof. See [Oh, Theorem 1]. �

For example, all nilpotent Sp10-orbits in A ⊂ sl10 are

O[52] � O[42,12] � O[32,22] � O[32,14] � O[24,12] � O[22,16] � O[110].

The dimensions are 40, 36, 32, 28, 24, 16, 0, respectively.

4. The connection between Schubert cells and nilpotent K-orbits

The goal of this section is to show that for any small λ̄, Mλ̄ is sent to the nilpotent cone Np

by the map π, and show that how eachMλ̄ is sent to nilpotent K-orbits in the Np. Theorem 4.2
describes the image π(Mλ̄) where the proofs are provided by case-by-case consideration in this
section.

Let XN be the type of Dynkin diagram of G and σ the diagram automorphism on G of order r,
denoted by the pair (XN , r). We consider the cases (XN , r) = (A2`, 2), (A2`−1, 2), and (D`+1, 2).
Then H = (Ǧ)σ is either of type B` or C`. We make the following labelling for simple roots γi:

(4.1)


γ1 = γ{1,2`−1}, . . . , γ`−1 = γ{`−1,n+1}, γ` = γ{`} (XN , r) = (A2`−1, 2);

γ1 = γ{1,2`}, . . . , γ`−1 = γ{`−1,`+2}, γ` = γ{`,`+1} (XN , r) = (A2`, 2);

γ1 = γ{1}, . . . , γ`−1 = γ{`−1}, γ` = γ{`,`+1} (XN , r) = (D`+1, 2).

This labelling of vertices of type B` and C` agrees with the labelling in [Ka, TABLE Fin, p.53].
Then the highest short root γ0 of H can be described in the following table.

From Section 2.1, we can identify the weight lattice of H with X∗(T )σ, and the set of dominant
weights of H with X∗(T )+

σ . Then, from the construction of root system of classical Lie algebras
given in [Hu2, §12], we can make the following identifications:

X∗(T )σ ∼=

{
Z` if H = B`;

{(a1, ..., a`) ∈ Z` | a1 + · · ·+ a` ∈ 2Z} if H = C`

and

X∗(T )+
σ
∼= {(a1, ..., a`) ∈ X∗(T )σ | a1 ≥ · · · ≥ a` ≥ 0}
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(XN , r) G H Simple roots of H Highest short root γ0 of H

(A2`, 2) SL2`+1 PSO2`+1
γi = ¯̌αi = ¯̌α2`−i+1,

i = 1, ..., `
γ1 + γ2 + ...+ γ`.

(A2`−1, 2) SL2` PSp2`
γi = ¯̌αi = ¯̌α2`−i,

i = 1, ..., `
γ1 + 2γ2 + ...+ 2γ`−1 + γ`.

(D`+1, 2) Spin2`+2 PSO2`+1
γi = ¯̌αi, i = 1, ..., `− 1

γ` = ¯̌α` = ¯̌α`+1
γ1 + γ2 + ...+ γ`.

H Simple roots γ0 Fundamental weights

B`

γ1 = (1,−1, 0, 0, ..., 0)

γ2 = (0, 1,−1, 0, ..., 0)
.
..

γ`−1 = (0, 0, 0, ..., 1,−1)

γ` = (0, 0, 0, ..., 0, 1)

(1, 0, 0, ..., 0, 0)
ωj = (1j0`−j), j = 0, ..., `− 1

ω` = (
1

2
,

1

2
, ...,

1

2
)

C`

γ1 = (1,−1, 0, 0, ..., 0)
γ2 = (0, 1,−1, 0, ..., 0)

...

γ`−1 = (0, 0, 0, ..., 1,−1)

γ` = (0, 0, 0, ..., 0, 2).

(1, 1, 0, ..., 0, 0) ωj = (1j0`−j), j = 0, ..., `

Table 1. Simple roots, highest short root, and fundamental weights of H in
term of tuples

for any cases of H. This identification preserves the relation on X∗(T )+
σ and the dominance

relation on {(a1, ..., a`) ∈ X∗(T )σ | a1 ≥ · · · ≥ a` ≥ 0}.
In the Table 1, we can further make the following identifications for simple roots and funda-

mental weights of H. Those fundamental weights follows from [Hu2, Table 1., p.69].
The following lemma is well-known, cf.[AH]. We give a self-contained proof here.

Lemma 4.1. All small dominant weights of H are

(1) ωj = (1j0`−j), j = 0, ..., `− 1, 2ω` = (1, 1, ..., 1), if H has the type B`.

(2) ω1 + ω2j+1 = (212j0`−2j−1), j = 0, ..., b `−1
2 c

ω2j = (12j0`−2j), j = 0, ..., b `2c, if H has the type C`.

Proof. Suppose that H has the type B`. The highest short root is γ0 = (1, 0, ..., 0). By definition,
a dominant weight (a1, ..., a`) ∈ X∗(T )+

σ is small if and only if (a1, ..., a`) � (2, 0, ..., 0) which is
equivalent to a1 ≤ 1. This proves the first part.

Now assume that H has the type C`. The highest short root is γ0 = (1, 1, ..., 0). Let
(a1, ..., a`) ∈ X∗(T )+

σ be a small dominant weight. Then (a1, ..., a`) � (2, 2, ..., 0) and so a1 ≤ 2.

If a1 = 1, then (a1, ..., a`) = (12j0`−2j). If a1 = 2, then a2 < 2 and hence (a1, ..., a`) =
(212j0`−2j−1). �

Let µ̄ be the maximal element among all small dominant weights of H, then

Grsm =
∐

λ̄�µ̄,λ̄ small

Grλ̄ = Grµ̄.

Since Grsm is irreducible and M is an open subset of Grsm, M is irreducible.
The following theorem is the main result of this section.

Theorem 4.2. If λ̄ is small, then π(Mλ̄) is contained in Np. Moreover, the image π(Mλ̄) can
be described as the union of nilpotent orbits as the following table:
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(XN , r) Small dominant weight λ of H Orbits in π(Mλ̄)
(A2`, 2) (1j0`−j), j = 0, 1, . . . , ` [2j12`−2j+1]

(A2`−1, 2)

(12j0`−2j), j = 0, 1, . . . , b `2c [22j12`−4j ]
(20`−1) 0, [2212`−4]

(2120`−3) [2212`−4], [2412`−8], [3212`−6]

(212j0`−2j−1), j = 2, . . . , b `−3
2 c

[22j12`−4j ], [22j+212`−4j−4],

[3222j−212`−4j−2], [3222j−412`−4j+2]

(212b `−1
2 c0`−2b `−1

2 c−1)
[2`−214], [2`],

[322`−412], [322`−614]
, if ` is even

[2`−112],
[322`−3], [322`−514]

, if ` is odd

(D`+1, 2) (1j0`−j), j = 0, 1, . . . , `
0, if j = 0

0, [312`−1], if j is even, j ≥ 2
[312`−1], if j is odd

where the nilpotent orbit [ai11 , ..., a
ir
r ] in the above table means empty set if the associated partition

is invalid for some small `.

This theorem follows from Theorem 4.5, Theorem 4.6, Theorem 4.10, and Theorem 4.14, which
will be proved separately case by case.

The partial orders of small dominant weights of H are shown in the below picture, where the
partial order is compatible with the height.

2ω` ω1 + ω2b `−1
2 c+1

ω`−1 ω1 + ω2b `−1
2 c−1

ω`−2 ω1 + ω2b `−1
2 c−3 ω2b `2 c

ω2b `2 c−2

ω1 + ω3

ω2 2ω1 ω4

ω1 ω2

0 0

Type B` Type C`

We first recall a crucial lemma from [AH, Lemma 4.3].

Lemma 4.3. Let g =
∑∞
i=N xit

i ∈ SLn(K), where xN 6= 0. Let λ = (a1, a2, ..., an) be a tuple of
integers such that a1 ≥ a2 · · · ≥ an and

∑
ai = 0, and g(t) ∈ SLn(O)tλSLn(O). Then

(1) N = an.
(2) The rank of xN equals to the number of j such that aj = an.
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(3) For any s ≥ 1,

rk


xN xN+1 · · · xN+s−2 xN+s−1

0 xN · · · xN+s−3 xN+s−2

...
...

. . .
...

...
0 0 · · · xN xN+1

0 0 · · · 0 xN

 =

n∑
j=1

max{s− (aj − an), 0}.

We have the following lemma for the twisted version.

Lemma 4.4. Let g(t) =
∑∞
i=N xit

i ∈ G(K)σ where xi ∈ Matm×m, xN 6= 0. Let λ̄ = (a1, ..., a`) ∈
X∗(T )+

σ be such that g(t) ∈ G(O)σnλG(O)σ. Then

(1)

N =

{
−a1 if (XN , r) = (A2`, 2), (A2`−1, 2);

−2a1 if (XN , r) = (D`+1, 2).

(2) The rank of xN is equal to the number of j such that aj = a1.

Proof. We can write

λ̄ = (a1, ..., a`) =
∑̀
i=1

 i∑
j=1

aj

 γi

where γi are simple roots of H as labelled by (4.1). We choose a representative λ ∈ X∗(T ) of λ̄
by

λ =


∑`
i=1

(∑i
j=1 aj

)
α̌i if (XN , r) = (A2`, 2), (D`+1, 2);∑`−1

i=1

(∑i
j=1 aj

)
α̌i +

1

2

(∑`
j=1 aj

)
α̌` if (XN , r) = (A2`−1, 2)

so that

λ+ σλ =


∑`
i=1

(∑i
j=1 aj

)
α̌i +

∑2`
i=`+1

(∑2`−i+1
j=1 aj

)
α̌i if (XN , r) = (A2`, 2);∑`

i=1

(∑i
j=1 aj

)
α̌i +

∑2`−1
i=`+1

(∑2`−i
j=1 aj

)
α̌i if (XN , r) = (A2`−1, 2);∑`−1

i=1

(∑i
j=1 2aj

)
α̌i +

(∑`
j=1 aj

)
(α̌` + α̌`+1) if (XN , r) = (D`+1, 2).

The simple coroots of G are identified with tuples of integers through the construction of root
system given from [Hu2, §12].

Let ρ : G → GL(V ) be the standard representation of G. We will determine the double
SL(VO)-coset in SL(VK) that ρ(g(t)) belongs to.

If G is of the type Am, then α̌i, i = 1, ...,m, are identified with the following (m+ 1)-tuples

α̌1 = (1,−1, 0, 0, ..., 0)
α̌2 = (0, 1,−1, 0, ..., 0)

...

α̌m = (0, 0, 0, ..., 1,−1)

and hence, as the coweight of SLm, λ+ σλ corresponds to the following tuples

λ+ σλ =

{
(a1, a2, ..., a`, 0,−a`, ...,−a2,−a1) if (XN , r) = (A2`, 2);

(a1, a2, ..., a`,−a`, ...,−a2,−a1) if (XN , r) = (A2`−1, 2).

Assume that G has the type D`+1. Then α̌i, i = 1, ..., `+ 1, are identified with following (`+ 1)-
tuples
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α̌1 = (1,−1, 0, 0, ..., 0)
α̌2 = (0, 1,−1, 0, ..., 0)

...

α̌` = (0, 0, 0, ..., 1,−1)
α̌`+1 = (0, 0, 0, ..., 1, 1).

Then λ + σλ = (2a1, 2a2, ..., 2a`, 0) as the coweight of G = Spin2`+2. Choose an appropriate
maximal torus and a positive root system in G. Composing with ρ : G→ SL2`+2, as the coweight
of SL2`+2, λ+ σλ corresponds to the following tuple

(2a1, 2a2, ..., 2a`, 0, 0,−2a`, ...,−2a2,−2a1).

We write g(t) = A(t)nλB(t), where nλ is a norm of tλ defined by (2.1) and A(t), B(t) ∈ G(O)σ.
Hence ρ(g(t)) ∈ SLm(O)ρ(tλ+σλ)SLm(O). By the above description of ρ(tλ+σλ), this lemma
follows from Lemma 4.3. �

4.1. Case (XN , r) = (A2`, 2). Let 〈·, ·〉 be a nondegenerate symmetric bilinear form on V = C2`+1

whose matrix is

J =



1
−1

1
−1

...

−1
1


.

The diagram automorphism σ on g given by (3.3) becomes σ(A) = −JATJ−1 and the diagram
automorphism σ on G is given by

(4.2) σ(A) = JA−TJ−1.

This σ gives the decomposition g = k ⊕ p to 1 and −1 eigenspaces k and p, respectively. Let
K := (SL2`+1)σ = SO2`+1. The classification of nilpotent K-orbits in p and their dimensions
follow from the Theorem 3.4 and 3.7.

Set

(4.3) Np,2 = {x ∈ Np |x2 = 0}.

Theorem 4.5. π mapsM isomorphically onto Np,2. Moreover, π mapsM(1j0`−j) isomorphically

to [2j12`−2j+1].

Proof. We first show that π maps injectively into Np,2. Let g(t) · e0 ∈ M. Then g(t) · e0 ∈
M(1j0`−j) for some j. By Lemma 4.4, g(t) = I+xt−1 for some x ∈ Mat2`+1,2`+1. By Lemma 2.4,

ι(g(t) · e0) ∈M(1j0`−j). Hence ι(g(t)) = (I − xt−1)−1 = I + zt−1 for some z ∈ Mat2`+1,2`+1, and

so x2 = 0. We now show the map π : M→ Np,2 is bijective. Let x ∈ Np be such that x2 = 0.
Then I + xt−1 ∈ G(K)σ. By (2.2), (I + xt−1) · e0 ∈ Grλ̄ for some λ̄ = (a1, ..., a`) ∈ X∗(T )+

σ . By
lemma 4.4, λ̄ = (1j0`−j) for some j.

Consider the map φ : Np,2 → Gr−0 given by x 7→ (I+xt−1)·e0. Clearly φ is a closed embedding,
as Gr−0 ' G(O−)σ0 and I + xt−1 ∈ G(O−)σ0 if and only if x is nilpotent. By the argument in the
previous paragraph, φ(Np,2) =M and π ◦ φ is the identity map on Np,2. Thus, φ : Np,2 →M is
an isomorphism, and π :M→Np,2 is its inverse.

Finally, we show π maps M(1j0`−j) isomorphically to [2j12`−2j+1] for each j. Since π is

K-equivariant, it suffices to show that π maps M(1j0`−j) onto [2j12`−2j+1]. Let (I + xt−1) ·
e0 ∈ M(1j0`−i). Then x2 = 0 and x has the Jordan blocks of size at most 2. By Lemma 4.4,

rkx = j and then x has the partition [2j12`−2j+1]. It is obvious that π is injective. To prove
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surjectivity, let x ∈ Np,2 having the partition [2j12`−2j+1]. Then, (I + xt−1) · e0 ∈M and hence
(I+xt−1)·e0 ∈M(1k0`−k) for some k. In fact, k = j since π((I+xt−1)·e0) = x ∈ [2k12`−2k+1]. �

4.2. Case (XN , r) = (A2`−1, 2). Let 〈·, ·〉 be a symplectic bilinear form on V = C2` whose matrix
is

J =



1
−1

1
−1

...

1
−1


.

The diagram automorphism σ on g given by (3.3) becomes σ(A) = −JATJ−1 and the action on
G is given by

(4.4) σ(A) = JA−TJ−1.

This σ gives the decomposition g = k ⊕ p to 1 and −1 eigenspaces k and p, respectively. Let
K := (SL2`)

σ = Sp2`. The classification of nilpotent K-orbits in p and their dimensions follow
from the Theorem 3.3 and 3.7.

Define the following constructible sets

M′ :=

b `2 c⋃
j=0

M(12j0`−2j), M′′ :=

b `−1
2 c⋃
j=0

M(212j0`−2j−1).

By Lemma 4.4, the element of M′ is of the form (I + xt−1) · e0 and the element of M′′ is of the
form (I + xt−1 + yt−2) · e0. Let Np,2 be the order 2 nilpotent cone defined as in (4.3).

Theorem 4.6. π maps M′ isomorphically onto Np,2. Moreover, π maps M(12j0`−2j) isomorphi-

cally to [22j12`−4j ].

Proof. The proof is the same as the proof of Theorem 4.5, where in this case we use Lemma 4.4
for (A2`−1, 2). �

Before we describe elements of M′′, we need the following lemma.

Lemma 4.7. Let g(t) · e0 = (I + xt−1 + yt−2) · e0 ∈M′′. Then

(1) ι(g(t)) 6= g(t)

(2) If g(t) · e0 ∈M(212j0`−2j−1), then rk

(
y x
0 y

)
= 2j + 2.

Proof. Note that ι(g(t)) = g(t) if and only if

(I + xt−1 + yt−2)(I − xt−1 + yt−2) = I

which is equivalent to y =
1

2
x2 and x4 = 0. Suppose that ι(g(t)) = g(t). Observe that rkx3 ≤

rkx2 = rk y = 1. If rkx3 = 1, then rkx4 = rkx3 = 1 which is impossible. Hence x3 = 0. Since
rkx2 = 1, x ∈ p is nilpotent having the partition [32j12l−2j−3] but this contradicts to Theorem
3.3. This proves the first part.

Assume that g(t) · e0 ∈M(212j0`−2j−1). We write

g(t) = At(2,1
2j ,02`−4j−2,(−1)2j ,−2)B
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where A =
∑
i=0Ait

i, B =
∑
i=0Bit

i ∈ G(O)σ. In particular, g(t) ∈ SL2`(O)tλSL2`(O) where
λ = (2, 12j , 02`−4j−2, (−1)2j ,−2). By Lemma 4.3,

rk

(
y x
0 y

)
=

2∑̀
j=1

max{−aj , 0} = 2j + 2

as desired.
�

Let g(t) = I + xt−1 + yt−2. By Lemma 2.4, we can write ι(g(t)) = I + x′t−1 + y′t−2 for some
matrices x′, y′. Hence

(I − xt−1 + yt−2)(I + x′t−1 + y′t−2) = I = (I + x′t−1 + y′t−2)((I − xt−1 + yt−2)

which implies

(4.5) x′ = x, x2 = y + y′, xy = y′x, xy′ = yx, yy′ = y′y = 0.

By Lemma 4.4 and Lemma 4.7, rk y = rk y′ = 1 and y′ 6= y. Since σ(g(t)) = g(t), y′ = JyTJ−1

which means that y and y′ are adjoint to each other. We set

MI
(212j0`−2j−1) := {(I + xt−1 + yt−2) · e0 ∈M(212j0`−2j−1) | L = L′},

MII
(212j0`−2j−1) := {(I + xt−1 + yt−2) · e0 ∈M(212j0`−2j−1) | L 6= L′},

where L = Im y and L′ = Im y′.
The following lemma will be used in the proofs of Lemma 4.9 and Theorem 4.14.

Lemma 4.8. Let (·, ·) be a nondegenerate symmetric or skew-symmetric bilinear form on a vector
space V over a field C and let T a linear map on V . Denote the adjoint of T by T ∗. Assume
that ImT = ImT ∗ and rkT = 1. Then T is self-adjoint or skew-adjoint.

Proof. It is easy to see that kerT = (ImT ∗)⊥ and kerT ∗ = (ImT )⊥. Say that ImT = Cv and
ImT ∗ = Cv′ for some v, v′ ∈ V . Then Tw = v for some w ∈ V . Since ImT = ImT ∗, we have
T ∗w = λv for some λ ∈ C. Let u ∈ V . Then Tu = kv for some k ∈ C. Since T (u − kw) = 0,
u− kw ∈ kerT = (ImT ∗)⊥ = (ImT )⊥ = kerT ∗. Hence T ∗u = T ∗(kw) = kλv = λTu. Since u is
arbitrary, T ∗ = λT . Consider T + T ∗ = (1 + λ)T . Then

(1 + λ)T = T + T ∗ = (T + T ∗)∗ = (1 + λ)T ∗.

Therefore 1 + λ = 0 or T = T ∗ which means that T is skew-adjoint or self-adjoint. �

Lemma 4.9. If (I + xt−1 + yt−2) · e0 ∈MI
(212j0`−2j−1), then y′ = −y.

Proof. We know that y 6= y′ are adjoint to each other, they have the same images, and rk y = 1.
By Lemma 4.8, y is skew-adjoint, i.e., y′ = −y. �

Theorem 4.10.

(1) If ` is even, then

π(MI
(212j0`−2j−1)) = [22j12`−4j ] ∪ [22j+212`−4j−4]

for j = 0, 1, ..., `−2
2 . If ` is odd, then

π(MI
(212j0`−2j−1)) =

{
[22j12`−4j ] ∪ [22j+212`−4j−4] if ` ≥ 3, 0 ≤ j ≤ `−3

2 ;

[2`−112] if j = `−1
2 .

(2) When ` ≥ 3, for j = 1, ..., b `−1
2 c, we have

π(MII
(212j0`−2j−1)) =

{
[3212`−6] if j = 1;

[3222j−212`−4j−2] ∪ [3222j−412`−4j+2] if ` ≥ 4, 2 ≤ j ≤ b `−1
2 c.

Moreover, for any ` ≥ 1, MII
(20`−1) is empty.
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Proof. Let g(t) · e0 = (I + xt−1 + yt−2) · e0 ∈MI
(212j0`−2j−1). By Lemma 4.7,

rkx ≤ rk

(
y x
0 y

)
= 2j + 2 ≤ 2 rk y + rkx = 2 + rkx.

Since x2 = y + y′ = 0 (by Lemma 4.9), x is nilpotent whose partition is [22k12`−4k] so that
rkx = 2k. Hence k = j or j + 1. If ` is odd and j = `−1

2 , then k = j.
Let Eij ∈ Mat2`×2` be the matrix which has 1 at the entry i, j and 0 elsewhere. For each

j = 0, 1, . . . , b `−1
2 c, let

xj = diag(0, J2, .., J2, 02`−4j−2,−J2, ..,−J2, 0)

where there are j blocks of J2 =

(
0 1
0 0

)
and j blocks of −J2, and 02`−4j−2 is the square zero

matrix of size 2`− 4j − 2. Then xj ∈ p is nilpotent and has the partition [22j12`−4j ]. It is easy
to check that g(t) = I + xjt

−1 +E1,2`t
−2 ∈ G(K)σ and ι(g(t)) = I + xjt

−1 −E1,2`t
−2. By (2.2),

g(t) · e0 ∈ Grλ̄ for some λ̄ = (a1, ..., a`) ∈ X∗(T )+
σ with a1 ≥ a2... ≥ a` ≥ 0 and

∑
ai is even. By

Lemma 4.4, since rkE1,2` = 1, λ̄ = (212k0`−2k−1) for some k. By Lemma 4.7,

2k + 2 = rk

(
E1,2` xj

0 E1,2`

)
= 2j + 2.

Then (I + xjt
−1 + E1,2`t

−2) · e0 ∈MI
(212j0`−2j−1). For j = 0, 1, . . . , b `−2

2 c, let

x′j = xj + E1,2j+2 − E2`−2j−1,2`.

Then x′j ∈ p is nilpotent and has the partition [22j+212`−4j−4]. Similarly, one can show that

(I + x′jt
−1 + E1,2`t

−2) · e0 ∈MI
(212j0`−2j−1). Since π is K-invariant, this proves the first part.

Now, we prove the second part. Let g(t) · e0 = (I + xt−1 + yt−2) · e0 ∈ MII
(212j0`−2j−1). Set

U = L+ L′. Since y 6= y′, dimU = 2 and U = Imx2. Assume that L = Cv, L′ = Cv′. By (4.5),
we have xy = y′x and xy′ = yx. Hence xv = bv′ and xv′ = av for some a, b ∈ C, v, v′ ∈ C2l.
Then

x
∣∣
U

=

(
0 a
b 0

)
, x2

∣∣
U

=

(
ab 0
0 ab

)
Suppose that ab 6= 0. We will show that 〈·, ·〉

∣∣
U×U is nondegenerate. Let u be a vector in C2`

such that 〈x2u, x2v〉 = 0 for all v ∈ C2`. Since x2 is self-adjoint, 〈x4u, v〉 = 0 for all v. Therefore,
x4u = 0 and so x2u ∈ (kerx2

)
∩ U = ker(x2|U ). By the assumption that ab 6= 0, ker(x2|U ) = 0.

Thus x2u = 0. This concludes that 〈·, ·〉
∣∣
U×U is nondegenerate.

Since yy′ = 0 = y′y, we have L′ ⊂ ker y and L ⊂ ker y′. Recall that y, y′ are adjoint to each
other. It follows that ker y = (L′)⊥ and ker y′ = L⊥. Thus, L′ ⊂ (L′)⊥ and L ⊂ L⊥. This implies
〈v, v〉 = 〈v′, v′〉 = 0. By the non-degeneracy of 〈·, ·〉

∣∣
U×U , we must have 〈v, v′〉 6= 0. Since x is

self-adjoint with respect to the symplectic form 〈, 〉, we have

ab〈v, v′〉 = 〈v, x2v′〉 = 〈xv, xv′〉 = 〈bv′, av〉 = −ab〈v, v′〉
which implies ab = 0, a contradiction. This shows that we must have x2 = 0 on U = Imx2, which
means x4 = 0. Since x ∈ p and rkx2 = 2, by Theorem 3.3, x is nilpotent having the partition
[3222k12`−4k−6]. By Lemma 4.7,

rkx ≤ rk

(
y x
0 y

)
= 2j + 2 ≤ 2 rk y + rkx = 2 + rkx.

Since rkx = 2k + 4, k = j − 1 or j − 2. Here we see that j 6= 0 and hence MII
(20`−1) is empty.

When j = 1, we see that k = 0. Let

J3 =

0 1 0
0 0 1
0 0 0

 , J2 =

(
0 1
0 0

)
.
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For each j = 1, ..., b `−1
2 c, let

xj−1 = diag(J3, J2, ..., J2, 02`−4j−2,−J2, ...,−J2,−J3)

where there are j − 1 blocks of J2, and j − 1 blocks of −J2. Then xj−1 ∈ p is nilpotent
having the partition [3222j−212`−4j−2]. Note that g(t) := 1 + xj−1t

−1 + E13t
−2 ∈ G(K)σ and

ι(g(t)) = 1 + xj−1t
−1 + E2`−2,2`t

−2. By (2.2), g(t) · e0 ∈ Grλ̄ for some λ̄ = (a1, ..., a`) ∈ X∗(T )+
σ

with a1 ≥ a2... ≥ a` ≥ 0 and
∑
ai is even. By Lemma 4.4, since rkE13 = 1, λ̄ = (212k0`−2k−1)

for some k. By Lemma 4.7,

2k + 2 = rk

(
E13 xj−1

0 E13

)
= 2j + 2.

Then (I + xjt
−1 + E13t

−2) · e0 ∈MII
(212j0`−2j−1). For j = 2, ..., b `−1

2 c, let

x′j−2 = diag(0, J3, J2, ..., J2, 02`−4j ,−J2, ...,−J2,−J3, 0)

where there are j − 2 blocks of J2, and j − 2 blocks of −J2. Then x′j−2 ∈ p is nilpotent having

the partition [3222j−412`−4j+2]. One can check that h(t) := 1 + x′j−2t
−1 + (E24 + E1,2`)t

−2 ∈
G(K)σ and ι(h(t)) = 1 + x′j−2t

−1 + (E2`−3,2`−1 − E1,2`)t
−2. Similarly, h(t) · e0 ∈ Grλ̄ where

λ̄ = (212k0`−2k−1) for some k. By Lemma 4.7,

2k + 2 = rk

(
E24 + E1,2` x′j−2

0 E24 + E1,2`

)
= 2j + 2.

Then (I + x′j−2t
−1 + (E24 + E1,2`)t

−2) · e0 ∈MII
(212j0`−2j−1). �

In the following proposition, we describe the reduced fibers of π : M → π(M). For any
x ∈ π(M), let π−1(x)red denote the reduced fiber of π over x.

Proposition 4.11. For any x ∈ π(M), we have

(4.6) π−1(x)red
∼= {z ∈ sp2` | xz + zx = 0, z2 = 0, rk(z +

1

2
x2) ≤ 1}.

In particular, π−1(0)red is isomorphic to the closure of nilpotent orbit O[212`−2] in sp2` and

dimπ−1(0)red = 2`+ 1.

Proof. Fix a nilpotent element x in π(M). Note that (1 + xt−1 + yt−2) · e0 ∈ M if and only if
det(1 + xt−1 + yt−2) = 1, rk y ≤ 1 and

(4.7) xTJ − Jx = 0, −xTJx+ yTJ + Jy = 0, xTJy − yTJx = 0, yTJy = 0.

Set z = y − 1
2x

2, (4.7) is equivalent to

(4.8) z ∈ k = sp2`, xz + zx = 0, z2 = 0.

When xz + zx = 0 and z2 = 0, xt−1 + (z + 1
2x

2)t−2 is nilpotent in Mat2`×2`(K). Thus, det(1 +

xt−1 + (z + 1
2x

2)t−2) = 1. Therefore, the isomorphism (4.6) holds. In particular, when x = 0 we
have

π−1(0)red = {z ∈ sp2` | z2 = 0, rk z ≤ 1},
and the dimension, cf. [CM, Corollary 6.1.4], is given by

dimπ−1(0)red = dimO[212`−2] = (2`2 + `)− 1

2
((2`− 1)2 + 12)− 1

2
(2`− 2) = 2`+ 1.

�

In [AH, Theorem 1.2], they proved that there are finitely many G-orbits in Grλ ∩ Gr−0 for
small dominant coweight λ. In the case of (A2`, 2), it is easy to see that K acts transitively
on M(1j0`−j) and hence there are finitely many K-orbits in M. For the case (A2`−1, 2), it is
not obvious to determine if there are finitely many K-orbits in M(21j0`−j−1). If g(t) = 1 +
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MI
(214)

MII
(214) [3222]

MI
(21202) [3214]

MII
(21202)

M(140) [2412]

MI
(204)

MII
(204) = ∅ [2216]

M(1203) 0

0

∼

∼

Figure 1. Mλ̄ for small dominant weight λ̄ and their image under the map π
in type (XN , r) = (A9, 2)

xt−1 + (z + 1
2x

2)t−2 ∈M(21j0`−j−1), then g(t) satisfies (4.8). If the action of K on the following
anti-commuting nilpotent variety

{(x, z) ∈ Np ×Nk | xz + zx = 0}

by diagonal cojugation has finitely many orbits, then there are finitely manyK-orbits inM(21j0`−j−1).

Example 4.12. Consider the case (XN , r) = (A9, 2) . In this case, G = SL10 and g = sl10 =
k ⊕ p. The diagram as shown in Figure 1 describes the image of Mλ̄ for each small dominant
weight λ̄. For instance,M(21202) consists of two parts,MI

(21202) andMII
(21202). By Theorem 4.10,

π(MI
(21202)) is precisely the union of two nilpotent orbits [2412] and [2216] in p while π(MII

(21202))

is the single nilpotent orbit [3214] in p. Since (21202) � (140), M(21202) � M(140). Similarly,
M(21202) �M(204). According to the table in Theorem 4.2, the image of certain Mλ̄ is a union
of 4 nilpotent orbits. It does not happen in this case since ` = 5 is not large enough. In the case
of (XN , r) = (A13, 2), π(M(21402)) is a union of nilpotent orbits [2416], [2612], [322214], [3218] in
p ⊂ sl14.

4.3. Case (XN , r) = (D`+1, 2). In this case, it is more convenient to work with G = SO2`+2 and
σ is a diagram automorphism on G. It is known that Gσ ' SO2`+1 × {±I}. Let G(O)σ,◦ denote
the identity component of the group G(O)σ. Then, the action of Spin2`+2(O)σ on the twisted
affine Grassmanian Gr of Spin2n+2 factors through G(O)σ,◦. Let G(O−)σ0 be the kernel of the
evaluation map G(O−)σ → Gσ. The action of Spin2`+2(O−)0 on Gr factors through G(O−)σ0 .

Hence, the opposite open Schubert cell Gr−0 is a G(O−)σ0 -orbit. In fact, Gr is naturally the neutral
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component of the twisted affine Grassmannian associated to (G, σ), whose definition is a bit more
involved.

We can realize the group G as {g ∈ SL2`+2|gJgT = J}, and the Lie algebra of G as g =
so2`+2(J) = {x ∈ gl2n | Jx+ xTJ = 0} where

J =



1
1

1
...

1
1


.

The diagram automorphism σ of order 2 on g can be given by σ(x) = wxw where

w = diag

(
I`,

(
0 1
1 0

)
, I`

)
.

The diagram automorphism σ on G is also defined in the same way. We also have the decompo-
sition g = k⊕ p. Let K be the identity component of Gσ. K has Lie algebra k and acts on p by
conjugation. It can be checked that J = ATA where

A =



1√
2

0 · · · · · · 0 1√
2

0
. . . · · · · · ·

... 0
...

... 1√
2

1√
2

...
...

...
... i√

2
− i√

2

...
...

0
... · · · · · ·

. . . 0
i√
2

0 · · · · · · 0 − i√
2


.

Another realization of so2`+2 is so2`+2(I) = {x ∈ gl2` | x+xT = 0}. There exists an isomorphism
from so2`+2(J) to so2`+2(I) given by x 7→ AxA−1. Under so2`+2(I), the diagram automorphism
σ0 is defined by σ0(x) = w0xw0 where w0 = (PA)w(PA)−1 = diag(−1, 1, 1, ..., 1) and P is some
matrix of change of basis.

Proposition 4.13.

(1) If x is a nonzero nilpotent element in p, then x has the partition [312`−1].
(2) There are exactly 2 nilpotent K-orbits in p: {0} and Np \ {0}.

Proof. Since w0xw0 = −x, x has the form

x =

(
0 −ut
u 0

)
where u ∈ C2l+1 is a nonzero column vector. Then

x2 =

(
−utu 0

0 −uut
)
.

If x2 = 0, then uut = 0 which implies u = 0, a contradiction. Since rkx = 2 and x2 6= 0, x has
the partition [312n−1]. This proves the first part.

The element of K has the form

k =

(
1 0
0 g

)
.

where g ∈ SO2`+1 and k acts on x ∈ p by

k · x = kxk−1 =

(
1 −(gu)t

gu 0

)
.
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Hence the action of K on p is the same as the action of SO2`+1 on C2`+1. Note that for every
k ≥ 3, xk has the scalar uTu on every nonzero entry. Since x is nilpotent, uTu = 0. The result
immediately follows since the action of SO2`+1 on {z ∈ C2`+1 | zT z = 0} has two orbits. �

Theorem 4.14. For j = 0, 1, ..., `, we have

π(M(1j0`−j)) =


Np \ {0} if j is odd;

{0} if j = 0;

Np if j is even and j ≥ 2.

.

Moreover, M(10`−1) = {(1 + xt−1 + 1
2x

2t−2) · e0 | x ∈ Np \ {0}}. Consequently, π maps M(10`−1)

isomorphically onto Np \ {0}.

Proof. By Lemma 4.4, let g(t) · e0 = (1 + xt−1 + yt−2) · e0 ∈ M(1j0`−j). We work under the
realizations so2`+2(I) and SO2`+2(I). Since g(t) is fixed by σ0, w0xw0 = −x and w0yw0 = y.
Similar to the proof of Proposition 4.13, x, y are in the form

(4.9) x =

(
0 −uT
u 0

)
, y =

(
y0 0
0 D

)
where u ∈ C2`+1 is a column vector, y0 ∈ C, and D ∈ Mat(`−1)×(`−1). Since gT g = I, the
following equations hold:

(4.10) xT + x = 0, xTx+ yT + y = 0, xT y + yTx = 0, yT y = 0.

Then y0 = 0 and uTu = 0 which implies x3 = 0. Hence x ∈ Np.
Suppose that j is odd and x = 0. We have y + yT = 0 and yT y = 0. Then y0 = 0 and D is a

nilpotent element of so2`+1 with D2 = 0. Since rkD = rk y = j, D has the partition [2j12`−2j+2].
This contradicts the classification of nilpotent orbits of type B, [CM, Theorem 5.1.2]. Hence
x 6= 0. Now, consider the matrix x0 ∈ Np \ {0} defined by

x0 =


0 · · · 0 −1 −i
...
0
1
i

 .

Let N be a nilpotent element in so2`−1(I) having the partition [2j−112`−j+1]. Such a matrix N
exists in view of [CM, Theorem 5.1.2]. Then the matrices x0 and

y0 := diag(0, ..., 0, N, 0, 0) +
1

2
x2

0

satisfy the relations in (4.10). Hence g(t) := 1 +x0t
−1 + y0t

−2 ∈ G(O)σ. By (2.2), g(t) · e0 ∈ Grλ̄
for some λ̄ = (a1, a2, ..., a`) ∈ X∗(T )+

σ with a1 ≥ ... ≥ a`. Since rk y0 = j, by Lemma 4.4,
λ̄ = (1j0`−j) and hence g(t) · e0 ∈M(1j0`−j). Since π is K-equivariant, the first part is done. By
K-equivariance, the second part also follows.

Suppose that j is even. For each j = 0, 2, 4, ..., 2b `2c, consider the `× ` matrix

1
...

1

−1
...

−1
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where there are j
2 copies of each 1 and -1. Denote zj the square zero matrix of size 2`+ 2 whose

`× ` submatrix on the right top is replaced by the above matrix. Now we work under so2`+2(J)
and SO2`+2(J). Since wzjw = zj and rk zj = j, we have (1 + zjt

−2) · e0 ∈ M(1j0`−j) and then

π((1 + zjt
−2) · e0) = 0. Let x0 be the square zero matrix of size 2`+ 2 whose 4× 4 submatrix at

the center is replaced by 
0 1 −1 0
0 0 0 1
0 0 0 −1
0 0 0 0

 .

Then x0 ∈ Np \ {0}, Set y0 = 1
2x

2
0 + zj . Then rk y0 = j. It can be checked that x0, y0 satisfy

wx0w = −x0, wy0w = y0, and

(4.11)
xT0 J + Jx0 = 0, xT0 Jx0 + yT0 J + Jy0 = 0,

xT0 Jy0 + yT0 Jx0 = 0, yT0 Jy0 = 0.

Hence h(t) := 1 + x0t
−1 + y0t

−2 ∈ G(O)σ. Similarly, one can show that h(t) · e0 ∈ M(1j0`−j).
This proves the second part.

To prove the last part, let x be a nonzero nilpotent element in p. Since x has the partition
[312`], rkx2 = 1. It is easy to check that (1 + xt−1 + 1

2x
2t−2) · e0 ∈ M(10`−1). Conversely, let

g(t) · e0 = (1 + xt−1 + yt−2) · e0 ∈ M(10`−1). Let ι(g(t)) = 1 + xt−1 + y′t−2. Since g(t) =

g(t)−T = (ι(g(−t)))T , y = (y′)T . Then y and y′ are adjoint each other under the symmetric form
whose matrix is I. Note that rk y = rk y′ = 1. If Im y 6= Im y′, then rkx2 = rk y + rk y′ = 2, a
contradiction. Hence Im y = Im y′. By Lemma 4.8, y′ = y or y′ = −y. By (4.5), x2 = y + y′

and hence y′ = y. By (4.10), xT + x = 0 and xTx+ yT + y = 0. Then y + y′ = x2 = y + yT , so
y = y′ = yT . Therefore, g(t) = 1 + xt−1 + yt−2 = 1 + xt−1 + 1

2x
2t−2. �

Proposition 4.15. For x ∈ Np, write x as in (4.9). Then

(4.12) π−1(x)red
∼= {D ∈ so2`+1 | Du = 0, D2 = 0}.

In particular, π−1(0)red is isomorphic to the maximal order 2 nilpotent variety in so2`+1, and

dimπ−1(0)red =

{
`2 if ` is even;

`2 − 1 if ` is odd.

Proof. Under the realization so2`+2(I) and SO2`+2(I), and the diagram automorphism σ0, we
have that (1 + xt−1 + yt−2) · e0 ∈ M if and only if w0yw0 = y and the conditions (4.10) hold.
Set z = y − 1

2x
2, these conditions are equivalent to

(4.13) z =

(
0

D

)
, D ∈ so2`+1, D2 = 0, Du = 0,

where u is given in (4.9). Hence the isomorphism (4.12) holds. In particular when x = 0,
π−1(0)red

∼= {D ∈ so2`+1 | D2 = 0} which is O[2k12`−2k+1] in so2`+1 where k is the maximal even
integer. By the dimension formula, cf. [CM, Corollary 6.1.4],

dimπ−1(0)red =

{
dimO[2`1] = `2 if ` is even;

dimO[2`−113] = `2 − 1 if ` is odd

as desired. �

Similar to the case (A2`−1, 2), it is not obvious to see if there are finitely many K-orbits in
M(1j0`−j). If g(t) = 1 + xt−1 + (z + 1

2x
2)t−2 such that g(t) · e0 ∈ M(1j0`−j), then g(t) satisfies

(4.13). If the action of K on the following anti-commuting nilpotent variety

{(x, z) ∈ so2`+2(I)× so2`+2(I) | xz + zx = 0, x, z nilpotent}
by diagonal cojugation has finitely many orbits, then there are finitely manyK-orbits inM(1j0`−j).
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4.4. Theorem 4.2 for the field of positive characteristic. In this subsection, we make a
remark regarding Theorem 4.2 when the filed C is replaced by an algebraically closed field k of
positive characteristic p.

Theorem 4.16. Theorem 4.2 holds for the field k of characteristic p, when
p ≥ 3 if (XN , r) = (A2`, 2)

p ≥ 5 if (XN , r) = (A2`−1, 2)

p ≥ 3 if (XN , r) = (D`+1, 2).

Proof. Suppose that p > 2. Given any element L ∈ M, set x = π(L) ∈ p. When (XN , r) =
(A2`, 2), by the proof of Theorem 4.5, x2 = 0. When (XN , r) = (A2`−1, 2), by the proofs of
Theorem 4.6 and Theorem 4.10, x4 = 0. Recall that x ∈ p if and only if x is self-adjoint with
respect to a non-degenerate symmetric form (resp. symplectic form) when g = A2` (resp. A2`−1).
Under our assumption on the characteristic p, by the similar proof of [Ja, Lemma 1.9] for x ∈ p,
we can find a nilpotent matrix y in p with the same order of x and h ∈ k such that {x, y, h}
is a sl2-triple. By [Ca, Theorem 5.4.8], with the assumption on p, as a sl2-representation, V is
completely reducible, i.e. we still have the decomposition (8). Then by the same argument as in
Theorem 3.3, all possible partitions of x are exactly those that appear in Theorem 4.2. When
(XN , r) = (D`+1, 2), by the proof of Theorem 4.14, x3 = 0. When p > 2, by [Ja, Theorem 1.6],
x is either 0 or has partition [312`−1], i.e. those that appear in Theorem 4.2. Thus, all results in
Section 4.1-4.3 remain true under our assumption on p. �

We expect that Theorem 4.2 is true for any p > 2. Theorem 4.2 relies on the classification
theorem of nilpotent orbits in p. In fact, we expect Theorem 3.3 and Theorem 3.4 hold for any
field k when the characteristic p > 2. The reason is that the classification of nilpotent orbits in
classical Lie algebra remains the same if p > 2, see a proof in [Ja, §1.6-1.12]. A similar proof for
the classification of nilpotent orbits in p should also carry over when p > 2.

5. Applications

In this section, we describe some applications to the geometry of order 2 nilpotent varieties in
the certain classical symmetric spaces.

Let 〈, 〉 be a symmetric or symplectic non-degenerate bilinear form on a vector space V . Recall
that A is the space of all self-adjoint linear maps with respect to 〈, 〉. Set NA,2 denote the space
of all nilpotent operators x in A such that x2 = 0. If 〈, 〉 is symmetric and dimV = 2n + 1,
then SO2n+1-orbits in NA,2 are classified by the partitions [2j12n+1−2j ] with 0 ≤ j ≤ n; if 〈, 〉 is
symplectic and dimV = 2n, then Sp2n-orbits in NA,2 are classified by the partitions [22j12n−2j ]
with 0 ≤ j ≤ bn2 c.

Theorem 5.1. Assume that 〈, 〉 is symplectic or symmetric and dimV is odd. Then any order
2 nilpotent variety in A is normal.

Proof. By Theorem 4.5 and Theorem 4.6, for any order 2 nilpotent varietyO inA, O is isomorphic
to Mλ̄ := Grλ̄ ∩ Gr−0 for a small dominant weight λ̄ of H. Note that Mλ̄ is an open subset of

the twisted Schubert variety Grλ̄ and Grλ̄ is a normal variety (cf. [PR, Theorem 0.3]). It follows
that O is also normal. �

In fact, when 〈, 〉 is symplectic, any nilpotent variety in A is normal, see [Oh]. In loc.cit., Ohta
also showed that not all nilpotent varieties are Np is normal, when 〈, 〉 is symmetric. When 〈, 〉
is symmetric and dimV is odd, this theorem seems to be new.

Remark 5.2. Theorem 5.1 is true for any field k of characteristic p > 2, as one can see that
the classification theorem in Section 3 still holds for order 2 nilpotent orbits, and the arguments
in Theorem 4.5, Theorem 4.6 applies as well. See the discussions in the proof of Theorem 4.16.
The same remark applies to the following Theorem 5.3 and Theorem 5.4

24



For any variety X, let ICX denote the intersection cohomology sheaf on X. The perverse sheaf
ICX captures the singularity of the variety X. For any x ∈ X, we denote by H k

x (ICX) the k-th
cohomology of the stalk of ICX at x.

Theorem 5.3. (1) When 〈, 〉 is symmetric and dimV = 2n + 1, for any 0 ≤ j ≤ n, let Oj
denote the nilpotent orbit in A associated to the partition [2j12n+1−2j ] and let O′j denote

the nilpotent orbit in sp2n associated to the partition [2j12n−2j ], we have

dimOj = dimO′j = j(2n+ 1− j).
Moreover, for any x ∈ O[2i12n+1−2i] and x′ ∈ O′[2i12n−2i], and for any k ∈ Z,

dim H k
x (ICOj ) = dim H k

x (ICO′j ).

(2) When 〈, 〉 is symplectic and dimV = 2n, for any 0 ≤ j ≤ bn2 c, let O2j denote the nilpotent

orbit in A associated to the partition [22j12n−4j ] and let O′2j denote the nilpotent orbit

in so2n+1 associated to the partition [22j12n+1−4j ], we have

dimO2j = dimO′2j = 4j(n− j),
Moreover, for any integer 0 ≤ i ≤ j, x ∈ O2i, x

′ ∈ O′2i, and for any k ∈ Z, we have

dim H k
x (ICO2j

) = dim H k
x (ICO′2j ).

Proof. We first prove part 1). By Theorem 3.7 and [CM, Corollary 6.1.4], it is easy to verify
dimOj = dimO′j = j(2n+ 1− j). By Theorem 4.5, Oj can be embedded into an open subset in

the twisted affine Schubert variety Grωj associated to (SL2n+1, σ). On the other hand, in view

of [AH], O′j can be embedded into the untwisted affine Schubert variety Gr
ωj
Sp2n

in the affine

Grassmannian GrSp2n
of Sp2n. Set

F = ICOj [−dimOj ], and F ′ = ICO′j [−dimO′j ].

By purity vanishing property of intersection cohomology sheaf of Schubert varieties (cf. [KL]),
H k
x (F) = H k

x′(F ′) = 0 when k is odd. Equivalently,

H k
x (ICOj ) = H k

x (ICO′j ) = 0

for any odd integer k, as dimOj = dimO′j is even.
Note that the affine Grassmannian GrSp2n

and the twisted affine Grassmannian GrSL2n+1

have the same underlying affine Weyl group. Applying the results in [KL], the polynomials∑
dim H 2k

x (F)qk and
∑

H 2k
x (F ′)qk are both equal to the same Kazhdan-Lusztig polynomial

Pωi,ωj (q) for the affine Weyl group of so2n+1. It follows that

dim H k
x (ICOj ) = dim H k

x (ICO′j )

for all even integer k. Alternatively, one can see these two polynomials are equal, as they both
coincide with the jump polynomial of the Brylinsky-Kostant filtration on the irreducible repre-
sentation Vωj of H, see [Bry, Zh].

For the second part of the theorem, the proof is almost the same, except that by Theorem
4.6, O2j can be openly embedded into the twisted affine Schubert variety Grω2j

associated to

(SL2n, σ), and O′2j can be openly embedded into the affine Schubert variety Gr
ω2j

Spin2n+1
. �

Part 1) of this theorem was due to Chen-Xue-Vilonen [CVX] by different methods. This
theorem shows that there is a natural bijection between order 2 nilpotent varieties in A and
order 2 nilpotent varieties in its dual classical Lie algebras, such that they share similar geometry
and singularities.

We now describe another application.

Theorem 5.4. If 〈, 〉 is symplectic, then the smooth locus of any order 2 nilpotent variety in A
is the open nilpotent orbit.
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Proof. Let O be any order 2 nilpotent variety in A. By Theorem 4.6, O can be openly embedded
into a twisted Schubert variety Grλ̄ with λ̄ small, in the twisted affine Grassmannian GrSL2n

.
Then this theorem follows from [BH, Theorem 1.2]. �
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