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Abstract. Let G be a special parahoric group scheme of twisted type over the ring
of formal power series over C, excluding the absolutely special case of A(2)

2` . Using
the methods and results of Zhu, we prove a duality theorem for general G : there is a
duality between the level one twisted affine Demazure modules and the function rings
of certain torus fixed point subschemes in affine Schubert varieties for G . Along the
way, we also establish the duality theorem for E6. As a consequence, we determine
the smooth locus of any affine Schubert variety in the affine Grassmannian of G . In
particular, this confirms a conjecture of Haines and Richarz.
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1. Introduction

Let G be an almost simple algebraic group over C and let GrG be the affine Grassman-
nian of G. The geometry of the affine Grassmannian is related to integral highest weight
representations of Kac-Moody algebras via the affine Borel-Weil theorem. Similarly, the
geometry of affine Schubert varieties are closely related to affine Demazure modules.

Let T be a maximal torus in G and let X∗(T )+ be the set of dominant coweights.
For any λ ∈ X∗(T )+, let Gr

λ

G be the associated affine Schubert variety in GrG, which
is the closure of the G(O)-orbit GrλG, where O = C[[t]]. Evens-Mirković [EM] and
Malkin-Ostrik-Vybornov [MOV] proved that the smooth locus of Gr

λ

G is exactly the
open Schubert cell GrλG. Zhu [Zh1] proved that there is a duality between the affine
Demazure modules and the coordinate ring of the T -fixed point subschemes of affine
Schubert varieties when G is of type A and D, and in many cases of the exceptional
types E6, E7 and E8. As a consequence, this gives another approach to determine the
smooth locus of Gr

λ

G for type A,D and many cases of type E.
In this paper, we study a connection between the geometry of twisted affine Schubert

varieties and twisted affine Demazure modules. Following the method of Zhu in [Zh1],
we will use the weight multiplicities of twisted affine Demazure modules to determine
the smooth locus of twisted affine Schubert varieties.

Let G be an almost simple algebraic group of simply-laced or adjoint type with the
action of a “standard” automorphism σ of order m, defined in Section 2.1. When G
is not of type A2`, σ is just a diagram automorphism. Assume that σ acts on O by
rotation of order m. Let G be the σ-fixed point subgroup scheme of the Weil restriction
group ResO/Ō(GO), where Ō = C[[tm]]. Then G is a special parahoric group scheme
over Ō in the sense of Bruhat-Tits. One may define the affine Grassmannian GrG of
G . Following [PR, Zh2], we will call it a twisted affine Grassmannian. For any λ̄ the
image of a dominant coweight λ in the set X∗(T )σ of σ-coinvariants of X∗(T ), the twisted
affine Grassmannian GrG and twisted affine Schubert varieties Gr

λ̄

G share many similar
properties with the usual affine Grassmannian GrG and affine Schubert varieties. For
instance, a version of the geometric Satake isomorphism for G was proved by Zhu in
[Zh3].

In literature, special parahoric group schemes are parametrized by special vertices on
local Dynkin diagrams. In this paper, our approach is more Kac-Moody theoretic. For
this reason, we use the terminology of affine Dynkin diagrams instead of local Dynkin
diagrams. Following [HR], there are two special parahoric group schemes for A(2)

2` , and
in this case the parahoric group scheme G that we consider is special but not absolutely
special. We prove Theorem 4.5 in Section 4, which asserts that

Theorem 1.1. For any special parahoric group scheme G induced from a standard
automorphism σ, the following restriction is an isomorphism:

H0(Gr
λ̄

G ,L )→ H0((Gr
λ̄

G )Tσ

,L |
(Gr

λ̄
G )Tσ ),

where L is the level one line bundle on GrG , Tσ is the σ-fixed point subgroup of a
σ-stable maximal torus T in G and (Gr

λ̄

G )Tσ
is the Tσ-fixed point subsheme of Gr

λ̄

G .
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The above theorem can not be extended to the absolutely special parahoric group
scheme of type A(2)

2` , as there is no level one line bundle on GrG (cf. [Zh2]). This theorem

extends Zhu’s duality to the twisted setting. The dual H0(Gr
λ̄

G ,L )∨ is a twisted affine
Demazure module, see Theorem 3.10. Hence, Theorem 1.1 is a duality between twisted
affine Demazure modules and the coordinate rings of the Tσ-fixed point subschemes of
twisted affine Schubert varieties. One of the motivations of the work of Zhu [Zh1] is to
give a geometric realization of Frenkel-Kac vertex operator construction for untwisted
simply-laced affine Lie algebras. The analogue of Frenkel-Kac construction for twisted
affine Lie algebras also exists in literature, see [BT, FLM]. In fact, our Theorem 1.1
implies a geometric Frenkel-Kac isomorphism, see Theorem 4.9.

As a conseqence of Theorem 1.1, we obtain Theorem 4.10 and Theorem 4.11, which
asserts that

Theorem 1.2.
(1) If G is not of type A(2)

2` , then for any λ̄ ∈ X∗(T )σ, the smooth locus of the twisted

affine Schubert variety Gr
λ̄

G is exactly the open cell Grλ̄G .
(2) If G is special but not absolutely special of type A(2)

2` , then for any λ̄ ∈ X∗(T )σ,

the smooth locus of the twisted affine Schubert variety Gr
λ̄

G is the union of Grλ̄G
and possibly some other cells Grµ̄G , which are completely determined in Theorem
4.11.

When G is absolutely special of type A(2)
2` , our method is not applicable, as there is no

level one line bundle on the affine Grassmannian of G . Nevertheless, Richarz already
proved in his Diploma [Ri2] that in this case the smooth locus of any twisted affine
Schubert variety is the open cell, see Remark 4.12. Thus, our Theorem 1.2 confirms a
conjecture of Haines-Richarz [HR, Conjecture 5.4]. Beyond that, we also completely
determine the smooth locus of twisted affine Schubert varieties for special but not abso-
lutely special parahoric group scheme G of type A(2)

2` . The problem of determining the
smooth locus of twisted affine Schubert varieties was first studied by Richarz in [Ri2],
where by the methods of Malkin-Ostrik-Vybornov [MOV] besides the absolutely special
group schemes of type A(2)

2` , the special parahoric group scheme of type A(2)
2`−1 has also

been taken care of. It is also worthwhile to mention that the smooth locus of the quasi-
minuscule Schubert variety for D(3)

4 is determined by Haines-Richarz in [HR] by rather
lengthy computations. In fact, one can define special parahoric group schemes over any
base field k of any characteristic, and the twisted Schubert variety Gr

λ̄

G over the field k.
By the works [HLR, HR, Lo], Theorem 1.2 remains true for normal twisted Schubert
varieties over any field k (Schubert varieties are always normal if the characteristic is
not bad), see Remark 4.13.

To prove Theorem 1.1, one ingredient is Theorem 4.2 in Section 4, which asserts
that the Tσ-fixed point ind-subscheme (GrG )Tσ

is isomorphic to the affine Grassmannian
GrT , where T is the σ-fixed point subscheme of the Weil restriction group ResO/Ō(TO).

Let π : P1 → P̄1 be the map given by t 7→ tm, where P̄1 is a copy of P1. Another
main ingredient of the proof of Theorem 1.1 is the construction of the level one line
bundle L on the moduli stack BunG of G-torsors, where G is the parahoric Bruhat-Tits
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group scheme obtained as the σ-fixed subgroup scheme of the Weil restriction group
ResP1/P̄1(GP1) with G being simply-connected. This is achieved in Section 3. It is known
that the level one line bundle on BunG does not necessarily exist for an arbitary parahoric
Bruhat-Tits group scheme G over a smooth projective curve, for example when G is of
type A2`, cf. [He, Remark 19 (4)] [Zh2, Proposition 4.1]. In Theorem 3.13, when σ
is standard, we prove that there exists a level one line bundle L on the moduli stack
BunG of G-torsors. Following the method of Sorger in [So], we use the non-vanishing
of twisted conformal blocks to construct this line bundle on BunG, where the general
theory of twisted conformal blocks was recently developed by Hong-Kumar in [HK].

By the work of Zhu in [Zh2], for each dominant coweight λ, one can construct a
global Schubert variety Gr

λ

G, which is flat over P1. The fiber over the origin is the twisted

affine Schubert variety Gr
λ̄

G , and the fiber over a generic point is isomorphic to the usual
affine Schubert variety Gr

λ

G. With the level one line bundle on BunG when G is simply-
connected, we can construct the level one line bundle on the global affine Schubert
variety Gr

λ

G for G being either simply-connected or adjoint. The main idea of this paper
is that, our duality theorem for twisted affine Schubert varieties can follow from Zhu’s
duality theorem for usual affine Schubert varieties via the level one line bundle on the
global affine Schubert variety Gr

λ

G.
The proof of Theorem 1.1 relies on the duality theorem of Zhu in the untwisted case.

However, Zhu only established the duality in the case of type A,D and some cases of
type E6, E7.E8. To fully establish Theorem 1.1, we need to prove the duality theorem for
E6 in the untwisted setting. In the case of E6, the duality has been established by Zhu
when λ is the fundamental coweight ω̌1, ω̌2, ω̌3, ω̌5, ω̌6 (Bourbaki labelling), and Zhu
also showed that the duality theorem will hold in general if the duality also hold for ω̌4,
which is the most difficult case. In Section 5, we establish the duality theorem for ω̌4.
This completes the duality theorem for E6 in general. One of the main techniques is a
version of Levi reduction lemma (due to Zhu) in Lemma 5.2. In addition, we crucially
use the Heisenberg algebra action on the basic representation of affine Lie algebra, and
the Weyl group representations in weight zero spaces. To make Levi reduction lemma
work for the ω2-weight space of the irreducible representation V(ω4), we use the idea of
“numbers game” by Proctor [Pro] and Mozes [Mo] which was originally used to study
minuscule representations. Finally, another key step is Proposition 5.8, which is verified
by Travis Scrimshaw using SageMath [Sag], see Appendix A.

It is also worth to mention another application of the duality theorem for simply-
laced simple algebraic groups. In [KTWWY], the duality theorem is crucially used for
the proof of Hikita conjecture for the transversal slices of affine Grassmannians.

Acknowledgments: We would like to thank the hospitality of Max Planck institute for
mathematics at Bonn during our visits in November and December of 2019, where part
of the work was done. We also would like to thank Thomas Haines, Timo Richarz,
Michael Strayer and Xinwen Zhu for helpful conversations and valuable comments.
J. Hong is partially supported by the Simons collaboration Grant 524406, and NSF grant
DMS-2001365.
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2. Main definitions

Let G be an almost simple algebraic group over C of adjoint or simply-connected
type. We choose a maximal torus and Borel subgroup T ⊂ B ⊂ G. We denote by X∗(T )
the lattice of weights of T , and by X∗(T ) the lattice of coweights. Their natural pairing is
denoted by 〈, 〉. Let Φ denote the set of roots of G, and denote by Φ+ the set of positive
roots of G with respect to B. Let Φ̌ denote the set of coroots, so (Φ, X∗(T ), Φ̌, X∗(T )) is
a root datum for G, and write W for the Weyl group of G. Let Q denote the root lattice
of G, and Q̌ the coroot lattice.

We follow the Bourbaki labelling of the vertices of the Dynkin diagram in [Bo]. We
denote by {αi | i ∈ I} (respectively {α̌i | i ∈ I} the set of simple roots in Φ (respectively
coroots in Φ̌), where I is the set of vertices of the associated Dynkin diagram of G.
Let {ωi | i ∈ I} be the set of fundamental weights of G, and let {ω̌i | i ∈ I} be the set of
fundamental coweights of G. We also choose a pinning {xαi , yαi | i ∈ I} of G with respect
to B and T .

Let g, b, h denote the Lie algebras of G, B,T respectively. Let {ei, fi | i ∈ I} denote the
set of Chevalley generators associated to the pinning {xαi , yαi | i ∈ I}. Let eθ (resp. fθ) be
the highest (resp. lowest ) root vector in g, such that [eθ, fθ] is the coroot θ∨ of θ.

2.1. Standard automorphisms. Let σ be an automorphism of order m on G preserving
B and T . Let τ be a diagram automorphism preserving B,T and a pinning {xαi , yαi | i ∈ I}.
Let r be the order of τ.

When g is not A2`, we take σ to be τ. When g is A2`, by [Ka, Theorem 8.6] there exists
a unique automorphism σ of order m = 4 such that

(2.1)


σ(ei) = eτ(i), if i , `, ` + 1;
σ(ei) = ieτ(i), if i ∈ {`, ` + 1};
σ( fθ) = fθ,

where i is a square root of −1. One can check that

(2.2)


σ( fi) = fτ(i), if i , `, ` + 1;
σ( fi) = −i fτ(i), if i ∈ {`, ` + 1};
σ(eθ) = eθ

.

In fact, σ = τ ◦ ih, where h ∈ h such that

αi(h) =

0, if i , `, ` + 1
1, if i = `, ` + 1

.

This automorphism induces a unique automorphism on G. We still call it σ.
We call these automorphisms on G or g “standard”, as the fixed point Lie subalge-

bra gσ is the standard finite part of the associated twisted affine Lie algebra L̂(g, σ)
(cf. Section 3.1) in the sense of Kac [Ka, §6.3]. Throughout this paper, we will only
consider standard automorphisms.
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The following table describe the fixed point Lie algebras for all standard automor-
phisms:

(2.3)
(g,m) (A2`−1, 2) (A2`, 4) (D`+1, 2) (D4, 3) (E6, 2)

gσ C` C` B` G2 F4
,

where by convention C1 is A1 and ` ≥ 3 for D`+1. When (g,m) , (A2`, 4), the fixed point
Lie algebra gσ is well-known as listed in the above table. When (g,m) = (A2`, 4), the
fixed Lie algebra gσ is of type C`, which can follow from the twisted Kac-Moody theory,
cf. [Ka, §8].

Recall that we follow the Bourbaki labelling of the vertices of the Dynkin diagram.
Set
(2.4)

βi = αi|hσ , for i = 1, 2, · · · , `, if (g,m) = (A2`−1, 2), or (D`+1, 2)
β1 = α1|hσ , β2 = α2|hσ , if (g,m) = (D4, 3)
β1 = α2|hσ , β2 = α4|hσ , β3 = α3|hσ , β4 = α1|hσ , if (g,m) = (E6, 2)
βi = αi|hσ , for i = 1, 2, · · · , ` − 1; β` = (α` + α`+1)|hσ = 2α`|hσ , if(g,m) = (A2`, 4).

Let Iσ be the set of all subscript indices of βi. Then for each case, the set { β j | j ∈ Iσ }
gives rise to the set of simple roots of gσ. One can see easily that this labelling will
coincide with Bourbaki labelling for non simply-laced types Dynkin diagrams.

We now define a map η : I → Iσ. When (g,m) , (A2`, 4), η is defined such that
βη(i) = αi|hσ for any i ∈ I. When (g,m) = (A2`, 4), set

η(i) = η(2` + 1 − i) = i, for any 1 ≤ i ≤ `.

Let { β̌ j | j ∈ Iσ} be the set of simple coroots of gσ. We can describe β̌ j as follows:

(2.5) β̌ j =
∑

i∈η−1( j)

α̌i.

Let { λ j | j ∈ Iσ } be the set of fundamental weights of gσ, and let { λ̌ j | j ∈ Iσ } be the set
of fundamental coweights of gσ. The fundamental weights can be described as follows:

(2.6) λ j = ωi|hσ , for some i with η(i) = j.

In the case of fundamental coweights, we need to describe them separately. When
(g,m) , (A2`, 4),

(2.7) λ̌ j =
∑

i∈η−1( j)

ω̌i.

When (g,m) = (A2`, 4), we have

(2.8) λ̌ j =

ω̌ j + ω̌2`+1− j, j = 1, 2, · · · , ` − 1
1
2 (ω̌` + ω̌`+1), j = `

.

6



2.2. Affine Grassmannian of special parahoric group schemes. Let K denote the
field of formal Laurent series in t with coefficients in C. Let O denote the ring of formal
power series in t with coefficients in C. By abuse of notation, we still use σ to denote the
automorphism of order m on K and O such that σ acts on C trivially, and σ(t) = ε−1t,
where ε = e

2πi
m . Set K̄ = Kσ and Ō = Oσ. Then K̄ = C((t̄)) and Ō = C[[t̄]], where

t̄ = tm.
Let G be the smooth group scheme ResO/Ō(GO)σ over Ō, which represents the follow-

ing group functor

R 7→ G(O ⊗Ō R)σ, for any Ō − algebra R,

where the G(O⊗Ō R) denotes the group of σ-equivariant morphisms from Spec (O⊗Ō R)
to G. Then, G is a special parahoric group scheme in the sense of Bruhat-Tits, as we
choose σ to be standard. In fact, up to isomorphism, this construction exhausts all
special parahoric subgroups in G (K) when G is not of type A(2)

2` , and special but not
absolutely special for A(2)

2` in the sense of [HR], as in this case the special fiber of G has
a quotient isomorphic to Sp2`.

Remark 2.1. When G is of type A2` and σ is a nontrivial diagram automorphism, the
parahoric group scheme G = ResO/Ō(GO)σ is absolutely special of type A(2)

2` . But we will
not consider this case, except Remark 4.12.

We can similarly define the smooth group scheme T := ResO/Ō(TO)σ, which is a
maximal torus in G . Note that, for general almost simple algebraic group G, we can
still define G and T , but we need to take the neutral components of ResO/Ō(GO)σ and
ResO/Ō(TO)σ respectively. For convenience, throughout this paper we only work with G
being adjoint or simply-connected.

Let L+G denote the jet group and LG be the loop group of G over C, that is, for all
C-algebras R, we set L+G (R) = G (R[[t]]) and LG (R) = G (R((t))). We denote by GrG the
affine Grassmannian of G , which is defined as the fppf quotient LG /L+G . In particular,
we have

GrG (C) = G(K)σ/G(O)σ.

It is known that GrG is a projective ind-variety, cf. [PR]. Following [PR, Zh2], we will
call it a twisted affine Grassmannian of G . We can also attach the twisted affine Grass-
mannian GrT := LT /L+T of T . This is a highly non-reduced ind-scheme. Moreover,

GrT (C) = T (K)σ/T (O)σ.

Note that the actions of σ on T,T (O) and T (K) agree with the action of its diagram
automorphism part τ. For any λ ∈ X∗(T ), we can naturally attach an element tλ ∈ T (K).
We now define the norm nλ ∈ T (K)σ of tλ,

(2.9) nλ :=
m−1∏
i=0

σi(tλ) = ε
∑m−1

i=1 iσi(λ)t
∑m−1

i=0 σi(λ).

There exists a natural bijection

(2.10) T (K)σ/T (O)σ ' X∗(T )σ,
7



where X∗(T )σ denotes the set of σ-coinvariants in X∗(T ). Any λ̄ ∈ X∗(T )σ corresponds to
the coset nλT (O)σ, where λ is a representative of λ̄. By Theorem [PR, Theorem 0.1], the
components of GrG can be parametrized by elements in π1(G)σ, where π1(G) ' X∗(T )/Q̌,
and (X∗(T )/Q̌)σ is the the set of coinvariants of σ in X∗(T )/Q̌.

When G is of adjoint type, we describe (X∗(T )/Q̌)σ in the following table.

(2.11)

(G,m) (A2`−1, 2) (A2`, 4) (D2`+1, 2) (D2`, 2) (D4, 3) (E6, 2)

X∗(T )/Q̌ Z2` Z2`+1 Z4 Z2 × Z2 Z2 × Z2 Z3

(X∗(T )/Q̌)σ Z2 0 Z2 Z2 0 0

.

2.3. Twisted affine Schubert varieties. Let e0 be the base point in GrG (C). For any
λ̄ ∈ X∗(T )σ, let eλ̄ denote the point nλe0 ∈ GrG (C). The point eλ̄ only depends on
λ̄ ∈ X∗(T )σ. Let X∗(T )+

σ denote the set of images of X∗(T )+ in X∗(T )σ via the projection
X∗(T )→ X∗(T )σ. Then, we have the following Cartan decomposition for GrG (cf. [Ri1]),

(2.12) GrG (C) =
⊔

λ̄∈X∗(T )+
σ

Grλ̄G ,

where Grλ̄G := G(O)σeλ̄. The Schubert variety Gr
λ̄

G is defined to be the reduced closure
of Grλ̄G in GrG . Moreover,

dim Gr
λ̄

G = 2〈λ, ρ〉,
where ρ is the sum of all fundamental weights of g. It is easy to see that the dimension
is independent of the choice of λ.

For any λ̄, µ̄ ∈ X∗(T )+
σ, we write µ̄ � λ̄ if Grµ̄G ⊆ Gr

λ̄

G . For any i ∈ I, let α̌i denote the
image of α̌i in X∗(T )σ. For any j ∈ Iσ, set

(2.13) γ j = α̌i, if j = η(i).

It is clear that γ j is well-defined.
The following lemma follows from [Ri1, Corollary 2.10].

Lemma 2.2. µ̄ � λ̄ if and only if λ̄ − µ̄ is a non-negative integral linear combination of
{ γ j | j ∈ Iσ }.

By the ramified geometric correspondence [Zh3], the set X∗(T )σ can be realized as the
weight lattice of the reductive group H := (Ǧ)τ, where Ǧ is the Langlands dual group of
G and τ is a diagram autorphism on Ǧ corresponding to the one on G, and { γ j | j ∈ Iσ }
is the set of simple roots for H. Moreover, X∗(T )+

σ is the set of dominant weights of H,
and the partial order � is exactly the standard partial order for dominant weights of H.

We now assume G is of adjoint type. From the perspective of the geometric Satake,
we can determine the minimal elements in X∗(T )+

σ, in other words the minimal Schu-
bert variety in each connected component of GrG . From the table (2.11), we see that
when (G,m) = (A2`−1, 2), GrG has two components, where Grω̌1

G is the minimal Schubert
variety in the non-neutral component, since ω̌1 gives the minuscule dominant weight
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of H ' Sp2`. When (G,m) = (D`+1, 2), GrG also has two components and Grω̌`G is the
minimal Schubert variety in the non-neutral component, since ω̌` is the minuscule dom-
inant weight of H ' Spin2`+1. Otherwise, GrG has only one component. In fact, when
(G,m) = (A2`, 4), H ' SO2`+1, in which case the weight lattice X∗(T )σ concides with the
root lattice of H.

Let S denote the following set

(2.14) S =


{0} if (G, r) , (A2`−1, 2), (D`+1, 2)
{0, ω̌1} if (G, r) = (A2`−1, 2)
{0, ω̌`} if (G, r) = (D`+1, 2)

.

For any κ ∈ S , let GrG ,κ be the component of GrG containing the Schubert variety Grκ̄G ,
or equivalently containing the point eκ̄. Then,

GrG = tκ∈S GrG ,κ .

2.4. Global affine Grassmannian of parahoric Bruhat-Tits group schemes. Let C
be a complex projective line P1 with a coordinate t, and with the action of σ such that
t 7→ εt. Let C̄ be the quotient curve C/σ, and let π : C → C̄ be the projection map.
Then C̄ is also isomorphc to P1. Let G = ResC/C̄(G × C)σ be the group scheme over C̄,
which is the σ-fixed point subgroup scheme of the Weil restriction ResC/C̄(G ×C) of the
constant group scheme G × C from C to C̄. Then, G is a parahoric Bruhat-Tits group
scheme over C̄ in the sense of Heinloth [He] and Pappas-Rapoport [PR]. Let o (resp.ō)
be the origin of C (resp.C̄), and let∞ (resp. ∞̄) be the infinite point in C (resp. C̄).

The group scheme G has the following properties:
(1) For any y ∈ C̄, if y , ō, ∞̄, the fiber G|y over y is isomorphic to G; the restriction
Gy to the formal disc Dy around y is isomorphic to the constant group scheme
GDy over Dy.

(2) When y = ō or ∞̄ in C̄, G|y has a reductive quotient Gσ; the restriction Gy to Dy

is isomorphic to the parahoric group scheme G .
Similarly, we can define the parahoric Bruhat-Tits group schemeT := ResC/C̄(T×C)σ.
Given an R-point p ∈ C(R) we denote by Γp ⊂ CR the graph of p where CR :=

C × Spec(R), and denote by Γ̂p the formal completion of CR along Γp, and let Γ̂×p be
the punctured formal completion along Γp. Let p̄ be the image of p in C̄. We similarly
define C̄R, Γp̄, Γ̂ p̄ and Γ̂×p̄ .

For any C-algebra R, we define

(2.15) GrG,C(R) :=

 (p,P, β)

∣∣∣∣∣∣∣∣∣∣
p ∈ C(R)

P a G-torsor on C̄

β : P|C̄R\Γ p̄ ' P̊|C̄R\Γp̄

 ,
where P̊ is the trivial G-bundle.

The functor GrG,C is represented by an ind-scheme which is ind-proper over C. We
call it the global affine Grassmannian GrG,C of G over C.
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For any p , o,∞ ∈ C, the fiber GrG,p := GrG,C |p is isomorphic to the usual affine
Grassmannian GrG, and the fiber GrG,p over p = o,∞ is isomorphic to the twisted affine
Grassmannian GrG of the parahoric group scheme G .

Remark 2.3. One can define the global affine Grassmannian GrG over C̄, see [Zh2,
Section 3.1]. The global affine Grassmannian defined above is actually the base change
of GrG along π : C → C̄.

We can also define the jet group scheme L+GC over C as follows,

(2.16) L+GC(R) :=

(p, γ)

∣∣∣∣∣∣ p ∈ C(R)

γ is a trivialization of the trivial G-torsor on C̄ along Γ̂ p̄


Again, L+GC is the base change of the usual jet group scheme L+G of G along π : C →
C̄. For any p , o,∞ ∈ C, the fiber L+GC |p is isomorphic to the jet group scheme L+G of
G, and the fiber L+GC |p over p = o,∞ is isomorphic to jet group scheme L+G .

We have a left action of L+GC on GrG,C given by

(2.17) ((p, γ), (p,P, β)) 7→ (p,P′, β),

where P′ is obtained by choosing a trivialization of P along Γ̂p̄ and then composing this
trivialization with γ and regluing with β.

We also can define the global loop group LGC of G over C,

(2.18)

LGC(R) :=

(p, γ)

∣∣∣∣∣∣ p ∈ C(R)

γ is a trivialization of the trivial G-torsor on C̄ along Γ̂×p̄

 .
Then GrG,C is isomorphic to the fppf quotient LGC/L+GC. We can also define L+TC

and LTC similarly. Then,

LTC |p '

TKp if p , o,∞
T if p = o,∞

,

where Kp is the field of formal Laurant series of C at p.

2.5. Global Schubert varieties. For each p ∈ C, we can attach a lattice X∗(T )p,

X∗(T )p =

X∗(T ) if p , o,∞
X∗(T )σ if p = o,∞

.

By [Zh2, Proposition 3.4], for any λ ∈ X∗(T ) there exists a section sλ : C → LTC, such
that for any p ∈ C, the image of sλ(p) in X∗(T )p is given byλ ∈ X∗(T ) if p , o,∞

λ̄ ∈ X∗(T )σ if p = o,∞
.

This naturally gives rise to C-points in GrT ,C and GrG,C, which will still be denoted by
sλ. Following [Zh2, Definition 3.1], for each λ ∈ X∗(T ) we define the global Schubert
variety Gr

λ

G,C to be the minimal L+GC-stable irreducible closed subvariety of GrG,C that
contains sλ. Then, [Zh2, Theorem 3] asserts that
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Theorem 2.4. The global Schubert variety Gr
λ

G,C is flat over C, and for any p ∈ C the

fiber Gr
λ

G,p is reduced and

Gr
λ

G,p '

Gr
λ

G if p , o,∞

Gr
λ̄

G if p = o,∞
.

3. Construction of level one line bundle on BunG

In this section, we keep the assumption that G is of adjoint type with the action of a
standard automorphism σ.

3.1. Borel-Weil-Bott theorem on GrG . Let L̂(g, σ) := g(K)σ⊕CK be the twisted affine
algebra as a central extension of the twisted loop algebra g(K)σ with the canonical center
K, whose Lie bracket is defined as follows,

(3.1) [x[ f ] + zK, x′[ f ′] + z′K] = [x, x′][ f f ′] + m−1Rest=0
(
(d f ) f ′

)
(x, x′)K,

for x[P], x′[P′] ∈ g(K)σ, z, z′ ∈ C; where Rest=0 denotes the coefficient of t−1dt, and (, )
is the normalized Killing form on g, i.e. (θ̌, θ̌) = 2.

We use P(σ, c) to denote the set of highest weights of gσ which parametrizes the
integrable highest weight modules of L̂(g, σ) of level c, see [HK, Section 2]. For each
λ ∈ P(σ, c), we denote by Hc(λ) the associated integrable highest weight module of
L̂(g, σ).

Recall that {λi | i ∈ Iσ} be the set of fundamental weights of gσ, where we follow the
labellings in (2.4). Also, { β̌i | i ∈ Iσ } is the set of simple coroots of gσ.

Lemma 3.1. For a standard automorphism σ, we have

P(σ, 1) =


{0} if (g,m) , (A2`−1, 2), (D`+1, 2)
{0, λ1} if (g,m) = (A2`−1, 2)
{0, λ`} if (g,m) = (D`+1, 2)

.

Proof. We first consider the case when (g,m) , (A2`, 4). We can read from [HK, Lemma
2.1], for any λ ∈ (hσ)∨, λ ∈ P(σ, 1) if and only if

〈λ, β̌i〉 ∈ Z≥0 for any i ∈ Iσ,

and 〈λ, θ̌0〉 ≤ 1, where θ0 is the highest short root of gσ and θ̌0 is the coroot of θ0, and
hence θ̌0 is the highest coroot of gσ. In this case, λ ∈ P(σ, 1) if and only if λ = 0 or a
minuscule dominant weight of gσ (cf. [BH, Lemma 2.13]). Following the labellings in
[Ka, Table Fin,p53], when gσ is of type C`, λ1 is the only minuscule weight; when gσ is
of type B`, λ` is the only minuscule weight. Any other non simply-laced Lie algebra has
no minuscule weight. This finishes the argument of the lemma when (g,m) , (A2`, 4).

Now, we assume that (g,m) = (A2`, 4). In this case, it is more convenient to choose a
different set of simple roots for gσ, rather than the one described in (2.4). Namely, we
can choose

{αi|hσ | i = 1, 2, · · · , ` − 1} ∪ {−θ|hσ}
as a set of simple roots of gσ. With this set of simple root, we can also read from [HK,
Lemma 2.1], for any λ ∈ (hσ)∨, λ ∈ P(σ, 1) if and only if λ = 0.

11
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Remark 3.2. It is not true that 0 ∈ P(σ, 1) for any automorphism σ. For example,
0 < P(τ, 1), when g = A2` and τ is a diagram automorphism; instead 0 ∈ P(τ, 2).

We define the following map

(3.2) ι : X∗(T )→ (hσ)∨,

such that for any λ ∈ X∗(T ), ι(λ)(h) = (λ, h), where we regard λ as an element in h and
(, ) is the normalized Killing form on h. It is clear that ι(0) = 0. This map naturally
descends to a map X∗(T )σ → (hσ)∨. By abuse of notation, we still call it ι.

Recall some terminilogy introduced in Section 2.1. Iσ is the set parametrizing simple
roots of gσ, and we also defined a map η : I → Iσ. The set {λ̌ j | j ∈ Iσ} is the set of
fundamental coweights of gσ, and {λ j | j ∈ Iσ} is the set of fundamental weights of gσ.
We also recall that α̌i is a simple coroot of g for each i ∈ I, and γ j is the image of α̌i in
X∗(T )σ. The following lemma already appears in [Ha, Lemma 3.2] in a slighly different
setting.

Lemma 3.3. For any j ∈ Iσ, we have

ι(γ j) =

β j, if (g,m) , (A2`, 4), or , (g,m) = (A2`, 4) and j , `
1
2β`, if (g,m) = (A2`, 4) and j = `

.

Proof. By the definition of ι, for any γ j = α̌i with j = η(i), and k ∈ Iσ we have the
following equalities:

〈λ̌k, γ j〉 = 〈λ̌k, ι(α̌i)〉 = (λ̌k, α̌i) = 〈λ̌k, αi〉.

Then, this lemma can readily follows from the description of fundamental coweights of
gσ in (2.7) and (2.8). �

Recall the set S defined in (2.14).

Lemma 3.4. For any i ∈ I, we have ι(ω̌i) = λη(i). As a consequence, ι maps X∗(T )+
σ

bijectively into the set of dominant weights of gσ. Furthermore, ι maps S bijectively into
P(σ, 1).

Proof. For any i ∈ I and j ∈ Iσ, we have

〈ι(ω̌i), β̌ j〉 = (ω̌i, β̌ j) = (ω̌i,
∑

a∈η−1(i)

α̌a) = δη(i), j.

Hence, ι(ω̌i) = λη(i).
In view of Lemma 3.1, ι maps S bijectively into P(σ, 1). �

Remark 3.5. In view of Lemma 3.3 and Lemma 3.4, when (G,m) , (A2`, 4), the root
systems of gσ and H := (Ǧ)τ can be naturally identified, where H is discussed in Section
2.3. Namely, { ω̌i | i ∈ I} is a set of fundmental weights of H corresponding to {λ j | j ∈ Iσ}
of gσ, and the set of simple roots { γ j | j ∈ Iσ} corresponds to { β j | j ∈ Iσ } of gσ.
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For any g ∈ G(K)σ, we can define a Lie algebra automorphism

(3.3) Âdg(x[ f ]) := Adg(x[ f ]) +
1
m

Rest=0(g−1dg, x[ f ])K,

for any x[ f ] ∈ g(K)σ, where (, ) is the normalized Killing form on g. By Lemma 3.4,
ι(κ) ∈ P(σ, 1) for any κ ∈ S . Thus, cι(κ) ∈ P(σ, c) for any level c ≥ 1.

Set

(3.4) Hc := ⊕κ∈S Hc(cι(κ)).

Let g̃ := g⊗K ⊕CK′ ⊕Cd′ be the untwisted Kac-Moody algebra associated to g, where
K′ is the canonical center and d′ is the scaling element. We may define an automorphism
σ on g̃ as follows,

σ(x[ f (t)]) = σ(x)[ f (εt)], σ(K′) = K′, σ(d′) = d′,

for any x[ f ] ∈ g ⊗ K . Then the fixed point Lie algebra g̃σ is exactly the twisted Kac-
Moody alegbra L̃(g, σ) containing L̂(g, σ) as the derived algebra. Following from [Ka,
Theorem 8.7,§8], in this realization the canonical center K in L̃(g, σ) is equal to mK′,
and the scaling element d in g̃ is equal to d′ when g̃σ is not A(2)

2` , and d = 2d′when
g̃σ = A(2)

2` .
For any g ∈ G(K), one can define an automorphism Âdg on g̃ as in [Ku, Section

13.2.3]. From the formula loc.cit, it is clear that if g ∈ G(K)σ, then Âdg commutes
with σ. In particular, it follows that Âdg restricts to an automorphism on L̃(g, σ). One
may observe easily that, restricting further to L̂(g, σ), this is exactly the automorphism
defined in (3.3).

By demanding that d ·vκ = 0 for each κ ∈ S , the action L̂(g, σ) on H extends uniquely
to an action of L̃(g, σ).

Lemma 3.6. For any g ∈ G(K)σ, there exists an intertwining operator ρg : Hc ' Hc

such that

(3.5) ρg(x[ f ] · v) = Âdg(x[ f ]) · ρg(v),

for any x[ f ] ∈ g(K)σ and v ∈Hc. In particular, for any κ ∈ S ,

(3.6) Âdn−κ(Hc(0)) = Hc(cι(κ)), and Âdn−κ(Hc(cι(κ))) = Hc(0).

Proof. Let G′ be the simply-connected cover of G, and let p : G′(K)σ → G(K)σ be the
induced map. Then,

(3.7) G(K)σ = tκ∈S n−κG′(K)σ,

where G′(K)σ = p(G′(K)σ). By twisted analogue of Faltings Lemma (cf. [HK, Propo-
sition 10.2]), for any element g ∈ G′(K)σ, there exists an operator ρg which maps
Hc(cι(κ)) to Hc(cι(κ)) with the desired property (3.5), for any κ ∈ S . By decompo-
sition (3.7), it suffices to show that, for nonzero κ, n−κ satisfies property (3.6).

Assume κ , 0 in S . From the table (2.11), the group (X∗(T )/Q̌)σ is at most of order 2.
Therefore, n−2κ ∈ G′(K)σ. For each Hc(cι(κ)), we denote the action by πc,κ : L̂(g, σ) →
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End(Hc(cι(κ))). Then the property (3.5) for n−2κ, is equivalent to the existence of an
isomorphism of representations,

(3.8) ρn−2κ : (Hc(cι(κ)), πc,κ) ' (Hc(cι(κ)), πc,κ ◦ Âdn−2κ).

Let vκ be the highest weight vector in Hc(cι(κ)). Then vκ is of hσ-weight cι(κ). We regard
β̌i as elements in hσ. By formula (3.3),

Âdn−κ(β̌i) = β̌i − (κ, β̌i)c = β̌i − 〈ι(κ), β̌i〉c.

Hence, vκ is of hσ-weight 0 and a highest weight vector in the representation

(Hc(cι(κ)), πc,κ ◦ Âdn−κ).

By Schur lemma, there exists an intertwining operator ρ0κ,

(3.9) ρ0κ : (Hc(0), πc,0) ' (Hc(cι(κ)), πc,κ ◦ Âdn−κ).

We also can regard ρ0κ as the following intertwining operator

(3.10) ρ0κ : (Hc(0), πc,0 ◦ Âdn−κ) ' (Hc(cι(κ)), πc,κ ◦ Âdn−2κ)

Combining isomorphisms (3.8),(3.10), we get

(Hc(cι(κ)), πc,κ)
ρn−2κ
−−−→ (Hc(cι(κ)), πc,κ ◦ Âdn−2κ)

(ρ0κ)−1

−−−−→ (Hc(0), πc,0 ◦ Âdn−κ).

We define ρn−κ to be the following operator

ρn−κ = (ρ0κ, (ρ0κ)−1 ◦ ρn−2κ) : Hc(0) ⊕Hc(cι(κ)) 'Hc(0) ⊕Hc(cι(κ)).

The map ρn−κ satisfies property (3.5). �

As discussed in Section 2.2, the components of GrG are parametrized by elements in
(X∗(T )/Q̌)σ. Moreover, GrG = tκ∈S GrG ,κ, where S is defined in (2.14).

Let G ′ be the parahoric group scheme ResO/Ō(G′
O

)σ, and let L+G ′ (resp. LG ′) denote
the jet group scheme (resp. loop group scheme) of G ′. The group LG acts on LG ′ by
conjugation. Set

L+G ′κ := Adn−κ(L+G ′).

Then, L+G ′κ is a subgroup scheme of LG ′. We have

(3.11) GrG ,κ ' LG ′/L+G ′κ .

By the twisted analogue of Faltings lemma (cf. [HK, Proposition 10.2]), there exists a
group homomorphism LG ′ → PGL(H1(0)). Consider the central extension

(3.12) 1→ Gm → GL(H1(0))→ PGL(H1(0))→ 1.

The pull-back of (3.12) to LG ′ defines the following canonical central extension of LG ′:

(3.13) 1→ Gm → L̂G ′ → LG ′ → 1.

It is known that L̂G ′ is a Kac-Moody group of twisted type (up to a scaling multi-
plicative group) in the sense of Kumar and Mathieu, see [PR]. Let L̂+G ′κ denote the
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preimage of L+G ′κ in L̂G ′ via the projection map L̂G ′ → LG ′. As the same proof as in
[BH, Lemma 2.19], L̂+G ′κ is a parabolic subgroup in L̂G ′, moreover

(3.14) GrG ,κ ' L̂G ′/L̂+G ′κ ,

i.e. GrG ,κ is a partial flag variety of the Kac-Moody group L̂G ′.

Proposition 3.7. There exists a line bundle L on GrG such that L is of level one on
each component of GrG .

Proof. We first consider the simply-connected cover G′ of G. By [HK, Theorem 10.7
(1)], there exists a canonical splitting of L̂G ′ → LG ′ in the central extension (3.12)
over L+G ′. We may define a line bundle L on GrG ′ = L̂G ′/L̂+G ′ via the character
L̂+G ′ := Gm × L+G ′ → Gm defined via the first projection. In fact, as the argument in
[LS, Lemma 4.1], this line bundle is the ample generator of Pic(GrG ′) of level 1. This
finishes the proof of part (1).

We now consider the case when G is of adjoint type. Since the neutral component
GrG ,◦ is isomorphic to GrG ′ , we get the level one line bundle on GrG ,◦ induced from
the one on GrG ′ . For any other component GrG ,κ, by (3.14) we have an isomorphism
GrG ,◦ ' GrG ,κ. Therefore, this gives rise to the level one line bundle on GrG ,κ.

�

The line bundle L on GrG naturally has a L̂G ′-equivariant structure, since L admits
a unique L̂G ′-equivariant structure on each component of GrG as a partial flag variety of
L̂G ′. Now, by the standard Borel-Weil-Bott theorem for Kac-Moody group (cf. [Ku]),
we get the following theorem.

Theorem 3.8. As representations of L̂(g, σ), we have H0(GrG ,L c)∨ 'Hc, where L c is
the c-th power of L .

Let v0 be the highest weight vector in Hc. For any λ̄ ∈ X∗(T )σ, we define

(3.15) vλ̄ := ρnλ(v0),

where ρnλ in defined in Lemma 3.6. Then vλ̄ is independent of the choice of the repre-
sentative λ in X∗(T ) and is well-defined up to a nonzero scalar.

Lemma 3.9. The hσ-weight of the vector vλ̄ is −cι(λ̄).

Proof. For any h ∈ hσ, by Lemma 3.6,

h · vλ̄ = h · ρnλ(v0) = ρnλ(Âdn−λ(h)v0).

By the formula (3.3), we have

Âdn−λ(h) = h − 〈λ, h〉K.

It follows that
h · vλ̄ = −〈λ, h〉cvλ̄ = −cι(λ)(h)vλ̄.

This concludes the proof of the lemma. �
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Definition 3.10. For any dominant λ̄ ∈ X∗(T )+
σ, we define the twisted affine Demazure

module D(c, λ̄) as the following g[t]σ-module,

D(c, λ̄) := U(g[t]σ)vλ̄.

In view of Lemma 3.9, D(c, λ̄) contains an irreducible representation V(−cι(λ)) of gσ

of lowest weight −cι(λ). The following theorem follows from [Ku, Theorem 8.2.2 (a)].

Theorem 3.11. As g[t]σ-modules, H0(Gr
λ̄

G ,L
c)∨ ' D(c, λ̄).

3.2. Construction of level one line bundles on BunG. In this subsection, we consider
the parahoric Bruhat-Tits group scheme G := ResC/C̄(G ×C)Γ over C̄ as in the setting of
Section 2.4.

Let BunG be the moduli stack of G-torsors on C̄. It is known that BunG is a smooth
Artin stack (cf. [He]). By [He, Theorem 3], the Picard group Pic(BunG) of BunG is
isomorphc to Z, since the group X∗(G|y) of characters for G|y is trivial for any y ∈ C̄. In
this subsection, we will construct the ample generatorL ∈ Pic(BunG) when G is simply-
connected, and we will construct a level one line bundle on every component of GrG,C
when G is of adjoint type.

By Lemma 3.1, we have 0 ∈ P(σ, 1) for any standard automorphism σ. Recall that
H1(0) is the basic representation of level one associated to 0 ∈ P(σ, 1).

We now define the following space of twisted covacua of level one,

(3.16) VC,σ(0) :=
H1(0)

g[t−1]σ ·H1(0)
,

where g[t−1]σ is the Lie subalgebra of L̂(g, σ).

Lemma 3.12. The dimension of the vector space VC,σ(0) is 1.

Proof. Let v0 be the highest weight vector in H1(0). Then

H1(0) = U((t−1
g[t−1])σ) · v0 = U((t−1

g[t−1])σ)(t−1
g[t−1])σv0 ⊕ Cv0,

where U((t−1g[t−1])σ) denotes the universal enveloping algebra of (t−1g[t−1])σ. We can
write g[t−1]σ = gσ ⊕ (t−1g[t−1])σ. Hence,

g[t−1]σ ·H1(0) = gσ · U((t−1
g[t−1])σ)(t−1

g[t−1])σv0 + U((t−1
g[t−1])σ)(t−1

g[t−1])σv0

= U((t−1
g[t−1])σ)(t−1

g[t−1])σv0,

where the first equality holds since gσ · v0 = 0, and the second equality holds since gσ

normalizes (t−1g[t−1])σ under the Lie bracket. Therefore, dim VC,σ(0) = 1. �

Let G′ be the simply-connected cover of G. Recall the Heinloth uniformization theo-
rem for G′ := ResC/C̄(G′ ×C)Γover the affine line C̄\ō (cf. [He]),

BunG′ ' G′[t−1]σ\ GrG ′ ,

where GrG ′ denotes the affine Grassmannian of G ′ := ResO/Ō(G′
O

)σ, and G′[t−1]σ\ GrG ′
denotes the fppf quotient.

Theorem 3.13. The line bundle L descends to a line bundle L on BunG′ .
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Proof. Let L be the level one line bundle on GrG ′ constructed from Proposition 3.7.
To show that the line bundle L can descend to BunG′ , as in the argument in [So], it
suffices to show that there is a G′[t−1]σ-linearization on L . This is equivalent to the
splitting of the central extension (3.13) over G′[t−1]σ. We use the same argument as in
[So, Proposition 3.3], since the vector space VC,σ(0) is nonvanishing by Lemma 3.12,
the central extension (3.13) splits over G′[t−1]σ. �

We consider the projection map pr : GrG′,C → BunG′ . By abuse of notation, we still
denote by L the line bundle on GrG′,C pulling-back from L on BunG′ .

Corollary 3.14. The restriction of the line bundle L to the fiber GrG′,p is the ample
generator of Pic(GrG′,p), for any p ∈ C.

Proof. It follows from Theorem 3.13 and [Zh2, Proposition 4.1]. �

The following theorem is interesting by itself, but will not be used in this paper.

Theorem 3.15. There is a natural isomorphism

H0(BunG′ ,L) ' VC,σ(0)∨,

where VC,σ(0)∨ denotes the dual of VC,σ(0). In particular,

dim H0(BunG′ ,L) = 1.

Proof. The theorem follows from the same argument as in [HK, Theorem 12.1]. �

Now, we would like to construct the line bundle L of level one on GrG,C, where
G = ResC/C̄(GC)σ with G of adjoint type.

Theorem 3.16. There exists a line bundle L on GrG,C such that the restriction of L to
the fiber GrG,p is the level one line bundle on GrG,p, for any p ∈ C.

Proof. Let X be a component of GrG,C. Fix any point x ∈ X, x ∈ GrG,p for a unique
p ∈ C. If p = o, then X contains at least one component of GrG . If p , o,∞, then x is
a point in an affine Schubert variety Gr

λ

G,p for some λ ∈ X∗(T )+. By Theorem 2.4, Gr
λ

G,p

admits a flat degeneration to Gr
λ̄

G . If p = ∞, x is a point in a twisted affine Schubert

variety Gr
λ̄

G,∞. Similarly, there is a flat family connecting Gr
λ̄

G,∞ and Gr
λ̄

G . This concludes
that X must contain at least one component of GrG . In other words, GrG has as many or
more components than GrG,C.

Recall that the components of GrG are parametrized by (X∗(T )/Q̌)σ. On the other
hand, by [He, Theorem 2], π0(BunG) can also be identified with (X∗(T )/Q̌)σ. We have
a natural projection pr : GrG,C → BunG. In view of Heinloth’s uniformization theorem
[He, Theorem 3], the map pr is surjective. Hence GrG,C has as many or more components
than BunG. It forces that GrG , GrG,C and BunG have the same number of components.
In particular, it follows that there is a natural bijection bertween components of GrG and
GrG,C.

It is well-known that the neutral component GrG,C,◦ of GrG,C is isomorphic to GrG′,C.
Thus, we naturally get the level one line bundle L on the neutral component GrG,C,◦.
Recall the set S in (2.14) that parametrizes the components of GrG . For any nonzero κ ∈

17



S (if it exists), the component GrG ,κ of GrG contains eκ̄. Thus, the associated component
GrG,C,κ is exactly the one containing sκ. The component GrG ,κ is isomorphic to

LGC/Adsκ(L+GC),

where is sκ is a C-point in GrG,C as defined in Section 2.5. Then there exists a natural
isomorphism

GrG′,C = LG′C/L
+G′C ' LG′C/Adsκ(L+G′C),

given by gL+G′C 7→ Ads−κ(g)Adsκ(L+G′C). Therefore, the line bundle of level one on the
non-neutral component can be realized as the pull-back from the line bundle L on the
neutral component GrG,C,◦ via this isomorphism. �

4. Smooth locus of twisted affine Schubert varieties

In this section, we always assume that σ is a standard automophism on G, and G is of
adjoint type.

4.1. GrT as a fixed-point ind-subscheme of GrG . We first recall a theorem in [Zh1,
Theorem 1.3.4].

Theorem 4.1. The natural morphism GrT → GrG identifies GrT as the T-fixed point
ind-subscheme (GrG)T of GrG.

The original proof of this theorem is not correct (communicated to us by Richarz and
Zhu independently), also see [HR2, Remark 3.5]. A correct proof can be found in [HR2,
Proposition 3.4], and a similar proof was known to Zhu earlier.

It is clear that Tσ is a subgroup scheme of LT and LG . Hence there is a natural
action of Tσ on GrG . We now prove an analogue of Theorem 4.1 in the setting of special
parahoric group schemes.

Theorem 4.2. The natural morphism GrT → GrG identifies GrT as the Tσ-fixed point
ind-subscheme (GrG )Tσ

of GrG .

Proof. Let L−−G be the ind-group scheme represented by the following functor, for any
C-algebra R,

L−−G(R) := ker(ev∞ : G(R[t−1])→ G(R)),
where ev∞ is the evaluation map sending t−1 to 0. Let L−−G be the ind-group scheme
which represents the following functor , for any C-algebra R,

(4.1) L−−G (R) := ker(ev∞ : G(R[t−1])σ → G(R)σ).

We can similarly define L−−T and L−−T .
By the similar argument as in [Zh4, Lemma 2.3.5] or [HR2, Lemma 3.1], we have an

open embedding
L−−G ↪→ GrG

given by g 7→ ge0, where e0 is the base point in GrG . Let I be the Iwahori subgroup of
L+G , which is the preimage of Bσ via the evaluation map ev : L+G → Gσ for a σ-stable
Borel subgroup B in G. We have the following decomposition

(4.2) GrG =
⊔

λ̄∈X∗(T )σ

Ieλ̄.
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For each λ̄ ∈ X∗(T )σ, we choose a representative λ ∈ X∗(T ). The twisted Iwahori
Schubert cell

Ieλ̄ = nλAdn−λ(I)e0

is contained in nλL−−G e0. Then by the decomposition (4.2),
⋃

λ̄∈X∗(T )∗ nλL−−G e0 is an
open covering of GrG . We may naturally regard GrT as an ind-subscheme of GrG .
Hence, we may regard e0 as the base point in GrT . Under this convention,⋃

λ∈X∗(T )σ

nλL−−T e0 =
⋃

λ∈X∗(T )σ

L−−T nλe0

is an open covering of GrT . Therefore, it suffices to show that for each λ̄ ∈ X∗(T )σ,

(nλL−−G e0)Tσ

' nλL−−T e0.

Further, it suffices to show that (L−−G )Tσ
' L−−T , where the action of Tσ on L−−G is

by conjugation. From the proof of [HR2, Proposition 3.4], one may see that (L−−G)Tσ
'

L−−T . This actually implies that (L−−G )Tσ
' L−−T . Hence, this finishes the proof of

the theorem. �

An immediate consequence of Theorem 4.2 is the following corollary.

Corollary 4.3. The Tσ-fixed C-point set in GrG is {eλ̄ | λ ∈ X∗(T )σ}.

4.2. A duality isomorphism for twisted Schubert varieties. Let GrG be the affine
Grassmannian of G, and let L be the line bundle on GrG that is of level one on every
component of GrG. For any λ ∈ X∗(T ), let Gr

λ

G denote the closure of G(O)-orbit at
Lλ := tλG(O) ∈ GrG. Let (Gr

λ

G)T denote the T -fixed point subscheme of Gr
λ

G. Zhu [Zh1]
proved that

Theorem 4.4. When G is simply-laced and not of type E, the resriction map

H0(Gr
λ

G,L)→ H0((Gr
λ

G)T ,L|(GrλG)T )

is an isomorphism.

In section 5, we will show that this theorem also holds for E6. It was proved by Evens-
Mirković [EM] and Malkin-Ostrik-Vybornov [MOV], that the smooth locus of Gr

λ

G is
the open cell GrλG for any reductive group G. In fact, this theorem can also be deduced
from Theorem 4.4 in the simply- laced type.

We will prove a twisted version of Theorem 4.4 in full generality, and as a conse-
quence we get the similar result of Evans-Mirković and Malkin-Ostrik-Vybornov in
twisted setting. In particular, this confirms a conjecture of Haines-Richarz [HR].

From Theorem 4.2, we have the identification GrT
'
−→ GrTσ

G . Let I λ̄ denote the ideal

sheaf of the Tσ-fixed subscheme (Gr
λ̄

G )Tσ
of Gr

λ̄

G . Then we have a short exact sequence
of sheaves

(4.3) 0→ I λ̄ → O
Gr

λ̄
G
→ O

(Gr
λ̄
G )Tσ → 0.
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Recall that L is the line bundle on GrG which is of level one on every component.
Tensoring the above short exact sequence with L and taking the functor of global sec-
tions, we obtain the following exact sequence

(4.4) 0→H0(Gr
λ̄

G ,I
λ̄ ⊗L )→ H0(Gr

λ̄

G ,L )
r
−→ H0((Gr

λ̄

G )Tσ

,L |
(Gr

λ̄
G )Tσ )→ · · · ,

where r is the restriction map.

Theorem 4.5. For any special parahoric group scheme G induced from a standard
automorphism σ, the restriction map

H0(Gr
λ̄

G ,L )
r
−→ H0((Gr

λ̄

G )Tσ

,L |
(Gr

λ̄
G )Tσ )

is an isomorphism.

This theorem will follow from the following proposition and Lemma 4.8.

Proposition 4.6. The map r is a surjection.

Proof. It is well-known that any twisted affine Schubert varietiety Gr
λ̄

G is a usual Schu-
bert variety in a partial affine flag variety of Kac-Moody group. See the identification
(3.11) and an argument for untwisted case in [BH, Proposition 2.21]. By [Ku, Theorem
8.2.2 (d)], we have that for any λ̄ � µ̄ in X∗(T )+

σ, the following restriction map

(4.5) H0(Gr
λ̄

G ,L )→ H0(Gr
µ̄

G ,L )

is surjective, and

(4.6) H0(GrG ,L ) = lim
←−−

H0(Gr
λ̄

G ,L |Grλ̄G
).

We also have the following surjective map

(4.7) H0((Gr
λ̄

G )Tσ

,L )→ H0((Gr
µ̄

G )Tσ

,L )

for all λ̄ � µ̄, since these Tσ-fixed closed subschemes are affine and the morphism
(Gr

µ̄

G )Tσ
↪−→ (Gr

λ̄

G )Tσ
is a closed embedding. Moreover,

H0((GrG )Tσ

,L |(GrG )Tσ ) = lim
←−−

H0((Gr
λ̄

G )Tσ

,L |
(Gr

λ̄
G )Tσ ).

Therefore, for any λ̄ ∈ X∗(T )+
σ we have the following surjective maps

H0(GrG ,L )→ H0(Gr
λ̄

G ,L ), H0((GrG )Tσ

,L )→ H0((Gr
λ̄

G )Tσ

,L ).

Then to prove the map

H0(Gr
λ̄

G ,L )→ H0((Gr
λ̄

G )Tσ

,L |
(Gr

λ̄
G )Tσ )

is surjective, it is sufficient to prove that the map

(4.8) H0(GrG ,L )→ H0((GrG )Tσ

,L |(GrG )Tσ )

is surjective, since we will have the following commutative diagram, for all λ̄,
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(4.9)

H0(GrG ,L ) H0((GrG )Tσ
,L |(GrG )Tσ )

H0(Gr
λ̄

G ,L |Grλ̄G
) H0((Gr

λ̄

G )Tσ
,L |

(Gr
λ̄
G )Tσ ).r

By Theorem 4.2, we have GrT ' (GrG )Tσ
. Therefore, the surjectivity of the map (4.8)

follows from the following Lemma 4.7. �

We first make a digression on Heisenberg algebras and their representations. The
subspace ĥσ := (hK )σ ⊕ CK ↪→ L̂(g, σ) is a Lie subalgebra. In fact, ĥσ is an extended
(completed) Heisenberg algebra with center hσ ⊕ CK. Therefore, any integrable irre-
ducible highest weight representation of ĥσ is parametrized by an element µ ∈ (hσ)∨ and
the level c, i.e. K acts by the scalar c on this representation. We denote this representa-
tion by πµ,c. By the standard construction,

(4.10) πµ,c = indĥ
σ

(hO)σ⊕CKCµ,c,

where ind is the induced representation in the sense of univeral enveloping algebras ,and
Cµ,c is the 1-dimensional module over (hO)σ ⊕ CK where the action of (hO)σ factors
through hσ.

Lemma 4.7. The restriction map H0(GrG ,L c)→ H0(GrT ,L c|GrT ) is surjective.

Proof. Proving surjectivity here is equivalent to proving injectivity for the dual modules,

0→ H0(GrT ,L c|GrT )∨ → H0(GrG ,L c)∨.

Note that both of these spaces are modules for the Heisenberg algebra ĥσ; the mor-
phism is a ĥσ-morphism. Since T is discrete, we naturally have the following decom-
position

H0(GrT ,L c|GrT ) '
⊕

λ̄∈X∗(T )σ

OGrT ,eλ̄ ⊗L c|eλ̄ ,

where OGrT ,eλ̄ is the structure sheaf of the component of GrT containing eλ̄. We also
notice that, the identify component of GrT is naturally the formal group with Lie algebra
(hK )σ/(hO)σ. In view of the construction (4.10), we have

H0(GrT ,L c|GrT )∨ =
⊕

λ̄∈X∗(T )σ

π−cι(λ̄),c;

where the map ι : X∗(T )σ → (hσ)∨ is defined in (3.2). Since each π−cι(λ̄),c is irreducible,
and generated by a −cι(λ̄)-weight vector w−cι(λ̄), it suffices to show that the morphism

π−cι(λ̄),c → H0(GrG ,L c)∨

sends w−cι(λ̄) to a nonzero vector.
21



By Theorem 3.8, we may define a Plücker embedding

φ : GrG → P(Hc)

given by ge0 7→ [ρg(v0)] for any ge0 ∈ GrG , where ρg is defined in Lemma 3.6, and
[ρg(v0)] represents the line in Hc that contains ρg(v0). Then we may pick a linear form
fλ̄ on Hc which is nonzero on [vλ̄], and which is 0 on other weight vectors, where vλ̄ is
defined in (3.15). The restriction fλ̄|φ(GrG ) produces a nontrivial element in H0(GrG ,L ),
since φ(eλ̄) = vλ̄.

Observe that the map π−cι(λ̄),c → H0(GrG ,L c)∨ sends w−cι(λ̄) to a nonzero scalar of vλ̄.
Thus the map π−cι(λ̄),c → H0(GrG ,L c)∨ is nontrivial and thus injective. �

By Lemma 4.7, we obtain the following short exact sequence

0→ H0(Gr
λ̄

G ,I
λ̄ ⊗L )→ H0(Gr

λ̄

G ,L )
r
−→ H0(Gr

λ̄

G ,L ⊗ O
(Gr

λ̄
G )

)→ 0.

Thus, the obstruction to the map r being an isomorphism is the vanishing of the first
term H0(Gr

λ̄

G ,I
λ̄ ⊗L ).

Let Iλ denote the ideal sheaf of the T -fixed subscheme on Gr
λ

G. We will show that the
vanishing of the first term can be deduced from the vanishing of H0(Gr

λ

G, I
λ ⊗ L).

Recall that Gr
λ

G,C is a global Schubert variety defined in Section 2.5. The constant
group scheme Tσ × C over C is naturally a closed subgroup scheme of T . Hence Tσ

acts on Gr
λ

G,C naturally. Let (Gr
λ

G,C)Tσ
be the Tσ-fixed subscheme of Gr

λ

G,C, and let Iλ be

the ideal sheaf of (Gr
λ

G,C)Tσ
. Then, Iλ|p is the ideal sheaf of (Gr

λ

G,C |p)Tσ
. Recall that,

Gr
λ

G,o = Gr
λ̄

G , Gr
λ

G,∞ ' Gr
λ̄

G , Gr
λ

G,p,o,∞ ' Gr
λ

G.

In particular, we have

Iλ|o = I λ, Iλ|∞ ' I λ, Iλ|p,o,∞ ' Iλ.

Lemma 4.8. The ideal Iλ is flat over C.

Proof. Consider Gr
λ

G,C\{o,∞} and the Tσ-fixed subscheme (Gr
λ

G,C\{o,∞})
Tσ

. We denote by Zλ

the flat closure of (Gr
λ

G,C\{o,∞})
Tσ

in GrG,C. Since Z is the closure of a Tσ-fixed subscheme,

we see that Zλ|o ⊂ Gr
λ

G,C |o, and Zλ|∞ ⊂ Gr
λ

G,C |∞.

To show Iλ is flat over C, it is sufficient to show that (Gr
λ

G,C)Tσ
is flat over C. This

is equivalent to showing Zλ = (Gr
λ

G,C)Tσ
. In particular, it suffices to show the fibers Zλ|o

and Zλ|∞ are isomorphic to (Gr
λ̄

G )Tσ
. Since the fiber Zλ|∞ at∞ is similar to the fiber Zλ|o

at o, it suffices to show that Zλ|o = (Gr
λ̄

G )Tσ
. Note that both of these are finite schemes,
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we can compare the dimensions of their structure sheaves as follows:

dim O
(Gr

λ̄
G )Tσ ≥ dim OZλ |o = dim O(Gr

λ
G,p,o,∞)Tσ

= dim O(Gr
λ
G,p,o,∞)T

= dim H0(Gr
λ

G,L|p,o,∞)

= dim H0(Gr
λ̄

G ,L )
≥ dim O

(Gr
λ̄
G )Tσ ,

where the first equality follows from the flatness of Zλ over C, the third equality follows
from Theorem 4.4 and Theorem 5.1, the fourth equality follows since Gr

λ

G,C is flat over
C (cf. Theorem 2.4), and the last inequality follows from Proposition 4.6 . From this
comparision, it follows that dim OZλ |o = dim O(Gr

λ
G,p,o)Tσ . Hence, OZλ |o = O(Gr

λ
G,p,0)Tσ . This

concludes the proof of the lemma. �

Proof of Theorem 4.5. By Lemma 4.8 and the properness of Gr
λ

G,C over C, we have∑
i≥0

(−1)i dim Hi(Gr
λ

G, I
λ ⊗ L) =

∑
i≥0

(−1)i dim Hi(Gr
λ̄

G ,I
λ̄ ⊗L ).

When G is not of type E6, from [Zh1, Section 2.2] it is known that Hi(Gr
λ

G, I
λ⊗L) = 0 for

any λ ∈ X∗(T ). From the long exact sequence (4.4), we can see easily that Hi(Gr
λ̄

G ,I
λ̄⊗

L ) = 0 for any i ≥ 1. Hence, when G is not of type E(2)
6 , H0(Gr

λ̄

G ,I
λ̄ ⊗ L ) = 0 for

any λ̄ ∈ X∗(T )+
σ. Therefore, the theorem follows from Lemma 4.7 and the long exact

sequence (4.4). �

As an application of Theorem 4.5, we get a geometric Frenkel-Kac isomorphism for
twisted affine algebras.

Theorem 4.9. For any special parahoric group scheme G induced from a standard
automorphism σ, the restriction map

H0(GrG ,L )→ H0(GrT ,L |GrT )

is an isomoprhism, via the embedding GrT → GrG .

Proof. By Theorem 4.2, it suffices to show that the restriction map r : H0(GrG ,L ) →
H0(GrT ,L |(GrG )Tσ ) is an isomorphism. In view of (4.6) and (4.7) and as a consequence
of Theorem 4.5, the restriction map r is an isomorphism.

�

4.3. Application: Smooth locus of twisted affine Schubert varieties. We now wish
to investigate the smooth locus of the Schubert variety Gr

λ̄

G .

Theorem 4.10. Assume that G is not of type A(2)
2` . For any λ ∈ X∗(T )+

σ, the smooth locus

of Gr
λ̄

G is precisely the open Schubert cell Grλ̄G .
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Proof. For any µ̄ ∈ X∗(T )+
σ, if eµ̄ = nµe0 is a smooth point in Gr

λ̄

G , then by [Zh1, Lemma
2.3.3] dim O

(Gr
λ̄
G )Tσ ,eµ̄

= 1.

By Theorem 3.11, we have H0(Gr
λ̄

G ,L )∨ ' D(1, λ̄), where D(1, λ̄) is the Demazure
module defined in Definition 3.10. Then by Theorem 4.5, we have

dim D(1, λ̄)−ι(µ̄) = lengthO
(Gr

λ̄
G )Tσ ,eµ̄

,

where D(1, λ̄)−ι(µ̄) is the −ι(µ̄)-weight space in D(1, λ̄). We will prove that for any µ̄ � λ̄,

dim D(1, λ̄)−ι(µ̄) ≥ 2, which would imply that eµ̄ is not a smooth point in Gr
λ̄

G . From the
surjectivity of (4.5), we have an embedding D(1, µ̄) ↪→ D(1, λ̄). On the the other hand,
V(−ι(λ̄)) ↪→ D(1, λ̄), where V(−ι(λ̄)) is the irreducible representation of gσ of lowest
weight −ι(λ̄). In view of Lemma 2.2, Lemma 3.3 and Lemma 3.4, when G is not of type
A2`, the relation µ̄ � λ̄ implies that ι(µ̄) � ι(λ̄). Hence, V(−ι(λ̄))−ι(µ̄) , 0. Furthermore,
as subspaces in D(1, λ̄),

D(1, µ̄) ∩ V(−ι(λ̄)) = 0.
It follows that dim D(1, λ̄)−ι(µ̄) ≥ 2. This concludes the proof of the theorem. �

Now we will deal with the case of A(2)
2` . Recall the group H = (Ǧ)τ mentioned in

Section 2.3. By the ramified geometric Satake, (X∗(T )σ, X∗(T )+
σ, γ j, j ∈ Iσ) can be re-

garded as the weight lattice, the set of dominant weights, and simple roots of H. When
(G,m) = (A2`, 4), H is B` of adjoint type. Let $1, $2, · · · , $` be the set of fundamental
dominant weights of H.

Theorem 4.11. Let G be of type A(2)
2` . For any λ ∈ X∗(T )+

σ, the smooth locus of Gr
λ̄

G is
exactly the union of Grλ̄G and those Grµ̄G such that λ̄ − µ̄ =

∑`
j=i γ j and µ =

∑i−1
k=1 ak$k

with all ak ∈ Z
≥0, for some 1 ≤ i ≤ `.

Proof. We first prove the following result: for any λ̄, µ̄ ∈ X∗(T )+
σ with µ̄ � λ̄, the Schu-

bert cell Grµ̄G is contained in the singular locus of Gr
λ̄

G , except when µ̄ ≺ λ̄ is a cover
relation and the simple short root γ` appears in λ̄ − µ̄. We will prove this fact by several
steps. Let c` be the coefficient of γ` in λ̄ − µ̄.

Step 1. Observe that using Lemma 3.3 and by the same proof of Theorem 4.10, when
the coefficient c` is even, we have dim D(1, λ̄)−ι(µ̄) ≥ 2. Thus, eµ̄ is singular in Gr

λ̄

G .
Step 2. Assume that the coefficient c` > 1 and c` is odd. There exists sequence of

dominant elements in X∗(T )+
σ,

(4.11) µ̄ = λ̄k ≺ λ̄k−1 ≺ · · · ≺ λ̄1 ≺ λ̄0 = λ̄,

such that each ≺ is a cover relation. Then, by a theorem of Stembridge [St, Theorem
2.8], for each i, λ̄i − λ̄i+1 is a positive root of H, for any 0 ≤ i ≤ k − 1, and the coefficient
of γ` in each λ̄i − λ̄i+1 is either 0 or 1. Let j be the least integer such that the coefficient
of γ` in λ̄ j−1 − λ̄ j is 1. Such j exists, since c` , 1. Then the coefficient of γ` in λ̄ j − µ̄
is even. By Step 1, we have dim D(1, λ̄ j)−ι(µ̄) ≥ 2. On the other hand, we have the

inclusion D(1, λ̄ j) ⊂ D(1, λ̄). It follows that dim D(1, λ̄)−ι(µ̄) ≥ 2. Hence, the variety Gr
λ̄

G

is singular at the point eµ̄.
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Step 3. We now assume that the coefficient c` = 1. By assumption, µ̄ ≺ λ̄ is not a
cover relation. Then, in the sequence of cover relations in (4.11), either the coefficient
of γ` in λ̄k−1 − λ̄k is 0, or the coefficient of γ` in λ̄0 − λ̄1 is 0. If the coefficient of γ`
in λ̄k−1 − λ̄k is 0, by Step 1 dim D(1, λ̄k−1)−ι(µ̄) ≥ 2, implying that dim D(1, λ̄)−ι(µ̄) ≥ 2.

Hence eµ̄ is singular in Gr
λ̄

G . If the coefficient of γ` in λ̄0 − λ̄1 is 0, then by Step 1 again,

eλ̄1 is a singular point in Gr
λ̄

G . Since the singular locus of Gr
λ̄

G is closed, the point eµ̄ is

also singular in Gr
λ̄

G .
We now explicitly describe the cover relation µ̄ ≺ λ̄ such that γ` appears in λ̄ − µ̄.

Note that X∗(T )σ is a root lattice of H ' SO2n+1. In fact, the lattice X∗(T )σ is spanned
by $1, $2, · · · , $`−1, 2$`. Reading more carefully from [St, Theorem 2.8], we can see
that, µ̄ ≺ λ̄ is a cover relation and γ` appears in λ̄− µ̄, if and only if one of the followings
holds:

(1) λ̄ − µ̄ = γ` and 〈µ̄, γ̌`〉 , 0, where γ̌` is the coroot of γ`.
(2) λ̄ − µ̄ =

∑`
j=i γ j and µ =

∑i−1
k=1 ak$k, for some 1 ≤ i ≤ `.

Let G be the simply-connected simple group of type A2` with the standard automor-
phism σ considered in this paper. Let α1, α2, · · · , α2` is a set of simple roots of G. Let L
be the Levi subgroup of G generated by the simple roots

αi, αi+1, · · · , α`, α`+1, · · · , α`+i, α`+i+1.

Let M be the derived group [L, L] of L. Then M is simply-connected simple group of
type A2(`−i+1) and σ still acts on M as a standard automorphism. Let M be the parahoric
group scheme ResO/Ō(MO)σ, which is of type A(2)

2(`−i+1). Let T ′ = T ∩ M be the maximal
torus of M. We have the inclusion X∗(T ′) → X∗(T ), and this induces an inclusion
X∗(T ′)σ → X∗(T )σ and X∗(T ′)+

σ → X∗(T )+
σ. We write λ̄ =

∑`
i=1 bi$i and µ̄ =

∑`
k=1 ck$k

with bk ≥ 0, ck ≥ 0 for any k = 1, · · · , `. Set

λ̄′ =
∑̀
k=i

bk$k, µ̄′ =
∑̀
k=i

ck$k,

Then, λ̄′, µ̄′ ∈ X∗(T ′)+
σ. Moreover, λ̄′ − µ̄′ = λ̄ − µ̄. By the twisted analogue of Levi

lemma (cf. [MOV, Corollary 3.4]), we have

L−−G · eµ̄ ∩ Gr
λ̄

G ' L−−M · eµ̄′ ∩ Gr
λ̄′

M ,

where L−−G and L−−M are defined as in (4.1). From this isomorphism and the transver-
sal slice lemma (cf. [MOV, Lemma 2.5], [KLu, Section 1.4]), we have the following
Levi reduction: eµ̄′ is singular in Gr

λ̄′

M if and only if eµ̄ is singular in Gr
λ̄

G .
Case (1): λ̄ − µ̄ = γ` and 〈µ̄, γ̌`〉 , 0. In this case, we are reduced to A(2)

2 . It is known

from [HR, Proposition 7.1] that, eµ̄′ is singular in Gr
λ̄′

M , as λ̄′ is not quasi-minuscule.
Case (2): λ̄−µ̄ =

∑`
j=i γ j and µ =

∑i−1
k=1 ak$k with all ak > 0, for some 1 ≤ i ≤ `. In this

case, µ̄′ = 0 and λ̄′ =
∑`

j=i γ j. Thus, we are reduced to consider the singularity of quasi-

minuscule affine Schubert variety Gr
λ̄′

M . It was observed by Richarz (using [Arz, Prop

4.16]) that the variety Gr
λ̄′

M is smooth. We give a different argument here. We consider
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the parahoric group scheme G = ResO/Ō(GO)σ, and let Gr
λ̄

G be the quasi-minuscule Schu-
bert variety. Let gi be the eigenspace of σ on the Lie algebra g of eigenvalue i =

√
−1.

The vector space gi consists of two Gσ-orbits, as gi is actually the standard representation
of Gσ = Sp2` which is of dimension 2`. Thus, any element in gi is nilpotent. Then we
consider a Gσ-equivariant embedding gi → GrG given by x 7→ exp((adx)t−1) · e0 ∈ GrG ,
where e0 is the base point in GrG , and we regard adx as an element in G = Gad. Since
e` + e`+1 ∈ gi, and {e` + e`+1, f` + f`+1, h` + h`+1} form a sl2-triple, one may check easily
that gi is mapped into Gr

γ`
G = Gr

λ̄

G , in particular 0 7→ e0. By comparing their dimensions

and Gσ-equivariance, one may see this is an open embedding. Thus, Gr
λ̄

G is smooth.
�

Remark 4.12. When G is absolutely special of type A(2)
2` , the smooth locus of twisted

affine Schubert variety Gr
λ̄

G is the big cell. This was proved by Richarz in [Ri2]. The
idea is to use Levi reduction lemma of Malkin-Ostrik-Vybornov and Stembridge’s com-
binatorial result [St, Theorem 2.8] to reduce to split rank one cases, in particular the
case A(2)

2 (a proof of this case also appears in [HR, Prop.7.1]), and the quasi-minuscule
Schubert variety (a strong result of this case was proved by Zhu [Zh2] that this variety is
not Gorenstein). For the remaining cases, one can use non-triviality of Kazhdan-Lusztig
polynomials, cf. [MOV, Prop.6.4.3].

Remark 4.13. One can define the affine Grassmannian GrG and twisted affine Schubert
varieties Gr

λ̄

G of the special parahoric group scheme G with the base field k of character-
istic p. In [HR, Section 6], when p , r, Haines and Richarz reduced the question of the

smooth locus of the Gr
λ̄

G over characteristic p to characteristic zero case. In fact, by the
work of Lourenço [Lo], one may construct a global twisted affine Schubert variety over
Z so that the base change to the field k of characteristic p (including p = r) is the given
twisted affine Schubert variety defined over k. By the work of Haines-Richarz-Lourenço
[HLR] the normal affine Schubert varieties in bad prime are also smooth.

5. Duality theorem for E6

In [Zh1], Zhu showed that the duality theorem (cf. Theorem 4.4) holds for any domi-
nant coweight if the theorem holds for all fundamental coweights. For type E6, Zhu was
able to prove that the theorem holds for the fundamental coweights ω̌1, ω̌2, ω̌3, ω̌5, ω̌6

(Bourbaki labelling). However, the most difficult case ω̌4 remained open. In this sec-
tion, we will prove that the theorem holds for ω̌4. Thereby, we complete the duality
theorem for E6 in general.

5.1. Some reductions. Let G be a simply-laced simple group of adjoint type. Let T be
a maximal torus in G. Let L be the level one line bundle on GrG. For any λ ∈ X∗(T ), a
general question is if the following restriction map is an isomorphism:

(5.1) H0(Gr
λ

G,L)→ H0((Gr
λ

G)T ,L).

Zhu proved that this map is always surjective (cf. [Zh1, Prop.2.1.1]), and he also proved
that the map is an isomorphism for type A,D and many cases of E.
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Theorem 5.1. The map (5.1) is an isomorphism for any dominant coweight λ when G is
of type E6.

Since Zhu has proved this theorem for ω̌1, ω̌2, ω̌3, ω̌5, ω̌6, by [Zh1, Prop.2.1.3] we will
only need to prove that the theorem holds for ω̌4.

For convenience, we assume that λ is dominant and λ is in the coroot lattice, and we
set

D(1, λ) := H0(Gr
λ

G,L)∨, DT (1, λ) := H0((Gr
λ

G)T ,L)∨.

Then, we can identify DT (1, λ) as a subspace of the affine Demazure module D(1, λ).
Let L̃(g) = g((t)) ⊕ CK ⊕ Cd be the affine Kac-Moody algebra associated to g with

center K and scaling element d. Let H (Λ0) denote the integrable highest weight repre-
sentation of L̃(g) of highest weight Λ0. Let v0 be the highest weight vector of H (Λ0).
For any w ∈ W, set

vw(λ) := tw(λ) · v0.

Then vw(λ) is an extremal vector in H (Λ0), and h-weight of vw(λ) is −ι(w(λ)), where the
map ι : X∗(T ) → h∨ is induced by the normalized Killing form, cf.(3.2). By the theory
of affine Demazure module (cf. [Ku, Theorem 8.2.2 (a)]), we have

D(1, λ) = U(g[t]) · vw(λ), for any w ∈ W.

Given a Levi subgroup L of G and let M be the derived group [L, L]. Let m denote
the Lie algebra of M, and denote the current algebra of m by m[t]. By [Zh1, Corollary
1.3.8, Lemma 2.2.6], we have the following Levi reduction lemma.

Lemma 5.2. If the map (5.1) is an isomorphism for M, then U(m[t]) · vw(λ) is contained
in DT (1, λ), for any element w in the Weyl group W of G.

Let µ be a dominant coweight of G such that µ ≺ λ. The following restriction map is
surjective:

H0(Gr
λ

G,L)→ H0(Gr
µ

G,L).

Hence, it induces an inclusion D(1, µ) ⊂ D(1, λ). The following lemma is easy.

Lemma 5.3. If the map (5.1) is an isomorphism for µ, then D(1, µ) is contained in
DT (1, λ).

Let NG(T ) denote the normalizer group of T in G. Then NG(T ) acts on (Gr
λ

G)T and
thus on the vector space DT (1, λ). Note that

(Gr
λ

G)T = (GrG)T ∩ Gr
λ

G ' GrT ∩Gr
λ

G,

where the second isomorphism follows from Theorem 4.1. Hence, the Lie algebra h[t]
acts on DT (1, λ).

Notation 5.4. Let V(η, i) denote the irreducible representation of g of highest weight
ν and of degree i with respect to the action of d, that appears in the affine Demazure
module D(1, λ). Write V(η, i)ν for the ν-weight space of this representation.
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We now consider the case when G is of type E6 and λ = ω̌4. All dominant coweights
dominated by ω̌4 are described as follows,

(5.2) 0 ≺ ω̌2 ≺ ω̌1 + ω̌6 ≺ ω̌4.

For convenience, we set
vω4 := vw0(ω̌4).

Then vω4 is an extremal weight vector in H (Λ0) whose h-weight is ω4, since −w0(ω4) =

ω4 and ι(ω̌4) = ω4. The Demazure module D(1, ω̌4) contains V(ω4,−3), and vω4 is the
highest weight vector of V(ω4,−3). By [Kl, Section 3], we have the following decom-
position

(5.3) D(1, ω̌4) = V(0, 0) ⊕ V(ω2,−1) ⊕ V(ω1 + ω6,−2) ⊕ V(ω2,−2) ⊕ V(ω4,−3).

Since Zhu has proved that the map (5.1) is an isomorphism for ω̌1 and ω̌6, hence also
for ω̌1 + ω̌6 (cf. [Zh1, Prop.2.1.3]), by Lemma 5.3 we have D(1, ω̌1 + ω̌6) ⊂ DT (1, ω̌4).
Moreover, it is easy to see that

D(1, ω̌1 + ω̌6) = V(0, 0) ⊕ V(ω2,−1) ⊕ V(ω1 + ω6,−2).

It follows that, V(0, 0) ⊕ V(ω2,−1) ⊕ V(ω1 + ω6,−2) is contained in DT (1, ω̌4). Thus,
it suffices to show that V(ω2,−2) and V(ω4,−3) are also contained in DT (1, ω̌4). Since
D(1, ω̌4) is NG(T )-stable it can be further reduced to show that for any dominant weight
ν of g, the weight space V(ω2,−2)ν and V(ω4,−3)ν are contained in DT (1, ω̌4). In the
remaining part of this section, we will analyze case by case and show that it is indeed
true.

5.2. The representation V(ω4,−3). The dominant character of V(ω4) is eω4 +4eω1+ω6 +

15eω2 + 45e0. By Lemma 5.2, we have vw(ω̌4) ∈ DT (1, ω̌4) for any w ∈ W. This conclude
that V(ω4,−3)ω4 ⊂ DT (1, ω̌4).

5.2.1. The weight space V(ω4,−3)ω1+ω6 . In terms of simple roots, we have ω4 = 2α1 +

3α2 + 4α3 + 6α4 + 4α5 + 2α2 and ω1 + ω6 = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6. Thus
the difference ω4 − (ω1 + ω6) = α2 + α3 + 2α4 + α5; in other words, this difference is
supported on the Levi of type D4 with simple roots α2, α3, α4, α5. By applying Chevalley
generators f2, f3, f4, f5 on the highest weight vector vω4 , we can get a spanning set of the
weight space V(ω4,−3)ω1+ω6 . By Lemma 5.2, we have

V(ω4,−3)ω1+ω6 ⊂ DT (1, ω̌4).

5.2.2. The weight space V(ω4,−3)ω2 . This case requires some brute force. We have the
following difference: β = ω4 −ω2 = α1 +α2 + 2α3 + 3α4 + 2α5 +α6, whose height is 10.

We actually consider all expressions of the form fi1 . . . fi10vω4 such that this vector is of
weight ω2; this provides a spanning set of vectors in V(ω4,−3)ω2 (with many relations!).

Definition 5.5. We say a nonzero vector of the form fi1 fi2 . . . fi10vω4 is Levi-extremal, if
there exists 1 ≤ k ≤ 10, such that

(1) fi1 , fi2 , · · · , fik are contained in a proper Levi subalgebra of g;
(2) fik+1 · · · fi10vω4 is an extremal vector in V(ω4,−3).
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Observe that any proper Levi subalgebra of E6 is either of type A (or their product), or
of type D, and the restriction map (5.1) for these types is always an isomorphism, which
is due to Zhu. Then, to show that V(ω4,−3)ω2 ⊂ DT (1, ω̌4), by Lemma 5.2 it suffices to
prove the following proposition.

Proposition 5.6. Any nonzero vector fi1 , fi2 , · · · , fik of weight ω2 is Levi-extremal.

Proof. Before we prove this proposition, we first describe a poset of weights µ with
partial order <, such that µ < ω4, and µ − ω2 is a sum of positive roots. For any
two weights µ, µ′ in the poset, we write µ

si
−→ µ′ if µ′ = si(µ) and 〈µ, α̌i〉 ≥ 1. The

partial order < of this poset is generated by these simple relations. The weight µ will
be labelled by ∗ once the support of µ − ω2 (as a linear combination of simple roots)
is contained in a proper sub-diagram of the Dynkin diagram of E6. We won’t describe
those weights below the ∗-labelled weights. In the following two figures, we describe
this poset by representing weights respectively in terms of the coordinates with respect
to fundamental weights and simple roots. We have the following rules.

(1) In the first figure, if µ
si
−→ µ′, then the number at vertex i decreases by 2, and the

adjacent vertices increase by 1;
(2) In the second figure, if µ

si
−→ µ′, then the number at vertex i decrease by 1, and

no changes elsewhere.
We first show that any nonzero vector fi7 fi8 fi9 fi10vω4 of weight µ is an extremal weight

vector. This can be easily checked from the first figure, since no integer ≥ 2 appears as
a coefficient of ωi until the 4th step at least. As a result, fi7 fi8 fi9 fi10vω4 = si7 si8 si9 si10vω4

for any nonzero vector fi7 fi8 fi9 fi10vω4 . Now it is clear from the second figure that, any
nonzero vector fi1 · · · fi7 fi8 fi9 fi10vω4 is Levi-extremal, if

fi6 fi7 fi8 fi9 fi10 , f4 f3 f5 f4 = f4 f5 f3 f4.

Thus, the “worst possible” case, from the perspective of producing Levi-extremal
vectors, has the first four lowering operators as follows: f4 f5 f3 f4vω4 = f4 f5 f3 f4vω4 . All
other nontrivial applications of 4 lowering operators will result in a Levi-extremal vector
or the 0 vector. We further observe that both f1 f4 f5 f3 f4vω4 and f6 f4 f5 f3 f4vω4 result in
Levi-extremal vectors.

The only remaining vector to consider is f2 f4 f5 f3 f4vω4 . Note that this is the first case
where s2s4s5s3s4vω4 , f1 f4 f5 f3 f4vω4 , since 〈α̌2, ω4 − 2α4 − α3 − α5〉 = 2. Thus every
element fi1 . . . fi10vω4 is Levi-extremal, except those of which the first five lowering oper-
ators are precisely f2 f4 f5 f3 f4 (up to the order of f3 and f5); what remains are the lowering
operators f1, f3, f4, f5, f6. By the same logic, the next lowering operator must be f4, since
any other lowering operator would commute with f2, returning us to the Levi-extremal
vectors situation. Thus we are left with is considering the element f4 f2 f4 f5 f3 f4vω4 .

Note that fα2+α4 := fα4 fα2− fα2 fα4 is a root vectorof root α2 +α4. Since f4 f4 f5 f3 f4vω4 =

0, we have
f4 f2 f4 f5 f3 f4vω4 = fα2+α4 f4 f5 f3 f4vω4 .

This is the extremal vector sα2+α4 s4s5s3s4vω4 , since the weight of the extremal weight
vector fα4 fα5 fα3 fα4vω4 isω1+2ω2−ω4+ω6, and the pairing 〈ω1+2ω2−ω4+ω6, α̌2+α̌4〉 =
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0 0 1 0 0
0

0 1 −1 1 0
1

1 −1 0 1 0
1

0 1 0 1 0
−1 ∗

0 1 0 −1 1
1

−1 0 0 1 0
1 ∗

1 −1 1 1 0
−1 ∗

1 −1 1 −1 1
1

0 1 1 −1 1
−1 ∗

0 1 0 0 −1
1 ∗

−1 0 1 −1 1
1 ∗

1 −1 2 −1 1
−1 ∗

1 0 −1 0 1
2

1 −1 1 0 −1
1 ∗

−1 1 −1 0 1
2 ∗

1 0 −1 1 −1
2 ∗

s4

s3
s2

s5

s1
s2

s5

s3
s2

s6

s4
s6

s2s1

s1

s6

Figure 1. In this diagram, the weight µ is represented by the coordinates
of µ with respect to fundamental weights. When 1 occurs at vertex i, it
indicates that we can apply reflection si.

1 2 3 2 1
1

1 2 2 2 1
1

1 1 2 2 1
1

1 2 2 2 1
0 ∗

1 2 2 1 1
1

0 1 2 2 1
1 ∗

1 1 2 2 1
0 ∗

1 1 2 1 1
1

1 2 2 1 1
0 ∗

1 2 2 1 0
1 ∗

0 1 2 1 1
1 ∗

1 1 2 1 1
0 ∗

1 1 1 1 1
1

1 1 2 1 0
1 ∗

0 1 1 1 1
1 ∗

1 1 1 1 0
1 ∗

s4

s3
s2

s5

s1
s2

s5

s3
s2

s6

s4
s6

s2s1

s1

s6

Figure 2. This is the same diagram as in Figure 1. The difference is that,
the weight µ is represented by the coordinates of µ − ω2 with respect to
simple roots. This diagram tells when the support µ − ω2 is contained in
a proper subdiagram.

1. Our remaining lowering operators are f1, f3, f5, f6. They are contained in a proper
Levi subalgebra. Thus, any nonzero vector of the form

fi1 fi2 fi3 fi4 f4 f2 f4 f5 f3 f4vω4

is always Levi-extremal. This concludes the proof.
�
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Remark 5.7. The construction of the above figures comes from the “Numbers game”,
due to Proctor (unpublished) and explored in Mozes [Mo] and Proctor [Pro]. When
the representation is minuscule, the action of the simple reflections is described by the
algorithm above; adding one to adjacent nodes and subtracting two from the given node
(precisely the action of subtracting a simple root in the simply-laced types). While the
representation V(ω4) is not minuscule or quasi-minuscule, these techniques still proved
useful in this case and could be useful for the study of the remaining fundamental repre-
sentations of E7 and E8, where the restriction isomorphism is not yet known.

5.2.3. The weight space V(ω4,−3)0. Let θ be the highest root of g, and let β = ω4−ω2 =

α1 + α2 + 2α3 + 3α4 + 2α5 + α6. β is also a positive root of g. We consider the element
fθ fβvω4 . The following proposition is verified by Travis Scrimshaw using SageMath.
See Appendix A.

Proposition 5.8. The W-span of fθ fβvω4 is the weight zero space V(ω4,−3)0.

One can check that α1, α3, α4, α5, θ,−β form a system of simple positive roots of E6,
and θ,−β form a subsystem of type A2. Then by Lemma 5.2, fθ fβvω4 ∈ DT (1, ω̌4). By
W-invariance on DT (1, ω̌4) and the above proposition, we can conclude that

(5.4) V(ω4,−3)0 ⊂ DT (1, ω̌4).

5.3. The representation V(ω2,−2). First we consider the “0-string” of the full basic
representation H (Λ0); this is the direct sum ⊕n≥0H (Λ0)−nδ. The Weyl group W acts on
each of these weight spaces, so H (Λ0)−nδ is a direct sum of irreducible representations
of the Weyl group W. We first describe H (Λ0)−nδ for n = 0, 1, 2, 3, as representations
of W. By [Ka, §12], we have the following decompositions:

H (Λ0)0 = Cv0 ' C,

H (Λ0)−δ = ht−1 · v0 ' h

(5.5) H (Λ0)−2δ = ht−1 · ht−1 · v0 ⊕ ht−2 · v0 ' S 2
h ⊕ h

(5.6) H (Λ0)−3δ = ht−1 · ht−1 · ht−1 · v0 ⊕ ht−1 · ht−2 · v0 ⊕ ht−3 · v0 ' S 3
h ⊕ T 2

h ⊕ h.

The weight space V(ω4,−3)0 is a subrepresentation of H (Λ0)−3δ with respect to
the action of W. It is known that V(ω4,−3)0 is a direct sum of two irreducible W-
representations, one 15 dimensional and the other is 30 dimensional, cf. [AH, Table
5,p.24]. We will denote these subrepresentations by Π15 and Π30 indexed by their di-
mensions.

Lemma 5.9. The subspace Π15 is the exactly the span of vectors

(h[t−1]h′[t−2] − h′[t−1]h[t−2]) · v0, for all h, h′ ∈ h.

Proof. First of all, we observe that Π30 is contained in S 3h; this follows from a dimen-
sion check since dim(h) = 6 and T 2h ' S 2h ⊕ ∧2h, this decomposition is compatible
with the W-module structure, and the dimensions of each summand are both less than
30. Secondly, we will prove that S 3h doesn’t contain a 15-dimensional irreducible rep-
resentation.
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Suppose that it is not the case. From the character table of the Weyl group of E6

(cf. [Car, p.415]), we know that the dimensions of irreducible representations of W are
1,6,15,20,24, etc. Then S 3h must decompose into a 15-dimensional module and then
either a 6-dimensional irreducible and 5 1-dimensional irreducibles or a 15-dimensional
and 11 1-dimensional irreducibles.

Both of these options are impossible for the following reasons. The only two one-
dimensional representations of W are the trivial representation and the sign representa-
tion. The trivial representation cannot appear in S 3h, since this would give a W-invariant
degree 3 polynomial on h ' h∨. This is impossible, because the possible degrees of in-
variant polynomials are 2,5,6,8,9,12; this list is the set of exponents +1 which can be
found in [Bo, p.231].

The other option is that all of these 1-dimensional irreducibles are the sign represen-
tation. However, we have the following decomposition as representation of g:

H (Λ0)−3 = V(ω4) ⊕ k1V(ω1 + ω6) ⊕ k2V(ω2) ⊕ k3V(0)

for certain multiplicities k1, k2, k3, where H (Λ0)−3 denote the degree −3 part of H (Λ0)
withe respect to the action of d. From [AH, Table 5,p.24], one can see that no sign
representation appear in the weight zero space of these irreducible representations. Thus,
this option is also impossible.

Therefore, Π15 must be contained in T 2h. Note that T 2h = S h ⊕ ∧2h. Moreover,
V(ω1 + ω6)0 and V(ω2)0 are contained in H (Λ)−2δ. From the decomposition (5.5) and
[AH, Table 5,p.24], we know that S 2h is decomposed as a direct sum of a 20-dimensional
irreducible and a 1-dimensional trivial representation. Thus, Π15 is exactly the subspace
∧2h. In other words, Π15 is exactly the span of all vectors (h[t−1]h′[t−2]−h′[t−1]h[t−2])·v0,
h, h′ ∈ h. �

5.3.1. The weight space V(ω2,−2)0. We have V(ω2,−2)0 = ht−2 · v0, which is an irre-
ducible representation of dimension 6.

We choose any two nonzero elements h, h′ in h such that (h|h) = 1 and (h|h′) = 0,
where (·|·) is the normalized Killing form on g. Then

(5.7) h[t](h[t−1]h′[t−2] − h′[t−1]h[t−2]) · v0 = h′[t−2] · v0 ∈ V(ω2,−2)0.

This is a nonzero vector. By the inclusion (5.4) in Section 5.2.3 and Lemma 5.9,
(h[t−1]h′[t−2] − h′[t−1]h[t−2]) · v0 ∈ DT (1, ω̌4). Since DT (1, ω̌4) is stable under the action
of h[t], by (5.7 ) we have h′t−2 · v0 ∈ DT (1, ω̌4). Since V(ω2,−2)0 is an irreducible
representation of W and DT (1, ω̌4) is W-invariant, we get

V(ω2,−2)0 ⊂ DT (1, ω̌4).

5.3.2. The weight space V(ω2,−2)ω2 . We choose h1 = α̌1 and h2 = α̌2 in h. Then
(h1|h2) = 0 and (h1|h1) = 2. By Lemma 5.9, we may consider the following element

(h1[t−1]h2[t−2] − h2[t−1]h1[t−2]) · v0

in V(ω4,−3)0. Set

u := eθ(h1[t−1]h2[t−2] − h2[t−1]h1[t−2]) · v0.
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This is an element in V(ω4,−3)θ. Note that θ = ω2. One may compute easily and get

u = (h1[t−1]eθ[t−2] − eθ[t−1]h1[t−2]) · v0.

Then we have the following,

h1[t] · u = 2eθ[t−2] · v0.

Now, it is easy to see that h1[t] ·u is nonzero and is a highest weight vector of g of weight
ω2. Thus, we have shown that

V(ω2,−2)ω2 ⊂ DT (1, ω̌4).

Thus we may conclude that DT (1, ω̌4) = D(1, ω̌4). This finishes the proof of Theorem
5.1.

Appendix A. Proof of Proposition 5.8, by Travis Scrimshaw

We will prove Proposition 5.8 by using SageMath, which asserts that the W-span of
fθ fβvω4 is the weight zero space V(ω4)0 of the fundamental representation V(ω4) of E6.

A.1. Lie algebra representations and crystals. We briefly review some basic material
on finite dimensional simple Lie algebras and their finite dimensional highest weight
representations. For more information, we refer the reader to [FH91]. Let k be an
algebraically closed field of characteristic 0. In this appendix, we restrict to the case
when G is a simple Lie group, and we typically consider the case k = C.

By looking at the tangent space of the identity, we have a finite dimensional simple
Lie algebra g over k that is generated by Ei, Fi,Hi for i ∈ I with the relations

[Hi,H j] = 0, [Ei, F j] = δi jHi,

[Hi, E j] =
〈
αi, α̌ j

〉
E j, [Hi, F j] = −

〈
αi, α̌ j

〉
F j,

ad(Ei)−〈αi,α̌ j〉+1E j = 0 ad(Fi)−〈αi,α̌ j〉+1F j = 0 (i , j),

where ad(X)Y = [X,Y] is the adjoint operator. Let h = spank{hi}i∈I denote the Cartan
subalgebra corresponding to T .

A representation of a Lie algebra V is a vector space over k such that [X,Y]v =

X(Yv) − Y(Xv) for all v ∈ V . For two g-representations V and W, their tensor product is
naturally a g-representation by

X(v ⊗ w) = Xv ⊗ w + v ⊗ Xw

for all X ∈ g and v ⊗ w ∈ V ⊗ W. We restrict to the category of finite dimensional
highest weight representations, and we let V(λ) denote the irreducible highest weight
representation for the dominant integral weight λ ∈ P+. The Weyl group action on V
given by

si = exp(Fi) exp(−Ei) exp(Fi),
For any nilpotent element X ∈ g and v ∈ V , we can implement exp(X)v by finding
K = min{k ∈ Z>0 | Xkv , 0} and then computing

exp(X)v =

K∑
k=0

Xkv
k
.
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We give an explicit realization for a minuscule representation following the construc-
tion in [OS, Sec. 3.1.1], where we prove the analog of [OS, Prop. 3.2, Prop. 3.3] for
g-representations. For the remainder of this section, let r ∈ I be such that 〈ωr, α̌〉 ≤ 1 for
all α ∈ Φ+, which characterizes the minuscule representations V(ωr).

A crystal for g is a set B with crystal operators ẽi, f̃i : B → B t {0}, for all i ∈ I,
that satisfy certain properties and encode the action of the Chevalley generators Ei and
Fi respectively. Kashiwara showed [Kas1, Kas2] that all highest weight representations
V(λ) has a corresponding crystal B(λ). We denote by uλ the unique highest weight
element of B(λ). For more information on crystals, we refer the reader to [BS].

For a minuscule node r, let J := I \ {r}, and let WJ := 〈si | i ∈ J〉 denote the
corresponding subgroup. Denote by W J the set of minimal length coset representatives
of W/WJ. Define crystal operators ẽi, f̃i : W J → W J t {0} by

ẽiw =

siw if `(siw) < `(w)
0 otherwise,

f̃iw =

siw if `(siw) > `(w) and siw ∈ W J

0 otherwise,

and weight function wt(w) = ωr−αi1−· · ·−αi` , where si1 · · · si` is any reduced expression
for w ∈ W J. By Stembridge [St2], this is well-defined, and this gives W J the structure
of a crystal associated to the minuscule representation V(ωr) [Scr].

Now we give an explicit construction of the minuscule representation.1

Proposition A.1. Consider the vector space

V(ωr) := spank{vw | w ∈ W J}.

Then V(ωr) is made into a g-representation by

eivw = vẽiw, fivw = v f̃iw, hivw = 〈wt(w), hi〉 vw,

where v0 = 0, and extended by linearity. FurthermoreV(ωr) � V(ωr) as g-representations.

A.2. Implementation. We now give our implementation using SageMath. For our
crystals, we will use the realization using rigged configurations [Sch, SS].

We build the minuscule representation V(ω1) in type E6, which is constructed as
V(ω1):

sage: La=RootSystem([’E’,6]).weight_lattice().fundamental_weights()

sage: M = crystals.RiggedConfigurations(La[1])

sage: VM = ReprMinuscule(M, QQ)

sage: v = VM.maximal_vector()

Let v denote the highest weight vector of V(ω1). There exists a highest weight vector
vω4 of weight ω4 in V(ω1)⊗3. Explicitly, it is given as

vω4 = v ⊗ f1v ⊗ f3 f1v − f1v ⊗ v ⊗ f3 f1v − v ⊗ f3 f1v ⊗ f1v
+ f1v ⊗ f3 f1v ⊗ v + f3 f1v ⊗ v ⊗ f1v − f3 f1v ⊗ f1v ⊗ v.

It is a finite computation to show this is a highest weight vector. We also perform this
computation in SageMath:

1A different construction was also recently given [DDW], which appeared while writing this appendix.
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sage: x = (tensor([v, v.f(1), v.f(1).f(3)])

....: - tensor([v.f(1), v, v.f(1).f(3)])

....: - tensor([v, v.f(1).f(3), v.f(1)])

....: + tensor([v.f(1), v.f(1).f(3), v])

....: + tensor([v.f(1).f(3), v, v.f(1)])

....: - tensor([v.f(1).f(3), v.f(1), v])

....: )

sage: all(x.e(i) == 0 for i in M.index_set())

True

Thus, we can build a g-representation by V(ω4) := 〈vω4〉 ⊆ V(ω1)⊗3, and since the
decomposition of tensor products of finite dimensional g-representations are determined
by computing highest weight vectors, we have V(ω4) � V(ω4). In order to do compu-
tations, we need to construct a weight basis for V(ω4). We do so by using the crystal
B(ω4). Let b ∈ B(ω4), then define vb = fi1 · · · fi`vω4 , where b = f̃i1 · · · f̃i`uω4 for some
fixed path (i1, . . . , i`). Define B := {vb | b ∈ B(ω4)}. Clearly this may depend on the
choice of path from uω4 → b, but irregardless of this choice, we have vb ∈ V(ω4)wt(b).

Below, we construct V(ω4) in SageMath by using B as follows. For each b ∈ B(ω4),
we take the path recursively constructed by taking the minimal ik such that we have a
path to b from fik · · · fi`uω4 (although any such path could do). This gives us a set of ele-
ments B, and we need to show that B are linearly independent. We verify this by seeing
the rank of the matrix of these vectors is 2925 = dim V(ω4) = |B(ω4)|. Furthermore,
we verify that this does give us a g-representation by checking all of the relations are
satisfied on each basis element:

sage: S=SubRepresentation(x,crystals.RiggedConfigurations(La[4]))

sage: verify_representation(S) # long time -- few minutes

Next, consider the positive roots

β = α1 + α2 + 2α3 + 3α4 + 2α5 + α6 =
1

12321 ,

θ = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6 =
2

12321 .

Since all of the root spaces in g are 1 dimensional (that is dim gα = 1 for all α ∈ Φ),
we construct the basis element fγ of gγ (which forms the unique basis up to scalar) by
finding some sequence (i1, i2, . . . , i`) such that

k∑
j=1

αi j ∈ Φ+,
∑̀
j=1

αi j = γ,

for all 1 ≤ k ≤ `. In particular, we can take any path from αi1 to γ in Figure 3. Then we
have

fγ = [· · · [[ fi1 , fi2], fi3] · · · fi`].

We write fγ in the free algebra generated by 〈 fi〉i∈I using the commutator property
[X,Y] = XY − YX and apply the result to any vector in the g-representation. In other
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Figure 3. The root poset Φ+ in type E6.
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words, we compute

fγ =
∑

a

± fa1 · · · fa`−1 fa` , fγv =
∑

a

±( fa1 · · · ( fa`−1( fa`v)) · · · ).

Using this process, we construct the vector v = fθ fβvω4:

sage: v = S.maximal_vector()

sage: al = RootSystem([’E’,6]).root_lattice().simple_roots()

sage: b1 = al[1] + 1*al[2] + 2*al[3] + 3*al[4] + 2*al[5] + al[6]

sage: b2 = al[1] + 2*al[2] + 2*al[3] + 3*al[4] + 2*al[5] + al[6]

sage: ops = build_root_operators([’E’,6])

sage: vzero = apply_f_operators(ops[b2],

....: apply_f_operators(ops[b1], v))

sage: vzero != 0

True

Lastly, we construct the orbit up to sign and show that it spans a 45 dimensional vector
space:

sage: orbit = set([vzero])

sage: nl = [vzero]

sage: I = CartanType([’E’,6]).index_set()

sage: while nl:

....: cur = nl

....: nl = []

....: for vec in cur:

....: for i in I:

....: vs = vec.s(i)

....: if vs in orbit or -vs in orbit:

....: continue

....: orbit.add(vs)

....: nl.append(vs)

sage: len(orbit)

240

sage: wt0 = [b for b in S.basis().keys() if b.weight() == 0]

sage: matrix([[vec[b] for b in wt0] for vec in orbit]).rank()

45

Remark A.1. The SageMath code for the implementation in this appendix is included
as an ancillary file on arXiv:2010.11357.
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