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Abstract. Let G be a parahoric Bruhat-Tits group schemes arising from a Γ-curve C
and a certain Γ-action on a simple algebraic group G for some finite cyclic group Γ.
We prove the flatness of Beilinson-Drinfeld Schubert varieties of G, we determine the
rigidified Picard group of the Beilinson-Drinfeld Grassmannian GrG,Cn of G, and we es-
tablish the factorizable and equivariant structures on rigidified line bundles over GrG,Cn .

We develop an algebraic theory of global Demazure modules of twisted current alge-
bras, and using our geometric results we prove that when C = A1, the spaces of global
sections of line bundles on BD Schubert varieties of G are dual to the twisted global
Demazure modules. This generalizes the work of Dumanski-Feigin-Finkelberg in the
untwisted setting.
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1. Introduction

Let G be a simple algebraic group of adjoint type over C, and let g be its Lie algebra.
We fix a Borel subgroup B and a maximal torus T ⊆ B. Let GrG be the affine Grassman-
nian of G. A (spherical) affine Schubert variety in GrG is parametrized by a dominant
coweight λ ∈ X∗(T )+ of G, denoted by Gr

λ

G. Let L be the level one line bundle on GrG,
and let L c be its c-th tensor power for some c > 0. Then, the space H0(Gr

λ

G,L
c) of

global sections is dual to a level c affine Demazure module D(c, λ), cf. [Ku]. By the work
of Fourier-Littelmann [FoLi], when G is of type A,D, E, the Demazure module D(c, λ)
has fusion properties. When c = 1, D(1, λ) is a Weyl module. The Weyl modules and De-
mazure modules have global counterparts, defined in [FL2] and [FM, DF] respectively.
Similarly, the global counterparts of affine Grassmanians and affine Schubert varieties
are Beilinson-Drinfeld (BD) Grassmannians and BD Schubert varieties, which play a
central role in geometric Langlands program. In [DFF], Dumanski-Feigin-Finkelberg
proved that there is a duality between the spaces of global sections of level c line bundle
on BD Schubert varieties and the level c global Demazure modules of the current alge-
bra g[t], where under this duality the factorization of line bundles is compatible with the
factorization of global Demazure module.

Let σ be a standard automorphism on G of order m preserving B and T , where σ is
simply a diagram automorphism if G is not of type A2n, see Section 2.2. We consider the
twisted current algebra g[t]σ, where σ acts on g and σ acts on t by σ(t) = e−

2πi
m t. In fact,

g[t]σ is isomorphic to a special current algebra or hyperspecial current algebra defined
in [CIK, KV], see [KV, Section 4.2] and Theorem 2.2. The fusion theories of twisted
Demazure modules and twisted Weyl modules are extensively studied, e.g. in [FKKS,
FK, CIK, KV]. Let X∗(T )+

σ be the set of σ-coinvariants of all dominant coweights of
G. For each λ̄ ∈ X∗(T )+

σ, we denote by Dσ(c, λ̄) the level c twisted Demazure module
of g[t]σ. Similar to the untwisted case, Dσ(c, λ̄) is dual to the global section of a level c

line bundle on the twisted Schubert variety Gr
λ̄

G of the special parahoric group scheme
G = ResO/Ō(GO)σ, see Section 4.4. In [BH], Besson-Hong determined the smooth

locus of Gr
λ̄

G , where the Demazure modules of g[t]σ and the global Schubert variety of
a parahoric Bruhat-Tits group scheme G := ResA1/Ā1(GA1)σ are crucially used.

The aim of this paper is to develop an algebraic theory of twisted global Demazure
modules of g[t]σ, and generalize the work [DFF] to the twisted setting, i.e. to establish
a duality between twisted global Demazure modules of g[t]σ and the spaces of global
sections of line bundles on BD Schubert varieties of G. In order to establish this duality,
a large part of our work is devoted to proving the flatness of BD Schubert varieties of
G, and establishing factorizable and equivariant structures on the rigidified line bundles
over the BD Grassmannians, for more general parahoric Bruhat-Tits group scheme G.
On this part, we closely follow the works [Zh1, Zh2, Zh3] of Zhu. In fact, our work
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also provides proofs of some geometric ingredients needed in [DFF], which seem to be
missing in literature.

Let Γ be the finite group acting on G generated by σ, and let C be an irreducible
smooth algebraic curve over C with a faithful Γ-action such that all ramified points in
C are totally ramified. Let C̄ be the quotient curve C/Γ. Let G be the Γ-fixed point
subgroup scheme of the Weil restriction group ResC/C̄(G × C). Then G is a parahoric
Bruhat-Tits group scheme over C̄. In Section 4, we define Beilinson-Drinfeld Schubert
varieties of G and prove their flatness.

Let GrG,Cn (resp. L+GCn) denote the Beilinson-Drinfeld Grassmannian (resp. the jet
group scheme) of G over Cn. For any n-tuple of coweights ~λ = (λ1, . . . , λn) of G, we first
construct a section s~λ : Cn → GrG,Cn , and then we define the Beilinson-Drinfeld Schubert

variety Gr
~λ

G,Cn to be the reduced closure of the L+GCn-orbit at s~λ. The construction of s~λ
is achieved via a construction of a locally trivial (Γ,T )-torsor attached to ~λ. By the
Tannakian interpretation of (Γ,T )-torsor (cf. Theorem A.13), the construction of this
(Γ,T )-torsor is reduced to the construction of a Γ-equivariant tensor functor, see Section
4.2. The main result of Section 4 is Theorem 4.19, which asserts that

Theorem 1.1. The BD Schubert variety Gr
~λ

G,Cn is flat over Cn. Moreover, the schematic

fiber Gr
~λ

G,~p of Gr
~λ

G,Cn at each ~p ∈ Cn is reduced. More precisely, Gr
~λ

G,~p is a product of
affine Schubert varieties (possibly twisted).

In the untwisted case, this theorem is due to Zhu, see [Zh1] for n = 2. In the twisted
case, the main idea of the proof of Theorem 1.1 is similar. When n = 1, it is also due
to Zhu [Zh2]. For n > 1, we need a new ingredient suggested by Zhu (by private com-
munication), a generalization of cohomology and base change, which is formulated in
Appendix B. This new method is of course applicable to the untwisted case. In order to

employ Theorem B.3, in Section 4.3 we define the convolution variety Conv
~λ

G,Cn which
admits a proper morphism to GrG,Cn . In fact, we give two definitions, one is defined
via a sequence of fibrations of global Schubert varieties, and the other one is defined
as the reduced closure of L+GCn-orbit at a section s̃~λ of the convolution Grassmannian.
In Proposition 4.15, we show that these two definitions are the same. The first defini-

tion tells that Conv
~λ

G,Cn is flat over Cn, and the second definition tells that the image of

Conv~λG,Cn in GrG,Cn is exactly Gr
~λ

G,Cn . As an application of Theorem 1.1, we also prove
that any BD Schubert variety is normal, see Theorem 4.22. When n = 1, this is due to
Zhu, cf. [Zh2, Corollary 6.14].

Section 5 is devoted to the study of rigidified line bundles on GrG,Cn . Let Pice(GrG,Cn)
denote the Picard group of rigidified line bundles on GrG,Cn , i.e. the line bundles on
GrG,Cn together with a trivialization along a distinguished section e over Cn, see Section
5.1. We prove the following result in Theorem 5.8.

Theorem 1.2. Suppose that G is simply-connected.
(1) For any n ≥ 1, the central charge map Pice(GrG,Cn)→ Z is an isomorphism.
(2) Any line bundle in Pice(GrG,Cn) has factorizable property.
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The proof of the injectivity of the central charge map is similar to the proof in the
untwisted case, cf. [Zh3, Section 3]. In the untwisted case, the level one line bundle
can be obtained by pulling-back the level one line bundle on BunG over a projective
smooth curve. However, in the twisted case the existence of the level one line bundle
on BunG is not known yet (actually it may not exist in certain cases). Nevertheless,
there is a level one line bundle LAn on GrG,An constructed in [BH]. Our idea of the
proof of Theorem 1.2 is as follows. For a general Γ-curve C, given any ramified point
p ∈ C, there is a Γ-stable neighborhood U of p which admits a Γ-equivariant map to A1.
Then, the pull-back of LAn gives a level one line bundle on GrG,Un\Z for some Z closed
in Un, cf. Lemma 5.6. These line bundles together with the level one line bundle over
the unramified part (cf. Proposition 5.7) can be glued via rigidity and extended to a line
bundle LCn on GrG,Cn , which generates Pice(GrG,Cn). Moreover, this line bundle satisfies
the factorization property. When n > 1, we crucially use a relative version of seesaw
principle (cf. Lemma 5.1).

Another main result of Section 5 is Theorem 5.15, which asserts that

Theorem 1.3. With the same assumption as in Theorem 1.2, there is a unique L+GCn-
equivariant stucture on the level one line bundle LCn on GrG,Cn .

The hard part of this theorem is the existence. In the proof, we first construct a L+GCn-
equivariant line bundle Ldet by embedding GrG,Cn to a BD Grassmannian of GL(V) for
some vector bundleV over C. By the étale base change property of BD Grassmannians
(cf. Corollary 4.7), we are reduced to the case C = A1. In this case, the line bundle Ldet

has a rigidified structure, and hence is a power of LAn , where Theorem 1.2 is crucially
used. This in fact implies that LAn admits a L+GAn-equivariant structure. This step
is guaranteed by Proposition 5.10, whose proof is quite technical. We first prove this
proposition when n = 1 and n = 2 separately, and for general case we use Hartogs’
Lemma. In our argument, we need to restrict line bundles to BD Schubert varieties so
that all arguments are in the finite type geometry.

To prove Theorem 1.5 (or Theorem 6.5) in full generality, we need to work with
adjoint type group G. In this case, it is difficult (or impossible) to construct a factorizable
level one line bundle on GrG,Cn for a general Γ-curve C. Nevertheless, when C = A1 with
the standard action of Γ. We are able to construct level one line bundles on BD Schubert
varieties which admits factorization properties compatible with the factorization of BD
Schubert varieties, see Proposition 5.18. Moreover, using Theorem 1.3 we are able to
prove that these line bundles admit L+G′Cn-equivariant structures, where L+G′Cn is the jet
group scheme arising from the simply-connected cover of G, see Proposition 5.19.

As mentioned earlier, the main motivation of this work is to establish a relation be-
tween twisted global Demazure modules and line bundles on BD Schubert varieties of
G. In Section 3.2, for any ~λ ∈ (X∗(T )+)n, we define the twisted global Demazure mod-
ule Dσ(c, ~λ) of g[t]σ. Using the results of Fourier-Littelmann [FoLi] and Kus-Vankatesh
[KV], we prove the following result in Theorem 3.12 and Theorem 3.13.

Theorem 1.4. Given ~λ = (λ1, · · · , λn) ∈ (X∗(T )+)n, let λ̄ be the image of
∑
λi in X∗(T )+

σ.

(1) The fiber Dσ(c, ~λ)0 at 0 ∈ An is the twisted Demazure module Dσ(c, λ̄).
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(2) The twisted global Demazure module Dσ(c, ~λ) is a graded freeAσ(c, ~λ)-module,
whereAσ(c, ~λ) is the weight algebra associated to the cyclic generator ofDσ(c, ~λ).

As a consequence of Theorem 1.1 and Proposition 5.19, the space H0(Gr
~λ

G,An ,LAn) of
global sections of the level one line bundle LAn is a (g[t]σ,C[An])-bimodule. In Section
6.1, we further equip a Gm-equivariant structure on the line bundle LAn , which follows

that H0(Gr
~λ

G,An ,LAn) is a graded free C[An]-module, see Theorem 6.4. Finally, we prove
the following Borel-Weil type theorem in Theorem 6.5.

Theorem 1.5. There exists an isomorphism of (g[t]σ,C[An])-bimodules

Dσ(c, ~λ)An ' H0(Gr
~λ

G,An ,Lc
An

)∨
,

where Dσ(c, ~λ)An = Dσ(c, ~λ)⊗
Aσ(c,~λ)C[An]. Moreover, Dσ(c, ~λ)An has factorization prop-

erty and it is compatible with the factorization of LAn under the above isomorphism.

Our proof is similar to the proof in [DFF], while there are some distinctions, see
Remark 6.6. As a consequence of this theorem, the fiber Dσ(c, ~λ)~p at any ~p ∈ An can
be determined, see Corollary 6.7 and Remark 6.8. In fact, the fiber Dσ(c, ~λ)~p is a tensor
product of affine Demazure modules (possibly twisted) depending on the type of the
point ~p.

The Borel-Weil type theorem for twisted global Weyl module is proved by Braverman-
Finkelberg in [BF, Theorem 4.6], where they work with twisted Zastava spaces. In fact,
when the level c = 1, Dσ(c, ~λ) is isomorphic to a twisted global Weyl module, see The-
orem 3.21.

Finally, we make a remark when G is A2`. In this case, our automorphism σ is chosen
to be the standard automorphism of order 4. The twisted current algebra g[t]σ corre-
sponds to a special parahoric subalgebra of A(2)

2` . In fact, there is another special parahoric
subalgebra of A(2)

2` , which can be realized as the twisted current algebra g[t]τ correspond-
ing to the diagram automorphism τ of order 2. For this automorophism τ, all results in
Section 4 hold, and in Section 5 similar results hold except that Pice(GrG,Cn) is generated
by a level 2 rigidified line bundle. Moreover, we expect that Theorem 1.5 still hold for
even levels.

Acknowledgements: We would like to thank I. Dumanski, E. Feigin, M. Finkelberg,
G. Fourier and D. Kus for helpful email correspondences. We thank R. Travkin and
X. Zhu for inspiring discussions on geometric aspects of this work. We also thank Wyatt
Reeves for helpful discussions and sharing his unpublished results. J. Hong was partially
supported by the NSF grant DMS- 2001365.

2. Affine Demazure modules of twisted current algebra

In this section, we collect some known results of affine Demazure modules, Weyl
modules, and their twisted analogues, which will be used in Section 3.
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2.1. Notations. Let G be an almost simple algebraic group over C. We fix a maximal
torus T and a Borel subgroup B containing T . Let X∗(T ) (resp. X∗(T )) denote the weight
lattice (resp. the coweight lattice) of T . Let X∗(T )+ denote the set of dominant coweights
of G with respect to B. Let R be the set of roots of G. Let R+ denote the set of positive
roots of G with respect to B. Let {αi | i ∈ I} be the set of simple roots, where I is the set
of vertices of the Dynkin diagram of G.

Let g, b, h denote the Lie algebras of G, B, T respectively. One has the triangular
decomposition g = n− ⊕ h ⊕ n+, where n+ is the nilpotent radical of b and n− is the
nilpotent radical of the opposite Borel subalgebra b−. Let {eα | α ∈ R} be a Chevalley
basis of g. For simplicity of notations, we also set ei = eαi , fi = e−αi , and hi = α∨i for any
i ∈ I.

In this section, we always assume that G is simply-laced and of adjoint type. Then,
the set X∗(T )+ can be identified with set of all dominant coweights of g. In Section 2 and
Section 3, we only deal with Lie algebras, but to be consistent with the notations in later
sections on geometry, we keep using the notation X∗(T )+.

2.2. Twisted current algebra. Let τ be a nontrivial diagram automorphism preserving
b, h and the pinning {ei, fi; i ∈ I}. Let m = 2, 3 or 4 and fix an m-th primitive root
ε. Following [BH, Section 2.1], let σ be a standard automorphism of order m on g
preserving b and h. More specifically, when g is not A2`, σ = τ; when g is of type A2`,

(1) σ = τ ◦ εh,

where h ∈ hτ such that

αi(h) =

0, if i , `, ` + 1;
1, if i = `, ` + 1.

In particular,

m =


2, if g is A2`−1,D`+1 or E6;
3, if g is D4;
4, if g is A2`.

Let gσ be the σ-fixed point Lie subalgebra in g. We have the following descriptions of
gσ,

(2)
(g,m) (A2`−1, 2) (A2`, 4) (D`+1, 2) (D4, 3) (E6, 2)

gσ C` C` B` G2 F4
,

where by convention C1 is A1 and ` ≥ 3 for D`+1.
We extend σ to an automorphism on the loop algebra L(g) = g((t)) by

(3) σ(x ⊗ t j) = ε− jσ(x) ⊗ t j.

We define the twisted affine algebra L̂(g, σ) := g((t))σ ⊕ CK as a central extension of
L(g)σ with the canonical center K as follows:

[x[ f ] + zK, x′[ f ′] + z′K] = [x, x′][ f f ′] + m−1Rest=0((d f ) f ′)(x, x′)K

for x[ f ], x′[ f ′] ∈ L(g), z, z′ ∈ C, where Rest=0 denotes the coefficient of t−1dt, and (, ) is
the normalized Killing form on g such that (θ, θ) = 2 for the highest root θ.
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Let g[t]σ be the twisted current algebra, i.e. the σ-fixed point subalgebra of g[t]. In
fact, g[t]σ is a subalgebra of L̂(g, σ).

(1) When g is of type A2`, let αi, j be the positive root αi + · · ·+α j, for 1 ≤ i ≤ j ≤ 2`,
and let e±α be the standard basis in g = sl2`+1. Then g[t]σ has the following basis:

e±α,2k := e±α ⊗ t2k + (−1)i+ j+ke±τ(α) ⊗ t2k, when α = αi, j with 1 ≤ i ≤ j < `

e±α,2k := e±α ⊗ t2k − (−1)i+ j+ke±τ(α) ⊗ t2k, when α = αi,2`− j with 1 ≤ i ≤ j < `

e±α,4k := e±α ⊗ t4k, when α = αi,2`+1−i with 1 ≤ i ≤ `

e±α,2k+1 := e±α ⊗ t2k+1 ± (−1)i+`+ke±τ(α) ⊗ t2k+1, when α = αi,` with 1 ≤ i ≤ `

hi,2k := hi ⊗ t2k + (−1)kh2`+1−i ⊗ t2k, for any 1 ≤ i ≤ `

(4)

(2) When g is not of type A2`, let R+
s (resp. R+

l ) be the set of roots α ∈ R+ such that
the restriction α|hσ is a short (resp. long) root of gσ. Then g[t]σ has the following
basis:

e±α,k :=
m−1∑
i=0

e±σi(α) ⊗ (ε it)k, α ∈ R+
s ; e±α,mk :=

m−1∑
i=0

e±σi(α) ⊗ tmk, α ∈ R+
l ;

hα,k :=
m−1∑
i=0

hσi(α) ⊗ (ε it)k, α ∈ R+.

When g is not A2`, g[t]σ is isomorphic to the special twisted current algebra of L̂(g, σ),
see [KV, Section 4.2]. When g is A2`, we now show g[t]σ is isomorphic to the hyperspe-
cial twisted current algebra Cg defined in [CIK, Section 2.5] and [KV, Section 1.5].

Following [CIK, Section 4.4] and [KV, Section 1.8], the hyperspecial current algebra
Cg ⊂ g[t, t−1]τ consists of the following basis elements:

(1) e±α ⊗ tk + (−1)i+ je±τ(α) ⊗ (−t)k, α = αi j with 1 ≤ i ≤ j < `, and k ≥ 0;

(2) e±α ⊗ tk±1 + (−1)i+ je±τ(α) ⊗ (−t)k±1, α = αi,2`− j with 1 ≤ i ≤ j < `, and k ≥ 0;

(3) e±α ⊗ t2k±1, α = αi,2`+1−i with 1 ≤ i ≤ `, and k ≥ 0;

(4) e±α ⊗ t(2k+1±1)/2 + (−1)`+ie±τ(α) ⊗ (−t)(2k+1±1)/2, α = αi` with 1 ≤ i ≤ `, and k ≥ 0;

(5) hi ⊗ tk + h2`+1−i ⊗ (−t)k, 1 ≤ i ≤ `, and k ≥ 0,

where αi j denotes the positive root αi + · · · + α j, for any 1 ≤ i ≤ j ≤ 2`. Note that
τ(αi j) = α2`+1− j,2`+1−i.

Lemma 2.1. We have the following formula

(5) σ(e±αi j) = (−1) j−iε±αi j(h)eα2`+1− j,2`+1−i , for any 1 ≤ i ≤ j ≤ 2` + 1,

and σ(hi) = h2`+1−i, for any 1 ≤ i ≤ 2` + 1, where h is defined in (1).

Proof. In [Kac, Section 7.10], the formula for the action of τ on every basis vector in g
is given. Combining this formula and σ = τεh, we can deduce the formula for σ. �
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There exists an isomorphism ηk : L̂(g, τ) ' L̂(g, σ) due to Kac (cf. [HK1, p8] and
[Kac, Section 8.5]), which is defined as follows

ηk(x[t j]) = x[t2 j+s],

for any x a simultaneous (−1) j-eigenvector of τ, and a s-eigenvector of adh. Let φ be the
Cartan involution on g such that φ(ei) = − fi and φ(hi) = −hi. Notice that for any root α,
φ(eα) = −e−α. Now, we define an automorphism ηc : L̂(g, τ)→ L̂(g, τ) as follows,

ηc(x[ts]) = φ(x)[ts], for any x[ts] ∈ L̂(g, τ).

It is easy to verify that ηc is well-defined, since ηc ◦ τ = τ ◦ ηc, where τ is the automor-
phism on the untwisted affine Lie algebra ĝ induced from the action in (3) . We define
the following isomorphism of twisted affine algebras

(6) η := ηk ◦ ηc : L̂(g, τ) ' L̂(g, σ).

The following theorem originally appeared in an earlier version of [BH], where some
calculation mistakes are fixed in this paper.

Theorem 2.2. The map η restricts to the following isomorphism of Lie algebras

η : Cg ' g[t]σ.

Proof. From the definition (6), we have the following calculations:

(1) When α = αi + · · · + α j with 1 ≤ i ≤ j < `, and k ≥ 0, we have

η(e±α ⊗ tk + (−1)i+ je±τ(α) ⊗ (−t)k) = −(e∓α ⊗ t2k + (−1)i+ j+ke∓τ(α) ⊗ t2k).

(2) When α = αi,2`− j with 1 ≤ i ≤ j < `, and k ≥ 0, we have

η(e±α ⊗ tk±1 + (−1)i+ je±τ(α) ⊗ (−t)k±1) = −(e∓α ⊗ t2k − (−1)i+ j+ke∓τ(α) ⊗ t2k).

(3) When α = αi,2`+1−i with 1 ≤ i ≤ `, and k ≥ 0, we have

η(e±α ⊗ t2k±1) = −e∓α ⊗ t4k.

(4) When α = αi` with 1 ≤ i ≤ `, and k ≥ 0, we have

η(e±α ⊗ t(2k+1±1)/2 + (−1)`+ie±τ(α) ⊗ (−t)(2k+1±1)/2) = −(e∓α ⊗ t2k+1 ∓ (−1)i+`+ke∓τ(α) ⊗ t2k+1).

(5) For any 1 ≤ i ≤ `, and k ≥ 0, we have

η(hi ⊗ tk + h2`+1−i ⊗ (−t)k) = −(hi ⊗ t2k + (−1)kh2`+1−i ⊗ t2k).

Then, it is easy to see that the image of the described basis of the hyperspecial current
algebra Cg under the map η is exactly the basis of g[t]σ described above. �
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2.3. Weyl modules. We denote by P (resp. Pσ) the weight lattice of g (resp. gσ), and
by P+ (resp. P+

σ) the set of dominant weights of g (resp. gσ) with respect to the Borel
subalgebra b (resp. bσ). We define the map ι : X∗(T )→ P given by

ι(λ)(h) = (λ, h), ∀λ ∈ X∗(T ), h ∈ h,

where λ is regarded as an element in h and ( , ) is the normalized Killing form on h.
By restricting ι(λ) to hσ, it induces a map X∗(T ) → Pσ, and it descends to the map
X∗(T )σ → Pσ. We still denote it by ι.

Following [FoLi], for any dominant weight µ ∈ P+ of g, we define the Weyl module
W(µ) of g[t] to be the cyclic module generated by an element wµ subject to the following
relations

n
− ⊗ C[t] · wµ = 0, h ⊗ tC[t] · wµ = 0, (h ⊗ 1) · wµ = −µ(h)wµ, (eαi ⊗ 1)µ(α∨i )+1 · wµ = 0,

for any simple roots αi ∈ R+, and any h ∈ h.
Following [KV], for each dominant weight µ̄ ∈ P+

σ of gσ, we define the twisted Weyl
module Wσ(µ̄) of g[t]σ to be the cyclic module generated by an element wµ̄ subject to
the following relations

(7) n
−[t]σ · wµ̄ = 0, (h ⊗ tC[t])σ · wµ̄ = 0, (h ⊗ 1) · v = −µ̄(h)wµ̄, (eα,0)kα+1 · wµ̄ = 0,

for any h ∈ hσ, α ∈ R+, and kα = µ̄(ᾱ∨), where ᾱ is the root α|hσ of gσ.
We define the twisted global Weyl module Wσ(µ̄) to be the cyclic U(g[t]σ)-module

generated by an element wµ̄ with the following relations

n
−[t]σ · wµ̄ = 0, (h ⊗ 1) · v = −µ̄(h)wµ̄, (eα,0)kα+1 · wµ̄ = 0,

where h ∈ hσ, α ∈ R+, and kα = µ̄(ᾱ∨). Similar to the untwisted case in [CFK], there is
a well-defined right action of U(h[t]σ) onWσ(λ̄) given by

(u · wµ̄) h := u · (h · wµ̄)

where u ∈ U(g[t]σ), h ∈ U(h[t]σ). This action commutes with U(g[t]σ)-action. Let
Aσ(µ̄) := U(h[t]σ)/Ann(wµ̄) be the quotient of U(h[t]σ) by the annihilator of wµ̄.

Remark 2.3. In this paper, the (twisted) Weyl modules and the twisted global counter-
parts are defined using the lowest weight cyclic generators. By composing the map η
(when g is A2`) or a Cartan involution (otherwise), our definitions agree with the usual
definitions in literature. Also see Remark 2.5 on the definitions of Demazure modules.

Let Iσ be the set of vertices of the Dynkin diagram of gσ. We follow the Bourbaki
labeling of the vertices of the Dynkin diagram, which gives a total order on I and Iσ. Let
{β j} j∈Iσ be the set of simple roots of gσ. Then, there is a map η : I → Iσ such that

(8) β̌i =
∑

j∈η−1(i)

α̌ j

for any simple coroot β̌i, cf. [BH, Section 2.1]. Let ω j be the fundamental weight of g
associated to j ∈ I. For any i ∈ Iσ, let ω̄i := ω j|hσ for some j ∈ η−1(i). Then {ω̄i}i∈Iσ gives
the set of fundamental weights of gσ, cf. [BH, Section 2.1]. Moreover, by [BH, Lemma
3.4], we have

(9) ι(ω̌ j) = ω̄i, ∀ j ∈ η−1(i).
9



For each i ∈ Iσ, set mi := m
|η−1(i)| . For example, when g is A2`, we have mi = 2 for any

i ∈ Iσ. The following theorem on twisted global Weyl modules was proven in [CIK],
and it will be used in Section 3.3.

Theorem 2.4. Let µ̄ =
∑

i∈Iσ niω̄i ∈ P+
σ.

(1) The algebra Aσ(µ̄) is a graded polynomial algebra in variables Ti,r of grade mir,
where i ∈ Iσ and 1 ≤ r ≤ ni. In particular, when g is A2`, mi = 2 for any i ∈ Iσ.

(2) Let Iµ̄,0 be the unique graded maximal ideal in Aσ(µ̄). Then, there is a g[t]σ-
isomorphism

Wσ(µ̄) ⊗Aσ(µ̄) (Aσ(µ̄)/Iµ̄,0) ' Wσ(µ̄).

(3) Wσ(µ̄) is a free Aσ(µ̄) module of rank equal to
∏

i∈Iσ
(

dim Wσ(ω̄i)
)ni .

Proof. (1) Cf. [CIK, Theorem 1] when g is A2` and [CIK, Theorem 8] when g is not A2`.
(2) It follows from the definition. (3) Cf. [CIK, Theorem 4, Theorem11]. �

2.4. Affine Demazure modules. The integrable highest weight modules of L̂(g, σ) of
level c can be parameterized by a set P(σ, c) of certain highest weights of gσ, see [HK1,
Section 2]. In particular, for any κ ∈ P(σ, 1), we always have cκ ∈ P(σ, c). We denote by
Hc(µ̄) the integrable highest weight module associated to a highest weight µ̄ ∈ P(σ, c).

Set Hc = ⊕κ∈P(σ,1)Hc(cκ). For any λ̄ ∈ X∗(T )+
σ, let vλ̄ ∈ Hc be the extremal weight

vector whose hσ-weight is −cι(λ̄), see [BH, Lemma 3.6]. We define the twisted affine
Demazure Dσ(c, λ̄) as the following g[t]σ-module,

(10) Dσ(c, λ̄) := U(g[t]σ)vλ̄.

For any λ ∈ X∗(T )+, we define the untwisted affine Demazure module D(c, λ) in a similar
way by simply taking σ = id.

Remark 2.5. The affine Demazure module D(c, λ) defined here can be identified with the
module D(c, λ) defined in [FoLi, Section 2.2] with a g[t]-action via the Cartan involution
ηc : g[t] → g[t]. Similarly, our twisted affine Demazure module Dσ(c, λ̄) can be iden-
tified with the module D(c, cι(λ̄)) defined in [KV, Section 3.2] via a twist of the Cartan
involution ηc : g[t]σ → g[t]σ when g is not A2`, or via a twist of the map η : Cg → g[t]σ

defined in (6) when g is A2`.

Thanks to the works [FoLi, KV] of Fourier-Littelmann and Kus-Venkatesh, we have
the following theorem, which will be used in Theorem 3.12.

Theorem 2.6. Let g be a simply-laced simple Lie algebra with a standard automorphism
σ. Let λ be a dominant coweight of g. Denote by λ̄ the image of λ under the projection
map X∗(T )+ → X∗(T )+

σ. Then
(1) The untwisted Demazure module D(c, λ) is isomorphic to the quotient of the Weyl

module W(cι(λ)) by the submodule generated by

{(eα ⊗ ts)kα,s+1 · wλ | α ∈ R+, s ≥ 0},

where kα,s = c max{0, (λ, α∨) − s}, and wλ is the generator whose h-weight is
−cι(λ).
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(2) The twisted Demazure module Dσ(c, λ̄) is isomorphic to the quotient of the
twisted Weyl module Wσ(cι(λ̄)) by the submodule generated by

{eα,msα · wλ̄ | α ∈ R+
l } ∪ {eα,sα · wλ̄ | α ∈ R+

s }, when g is not A2`;

{eα,4sα · wλ̄ | α = αi,2`+1−i, 1 ≤ i < `} ∪ {eα,2s2α+1 · wλ̄ | α = αi,`, 1 ≤ i ≤ `}
∪ {eα,2sα · wλ̄ | α = αi, j or αi,2`− j, 1 ≤ i < `}, when g is A2`,

where sα = c · (λ, ᾱ∨), and wλ̄ is the generator whose hσ-weight is −cι(λ̄). Here,
(, ) is the normalized Killing form on g and ᾱ∨ is regarded as an element in hσ.

Proof. See [FoLi, Lemma 4, Corollary 1] for part (1), and [KV, Theorem 3, Theorem 5]
for part (2). �

Corollary 2.7. With the same setup and assumption as in Theorem 2.6, we have
(1) For any λ ∈ X∗(T )+, the Demazure module D(1, λ) is isomorphic to the Weyl

module W(ι(λ)).
(2) For any λ̄ ∈ X∗(T )+

σ, the twisted Demazure module Dσ(1, λ̄) is isomorphic to the
twisted Weyl module Wσ(ι(λ̄)).

Proof. For part (1), see [FoLi, Theorem 7]. For part (2), see [FK, Theorem 5.1] and
[CIK, Theorem 9(ii)] when g is not type A2`; see [CIK, Theorem 2] and [KV, Corollary
3.3] when g is A2`. �

Remark 2.8. When g is of type A2`, part (2) of the Corollary does not hold for the diagram
automorphism. This is one of the reason that we use the ‘standard’ automorphism σ.

In view of (9), by this Corollary any Weyl module of g[t]σ is isomorphic to a twisted
Demazure.

3. Global Demazure modules of twisted current algebra

In this section, we define twisted global Demazure modules and study their basic
properties. We also prove that when the level is 1, the global Demazure modules can be
identified with twisted global Weyl modules.

3.1. General twisted global modules. Let V be a cyclic graded finite dimensional g[t]-
module with a cyclic vector vµ of weight µ ∈ P+ such that

(11) th[t] · vµ = 0,

and the degree of t is 1. For any x ∈ g, v ∈ V , we denote by xts the element x ⊗ ts in
g[t]. We denote by v[ f ] the vector v ⊗ f in the vector space V[z] := V ⊗ C[z], for any
v ∈ V and f ∈ C[z]. Following [FM, subsection 1.3], we define a g[t]-module structure
on V[z] as follows,

(12) xts
• v[ f ] =

s∑
j=0

(−1)s− j

(
s
j

)
(xt j · v)[ f · zs− j]

where l, k ≥ 0, x ∈ g, v ∈ V . It was shown in [FM, Section 1.3] that V[z] is a cyclic
module with the cyclic generator v[1].
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Consider the cyclic graded finite dimensional g[t]-modules V1, . . . ,Vn, where Vi has a
cyclic vector vi of weight µi such that th[t] · vi = 0. Set

(13) w := v1[1] ⊗ v2[1] ⊗ · · · ⊗ vn[1] ∈
⊗

i Vi[zi].

Definition 3.1. Similar to the untwisted case in [DF], we define the twisted global mod-
ule Rσ(V1, . . . ,Vn) to be a cyclic U(g[t]σ)-module generated by the vector w as follows,

Rσ(V1, . . . ,Vn) := U(g[t]σ) • w ⊆
n⊗

i=1

Vi[zi].

Moreover, we define a right U(h[t]σ)-action on Rσ(V1, . . . ,Vn) by

(14) (u • w) h = u • (h • w),

where u ∈ U(g[t]σ), h ∈ U(h[t]σ).

Lemma 3.2. This action (14) is well-defined.

Proof. It suffices to show that if u • w = 0 for some u ∈ U(g[t]σ), then

u • (hts
• w) = 0

for any hts ∈ h[t]σ. It follows from the definition (12) with the following calculations:

u • (hts
• w) = u •

(
hts

• (v1[1] ⊗ · · · ⊗ vn[1])
)

= u •
( n∑

i=1

v1[1] ⊗ · · · ⊗ (hts
• vi[1]) ⊗ · · · ⊗ vn[1]

)
= u •

( n∑
i=1

(−1)sµi(h)v1[1] ⊗ · · · ⊗ vi[zs
i ] ⊗ · · · ⊗ vn[1]

)
=

n∑
i=1

(−1)sµi(h)u •
(
v1[1] ⊗ · · · ⊗ vi[zs

i ] ⊗ · · · ⊗ vn[1]
)

= 0 �

From the proof of Lemma 3.2, we know the action (14) commutes with the g[t]σ-
action, and only depends on the weights µ1, . . . , µn. Set ~µ = (µ1, . . . , µn) and we define

(15) Aσ(~µ) := U(h[t]σ)/Ann(w)

as the quotient of U(h[t]σ) by the annihilator of w defined in (13). Following [DFF,
Section 2.2], we call Aσ(~µ) a twisted weight algebra associated to w. Then, the twisted
global module Rσ(V1, . . . ,Vn) is a (g[t]σ,Aσ(~µ))-bimodule.

Consider the following embedding

(16) Aσ(~µ) ' Aσ(~µ) • w ↪→ C[z1, z2, . . . , zn],

given by hts 7→ (−1)s(µ1(h)zs
1 + · · ·+µn(h)zs

n). Then,Aσ(~µ) can be realized as the algebra
generated by the following elements

{µ1(h)zms+ j
1 + µ2(h)zms+ j

2 + · · · + µn(h)zms+ j
n | h ∈ h j, 0 ≤ j ≤ m − 1, s ≥ 0},

where h j := {h ∈ h | σ(h) = ε jh}.
12



Example 3.3. Let v be a vector of weightω j, where j ∈ I. For any hts ∈ h[t]σ, hts
•v[1] =

(−1)sω j(h)v[zs] is non-zero if and only if m j | s, where m j is the order of the stablizer
of the vertex j under the action of the cyclic group 〈σ〉. Thus, Aσ(ω j) ' C[zm j]. In
particular, when g is A2`, m j = 2 for any j.

Similar to the untwisted case in [DF], we have the following result.

Proposition 3.4. Aσ(~µ) is a Noetherian ring.

Proof. Consider an element h ∈ hσ such that (µi1 + · · · + µik)(h) , 0 for any subset
{i1, . . . ik} ⊂ {1, . . . , n}. LetAσ(~µ)h be the subalgebra of C[z1, z2, . . . , zn] generated by

{µ1(h)zms
1 + µ2(h)zms

2 + · · · + µn(h)zms
n | s ≥ 0}.

Then we have the following embeddings

Aσ(~µ)h ↪→ A
σ(~µ) ↪→

n⊗
i=1

Aσ(µi).

It was shown in [BCES, Proposition 2.6] that
⊗n

i=1A
σ(µi) is finite over Aσ

h (~µ), and
hence is finite over Aσ(~µ). Note that Aσ(~µ)h is Noetherian. By Artin-Tate Lemma
[AM, Proposition 7.8], Aσ(~µ) is finitely generated over Aσ(~µ)h. Thus, Aσ(~µ) is also
Noetherian. �

Remark 3.5. The definitions and results for Rσ(V1, . . . ,Vn) andAσ(~µ) in this section also
works when every µi is anti-dominant.

In the rest part of this subsection, we discuss the fibers of twisted global modules.
For a point p ∈ A1 − {0} and a g[t]-module V , we denote by Vp the module V with a

new g[t]-action with a shift by p, i.e. it is given by

(17) xts
• v := x(t − p)s · v,

where xts ∈ g[t], v ∈ V .

Proposition 3.6. Let V1 be a cyclic finite dimensional graded g[t]σ-module, V2, . . . ,Vn

be cyclic finite dimensional graded g[t]-modules. Let ~p ∈ An such that p1 = 0, pm
i , pm

j

for any i , j. Then, the tensor product V1 ⊗
⊗n

i=2 Vi,pi is a cyclic U(g[t]σ)-module.

Proof. Cf. [KV, Section 6.3]. One can also prove this proposition by using a similar
method in [FL1, Proposition 1.4]. �

When V1 is a trivial module, we get the following special case.

Corollary 3.7. Let ~p ∈ An such that pm
i , pm

j , 0 for any i , j. The tensor product⊗n
i=1 Vi,pi is a cyclic U(g[t]σ)-module. �

The U(g[t]σ)-module
⊗n

i=1 Vi,pi is cyclic, and hence has a filtration induced from the
t-grading on g[t]σ. Let gr

(⊗n
i=1 Vi,pi

)
denote the associated graded g[t]σ-module of⊗n

i=1 Vi,pi .
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Proposition 3.8. Let ~p ∈ An such that pm
i , pm

j , 0 for any i , j. For each 1 ≤ i ≤ n,
let Vi be a cyclic graded finite dimensional g[t]-module with a cyclic vector vi of weight
µi ∈ P+ such that th[t] · vi = 0. There is a surjective morphism of g[t]σ-modules

(18) Rσ(V1, . . . ,Vn) ⊗Aσ(~µ) C~p �
n⊗

i=1

Vi,pi .

Proof. Consider the composition of morphisms of g[t]σ-modules

Rσ(V1, . . . ,Vn) ⊗Aσ(~µ) C~p →
( n⊗

i=1

Vi[zi]
)
⊗Aσ(~µ) C~p �

n⊗
i=1

Vi,pi .

Now the proposition follows from Corollary 3.7 which asserts that the right hand side is
a cyclic g[t]σ-module. �

We will show in Theorem 3.13 that the map (18) is an isomorphism for Demazure
modules. The following theorem is a special case of [KV, Theorem 7], which will be
crucially used in Section 3.2.

Theorem 3.9. Let ~p ∈ An such that pm
i , pm

j , 0 for any i , j. Given λ1, . . . , λn ∈

X∗(T )+, let λ̄ be the image of
∑

i λi in X∗(T )σ. Then, there is an isomorphism of g[t]σ-
modules

Dσ(c, λ̄) ' gr
( n⊗

i=1

D(c, λi)pi

)
. �

3.2. Twisted global Demazure modules. In this subsection, we define the global De-
mazure modules of twisted current algebras, and study their basic properties.

Given ~λ = (λ1, . . . , λn) ∈ (X∗(T )+)n, for each i, let vi be the cyclic generator of the
Demazure module D(c, λi) of g[t] which is of weight −cι(λi), as in (10). Recall Section
3.1, one can define the following twisted global module

Rσ(D(c, λ1), . . . ,D(c, λn)
)

= U(g[t]σ) • w,

where w = v1[1] ⊗ · · · ⊗ vn[1] ∈
⊗

D(c, λi)[zi]. Moreover, this global module has a
right Aσ(c, ~λ)-action, where Aσ(c, ~λ) = U(h[t]σ)/Ann(w) is the twisted weight algebra
associated to w. We remark that Aσ(c, ~λ) = Aσ(−cι(~λ)), see (15). By (16), we have an
embeddingAσ(c, ~λ) ↪→ C[An] := C[z1, . . . , zn]

Definition 3.10. We defined the twisted global Demazure module Dσ(c, ~λ) to be the
following (g[t]σ,Aσ(c, ~λ))-bimodule

(19) Dσ(c, ~λ) := Rσ(D(c, λ1), . . . ,D(c, λn)
)
.

We will denote by Dσ(c, ~λ)~p := Dσ(c, ~λ) ⊗
Aσ(c,~λ) C~p the fiber at a point ~p ∈ An.

We now determine the generic fibers of the twisted global Demazure module.

Lemma 3.11. With the same setup in Theorem 3.9, there is a surjective g[t]σ-morphism

(20) Dσ(c, ~λ)~p �
n⊗

i=1

D(c, λi)pi .
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As a consequence, there is an inequality

(21) dim
(
Dσ(c, ~λ)~p

)
≥ dim

( n⊗
i=1

D(c, λi)pi

)
= dim

(
Dσ(c, λ̄)

)
.

Proof. The surjective map is given by Proposition 3.8. The inequality follows from the
surjection (20) and Theorem 3.9. �

Theorem 3.12. Given λ1, . . . , λn ∈ X∗(T )+, let λ̄ be the image of λ :=
∑

i λi in X∗(T )+
σ.

There is a g[t]σ-isomorphism

Dσ(c, ~λ)0 ' Dσ(c, λ̄).

Our proof is similar to the proofs in [DFF, Proposition 4.9] and [DF, Proposition
2.13].

Proof. It is known that the function ϕ(~p) := dim
(
Dσ(c, ~λ)~p

)
is upper semicontinuous,

cf. [Ha, Expample 12.7.2]. Note that for any ~p , 0, the function ϕ is a constant on the
punctured line {a~p | a ∈ C∗}. It follows that

(22) ϕ(0) ≥ ϕ(~p), for any ~p ∈ An.

Combining with (21), we get

(23) dim
(
Dσ(c, ~λ)0

)
≥ dim

(
Dσ(c, λ̄)

)
.

From Theorem 2.6, Dσ(c, λ̄) is isomorphic to the quotient of twisted Weyl module
Wσ(cι(λ̄)) by a submodule M, where M is generated by the elements in Theorem 2.6
part (2). To prove the theorem, it suffices to show there is a surjective map

Dσ(c, λ̄) →̃ Wσ(cι(λ̄))/M � Dσ(c, ~λ)0.

We first show that the map

(24) ψ : Wσ(cι(λ̄))� Dσ(c, ~λ) ⊗
Aσ(c,~λ) C0

sending wλ̄ to w⊗ 1 is well-defined. It is clear that the first three defining relations in (7)
for wλ̄ also holds for w⊗ 1. The reason is that w = v1[1]⊗ v2[1]⊗ · · · ⊗ vn[1] and by part
(1) of Theorem 2.6 vi satisfies the following relations

(25) n
−[t] · vi = 0, h ⊗ tC[t] · vi = 0, (h ⊗ 1) · v = −c(λi, h)vi, (eα ⊗ ts)kα,s+1 · vi = 0,

where α ∈ R+, kα,s = c max{0, (λ, α∨) − s}.
We now check the last relation in (7). When g is not A2`, for any α ∈ R+, if α is not

fixed by σ, then the roots α, σ(α), . . . , σm−1(α) are all distinct and orthogonal, cf. [Sp2,
Lemma 1]. In this case, we have kα = c(λ, ᾱ∨) ≥ c

∑m−1
j=0 (λ, σ j(α∨)), and

(26) (eα,0)kα+1
• w =

( m−1∑
j=0

eσ j(α) ⊗ 1
)kα+1

• w =
∑

∑
s j=kα+1

m−1∏
j=0

(eσ j(α) ⊗ 1)s j • w.

In each term of the right side, there must be an s j ≥ c(λ, σ j(α∨)) + 1 = kσ j(α),0 + 1. For
this s j, by the last relation in (25), we have (eσ j(α) ⊗ 1)s j • (vi[1]) = 0, 1 ≤ i ≤ n. This
shows that the right side of (26) is 0. Hence, the last relation in (7) holds in this case.
When α is fixed by σ, this relation can be checked similarly (actually easier).
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When g is of type A2` and m = 4, the element eα,0 ∈ g[t]σ if and only if α , αi,`, see
Section 2.2. Thus, α and σ(α) are either equal or orthogonal. By the same argument as
above, we still have (eα,0)kα+1

•w = 0, where α , αi,` and kα = c(λ, ᾱ∨). This finishes the
checking of all relations in (7). Thus, the map (24) is well-defined.

To complete the proof, we still need to show ψ(M) = 0. When g is not A2`, the
submodule M is generated by the following elements (see Theorem 2.6)

{eα,msα · wλ̄ | α ∈ R+
l } ∪ {eα,sα · wλ̄ | α ∈ R+

s }.

By the equalities in [Kac, (5.1.1)] and (8), we always have sα = c(λ, ᾱ∨) ≥ c(λ, σ j(α∨))
for any α ∈ R+ and 0 ≤ j ≤ m − 1. When α ∈ R+

l , by definition ᾱ is a long root of gσ.
Then, (λ, σ j(α∨)) − msα ≤ (λ, σ j(α∨)) − mc(λ, σ j(α∨)) ≤ 0, which implies

(27) eα,msα • w =

m−1∑
i=0

eσi(α) ⊗ tmsα • w = 0.

Similarly, one can show that eα,sα • w = 0 for any α ∈ R+
s . Thus, ψ(M) = 0.

When g is of type A2`, the submodule M is generated by the following elements

{eα,4sα · wλ̄ | α = αi,2`+1−i, 1 ≤ i < `} ∪ {eα,2s2α+1 · wλ̄ | α = αi,`, 1 ≤ i ≤ `}
∪ {eα,2sα · wλ̄ | α = αi, j or αi,2`− j, 1 ≤ i < `}.

When α , αi,`, the relations can be checked similarly as in (27). Now, suppose α = αi,`,
and let s = s2α = c(λ, α∨ + τ(α∨)). We have

(eα,2s+1) • w = (eα ⊗ t2s+1 + (−1)i+`+seτ(α) ⊗ t2s+1) • w = 0,

since (λ, τp(α∨)) − (2s + 1) = (λ, τp(α∨)) − 2c(λ, α∨ + τ(α∨)) − 1 < 0 for p = 0, or 1.
Thus, in this case we also have ψ(M) = 0.

Now, the map ψ induces a surjective morphism

ψ̄ : Dσ(c, λ̄) →̃ Wσ(cι(λ̄))/M � Dσ(c, ~λ)0.

By the dimension inequality (23), ψ̄ must be an isomorphism. �

Theorem 3.13. Given λ1, . . . , λn ∈ X∗(T )+, let λ̄ be the image of
∑

i λi in X∗(T )+
σ.

(1) For any ~p ∈ An such that pm
i , pm

j , 0 for any i , j, there is an isomorphism of
g[t]σ-modules

Dσ(c, ~λ)~p '
n⊗

i=1

D(c, λi)pi .

(2) The twisted global Demazure module Dσ(c, ~λ) is free overAσ(c, ~λ).

Proof. By Theorem 3.12, we have dim
(
Dσ(c, ~λ)0

)
= dim

(
Dσ(c, λ̄)

)
. Combining with

(22), we get

(28) dim
(
Dσ(c, λ̄)

)
≥ dim

(
Dσ(c, ~λ)~p

)
for any ~p ∈ An. It follows that all three terms in the inequality (21) are equal. Hence the
surjection (20) is an isomorphism. This proves part (1).
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From part (1), we get dim
(
Dσ(c, ~λ)~p

)
= dim

(
Dσ(c, λ̄)

)
for any ~p such that pm

i , pm
j ,

0,∀i , j. By the semicontinuity of the function ϕ(~p) := dim
(
Dσ(c, ~λ)~p

)
, we get

dim
(
Dσ(c, ~λ)~p

)
≥ dim

(
Dσ(c, λ̄)

)
for any ~p ∈ An. Combining with (28), this shows that ϕ(~p) is a constant function. Thus,
Dσ(c, ~λ) is a graded projective Aσ(c, ~λ)-module. Using the graded Nakayama lemma
(cf. [SP, Tag 0EKB]), Dσ(c, ~λ) is a freeAσ(c, ~λ)-module. �

Remark 3.14. In Section 6, we will use the geometry of Beilinson-Drinfeld Schubert
varieties to fully describe the fibers of Dσ(c, ~λ) at any point in An, see Corollary 6.7.

We now introduce some notations, which will be frequently used in this paper.

Definition 3.15. Denote by [n] the finite set {1, 2, . . . , n}. Let ξ = (I1, I2, . . . , Ik) be a
partition of [n]. We define An

ξ to be the following open subset in An,

(29) An
ξ = {~p ∈ An | pm

i , pm
j , ∀i ∈ Iα, j ∈ Iβ, α , β}.

For any subset I = {i1, . . . , is} ⊆ [n], set AI = SpecC[zi1 , . . . , zis].

Example 3.16. When ξ = ([n]) is the trivial partition of [n], we have An
ξ = An; when

ξ0 = ({1}, {2}, . . . , {n}) is the finest partition, we have An
ξ0

= {~p ∈ An | p̄i , p̄ j, ∀i , j}.

Given a partition ξ = (I1, I2, . . . , Ik) of [n], for any 1 ≤ j ≤ k, we label elements in
I j = { j1, . . . , js} by the natural order of integers, i.e. j1 < j2 < · · · < js, where s is the
cardinality of I j. For any point ~p = (p1, . . . , pn) ∈ An

ξ and ~λ ∈ (X∗(T )+)n, we make the
following notations:

~pI j = (p j1 , . . . , p js) ∈ A
I j ,(30)

~λI j = (λ j1 , . . . , λ js),(31)

wI j = v j1[1] ⊗ · · · ⊗ v js[1] ∈
s⊗

i=1

D(c, λ ji)[z ji].

For simplicity, we denote by wI j[1] the generator wI j ⊗ 1 of

Dσ(c, ~λI j)AI j := Dσ(c, ~λI j) ⊗Aσ(c,~λI j )
C[AI j].

Proposition 3.17. (1) For any λ ∈ X∗(T )+, there is an embedding of g[t]σ-modules:

φ : Dσ(c, λ)A1 ↪→ D(c, λ)[z]

defined by (u •w)[ f ] 7→ u • (v[ f ]) for any u ∈ g[t]σ and f ∈ C[z], where w := v[1]
and v is the cyclic generator of D(c, λ) as in (10).

(2) Let ξ = (I, J) be a partition of [n]. There is an embedding of g[t]σ-modules:

(32) ψξ : Dσ(c, ~λ)An ⊗C[An] C[An
ξ] ↪→

(
Dσ(c, ~λI)AI ⊗ Dσ(c, ~λJ)AJ

)
⊗C[AI×AJ] C[An

ξ]

defined by (u • w)[ f ] ⊗ g 7→
(
(u • wI)[1] ⊗ (u • wJ)[1]

)
⊗ ( f g) for any u ∈ g[t]σ,

f ∈ C[An], and g ∈ C[An
ξ].
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Proof. (1) By Theorem 3.13, the map φ restricts to an isomorphism Dσ(c, λ)p ' D(c, λ)p

at any p ∈ A1\{0}. Thus, φ is injective.
(2) The map ψξ is well defined since u acts on w via Leibniz rule. Again, by Theorem

3.13, it restricts to an isomorphism

Dσ(c, ~λ)~p ' Dσ(c, ~λI)~pI ⊗ D
σ(c, ~λJ)~pJ ,

for any ~p such that pm
i , pm

j , 0,∀i , j. It follows that the map ψξ is injective. �

Remark 3.18. In Section 6, we will show the injective map ψξ is actually an isomor-
phism, see Theorem 6.5.

3.3. Twisted global Weyl modules. In this subsection, we identify the twisted global
Weyl module defined in Section 2.3 with the level one twisted global Demazure module.

Taking c = 1 in Theorem 3.12 and Theorem 3.13 and applying Corollary 2.7, we get
the following results.

Lemma 3.19. Given a tuple of weights ~µ = (µ1, . . . , µn) ∈ (P+)n, let W(µi) be the local
Weyl module defined in Section 2.3. Then

(1) The global module Rσ(W(µ1), . . . ,W(µn)) is a graded freeAσ(−~µ)-module.
(2) Let µ̄ ∈ P+

σ be the restriction of
∑
µi to hσ. There is a g[t]σ-isomorphism

Rσ(W(µ1), . . . ,W(µn)) ⊗Aσ(−~µ) C0 ' Wσ(µ̄). �

Proposition 3.20. Given any fundamental weights µ1, . . . , µn ∈ P+, let µ̄ ∈ P+
σ be the

restriction of
∑
µi to hσ. Then, there is a g[t]σ-isomorphism

Wσ(µ̄) ' Rσ(W(µ1), . . . ,W(µn)),

and an isomorphism Aσ(µ̄) ' Aσ(−~µ) of C-algebras, where ~µ = (µ1, . . . , µn).

Proof. Let wi ∈ W(µi) (resp. wµ̄ ∈ W
σ(µ̄)) denote the cyclic generator with weight −µi

(resp.−µ̄). Similar to the map (24), we have a surjective g[t]σ-morphism

(33) Wσ(µ̄)� Rσ(W(µ1), . . . ,W(µn)),

given by wµ̄ 7→ w := w1[1] ⊗ · · · ⊗ wn[1]. This induces a surjective map

(34) Aσ(µ̄) = U(h[t]σ)/Ann(wµ̄)� U(h[t]σ)/Ann(w) = Aσ(−~µ).

We claim this is an isomorphism. We only prove the case when g is of type A2`. The
other types can be checked similarly.

Recall Theorem 2.4 that Aσ(µ̄) is a a graded polynomial algebra in variables Ti,r of
grade 2r, where 1 ≤ i ≤ ` and 1 ≤ r ≤ µ̄(β∨i ). Set ni := µ̄(β∨i ). Then, n =

∑`
i=1 ni. In

view of [CIK, Section 5.2 and 5.3], Ti,r is the image of Pi,r ∈ U(h[t]σ) which is defined
as follows. For any 1 ≤ i ≤ `, set Pi,1 := hi,2, which is defined in (4). For r ≥ 2, we
inductively define

Pi,r :=
1
r

r∑
s=0

hi,2s+2Pi,r−s−1.

18



Now, we determine the image of Ti,r under the map (34) by examining the action of Pi,r

on w, where 1 ≤ i ≤ ` and 1 ≤ r ≤ ni. Suppose ni ≥ 1, otherwise Pi,r will not appear.
From [CIK, Section 5.4], we have

(35) Pi,r • w =
∑

j1+···+ jn=r

(
Pi, j1 • w1[1]

)
⊗ · · · ⊗

(
Pi, jn • wn[1]

)
,

where jk ≥ 0 and by convention Pi,0 = 1. Observe that hi,2s+2 • wk[1] = µk(hi +

(−1)s+1h2`+1−i)wk[z2s+2
k ] is nonzero only when µk = ωi or ω2`+1−i. Without loss of gener-

ality, suppose µk = ωi for 1 ≤ k ≤ n′i , and µ = ω2`+1−i for n′i + 1 ≤ k ≤ ni, where n′i is
the number of ωi appearing in ~µ. Then, Pi, jk • wk[1] = 0 whenever jk > 1, or k > r and
jk ≥ 1. Thus, the equation (35) becomes

(36) Pi,r • w =
∑

j1+···+ jni =r

(−1)a(w1[z2 j1
1 ] ⊗ · · · ⊗ wni[z

2 jni
ni ] ⊗ wni+1[1] ⊗ · · · ⊗ wn[1]

)
,

where 0 ≤ jk ≤ 1 and a = jn′i+1 + · · · + jni .
Recall the embedding Aσ(−~µ) ↪→ C[z1, . . . , zn] defined in (16). Composing it with

the map (34), we get a morphism

(37) Aσ(µ̄)→ C[z1, . . . , zn].

Given 1 ≤ i ≤ `, we define Ki = {1 ≤ k ≤ n | µk = ωi or ω2`+1−i}, which is of cardinality
ni. The symmetric group S ni permutes Ki. Let S be the Young subgroup S n1 × · · · × S n`

of S n. For any 1 ≤ k ≤ n, set δk = 1 if µk = ωi; δk =
√
−1 if µk = ω2`+1−i. We define the

following polynomial

fi,r :=
∑

k∈Ki,
∑ jk=r

(δkzk)2 jk ∈ C
[
(δ1z1)2, . . . , (δnzn)2]S

.

From the computation (36), the map (37) sends Ti,r to fi,r. Note that { fi,r | 1 ≤ i ≤
`, 1 ≤ r ≤ ni} is exactly a set of algebraically independent generators of the algebra
C
[
(δ1z1)2, . . . , (δnzn)2]S . We conclude that (37) is an embedding. It follows that the

surjective map (34) is an isomorphism.
Now, both sides of (33) are graded free Aσ(µ̄) ' Aσ(−~µ)-modules, see Theorem 2.4

and Lemma 3.19. Moreover, their fibers at 0 are the twisted local Weyl module Wσ(µ̄).
By comparing their graded characters (as graded hσ-modules), we conclude that (33) is
an isomorphism. �

Theorem 3.21. Given fundamental coweights λ1, . . . , λn ∈ X∗(T )+ with λ̄ being the im-
age of

∑
λi in X∗(T )+

σ, we have an g[t]σ-isomorphism

Dσ(1, ~λ) 'Wσ(ι(λ̄)),

and an isomorphism of C-algebrasAσ(1, ~λ) ' Aσ(ι(λ̄)).

Proof. It directly follows from Theorem 3.20 and Corollary 2.7. �

Remark 3.22. From part (1) of Theorem 2.4 and Theorem 3.21, we are able to determine
the algebraAσ(c, ~λ) when c = 1 and ~λ is a collection of fundamental coweights.
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4. Beilinson-Drinfeld Grassmannians of parahoric Bruhat-Tits group schemes

In this section, we define Beilinson-Drinfeld Schubert varieties of certain parahoric
Bruhat-Tits group schemes, and we prove their flatness over the base.

4.1. Beilinson-Drinfeld Grassmannian. Let G be a reductive group over C. Let Γ be
a finite group acting on G which preserves a maximal torus T . Let C be an irreducible
smooth algebraic curve over C with a faithful Γ-action. Denote by C̄ the quotient curve
C/Γ. Let π : C → C̄ be the quotient map, and denote by p̄ := π(p) the image of a point
p ∈ C. For each point p ∈ C, denote by Γp the stabilizer of p in Γ.

We define GC̄ to be the Γ-fixed point subgroup scheme ResC/C̄
(
G × C

)Γ of the Weil
restriction ResC/C̄

(
G ×C

)
. We will simply denote it by G if there is no confusion. Now,

we prove an étale base change property of G which will be used in Section 4.4.

Lemma 4.1. Let C1, C2 be irreducible smooth curves over C with a faithful Γ-actions.
Let f : C1 → C2 be a Γ-equivariant étale morphism such that Γp = Γ f (q) for any p ∈ C1.
Then the induced map f̄ : C̄1 → C̄2 is also étale, and there is an isomorphism

(38) C1 ' C2 ×C̄2 C̄1.

Proof. We can assume C1, C2 are affine curves. We denote by πi : Ci → C̄i the projection
maps for i = 1, 2. Let K1, K2 be their function fields, and O1, O2 be the coordinate rings.
Then we have a diagram of field extensions

K1 K2
oo

Kσ
1

OO

Kσ
2

oo

OO
.

Observing that K2 ∩ Kσ
1 = Kσ

2 , we have

[K2Kσ
1 : Kσ

2 ] = [K2Kσ
1 : K2][K2 : Kσ

2 ] = [Kσ
1 : Kσ

2 ][K2 : Kσ
2 ] = [K1 : Kσ

2 ].

Thus, K1 = K2Kσ
1 . Since K1/Kσ

1 is finite, we have K1 = Kσ
1 (θ) for some θ ∈ K1, and

f (θ) = 0 for some polynomial f over Kσ
1 . By multiplying elements in Oσ

1 , all coefficients
of f can be made to be in Oσ

1 . Moreover, by modifying θ, we can further assume f is
monic and f (θ) = 0. Thus, θ is integral over Oσ

1 . It follows that θ is integral over O1.
Since O1 is integrally closed in K1, we must have θ ∈ O1. Hence, K1 ' Kσ

1 ⊗Oσ
1

O1,
since O1 is a free Oσ

1 -module of rank [K1 : Kσ
1 ]. Similarly, we have K2 = Kσ

2 ⊗Oσ
2

O2.
Therefore, we have

O2 ⊗Oσ
2

Kσ
1 ' O2 ⊗Oσ

2
Oσ

1 ⊗Oσ
1

Kσ
1 ' K1 ' O1 ⊗Oσ

1
Kσ

1 .

By assumption, Γp = Γ f (p) for any p ∈ C1. The map f induces an isomorphism
Dp ' D f (p) of formal discs around p and f (p), for any p ∈ C1. Thus, f induces an étale
map f̄ : C̄1 → C̄2. It follows that C2×C̄2C̄1 is smooth. For any point (p, q) ∈ C2×C̄2C̄1, we
have π2(p) = f̄ (q). We pick a point x in C1 such that π1(x) = q. Then π2( f (x)) = π2(p).
Thus, f (x) = γ(p) for some γ ∈ Γ. Set x′ = γ−1(x). Then, f (x′) = p and π1(x′) = q.
This shows the surjectivity of the map C1 → C2 ×C̄2 C̄1. Since C2 ×C̄2 C̄1 is reduced and
O2 ⊗Oσ

2
Kσ

1 ' K1, the curve C2 ×C̄2 C̄1 is integral and has the same function field as C1.
Therefore, we have an isomorphism C1 ' C2 ×C̄2 C̄1. �
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Proposition 4.2. Under the same setup as in Lemma 4.1 and let Γ act on G. We have an
isomorphism of group schemes over C̄1

GC̄1 ' GC̄2 ×C̄2 C̄1.

Proof. Given any scheme ϕ : S → C̄1 over C̄1, by definitionGC̄1(S ) = MapΓ(C1×C̄1 S ,G)
consists of Γ-equivariant morphisms from C1 ×C̄1 S to G. On the other hand, (GC̄2 ×C̄2

C̄1)(S ) consists of Γ-equivariant morphisms from C2 ×C̄2 S to G, where S is regarded as
a scheme over C̄2 via f ◦ ϕ : S → C̄2. By Lemma 4.1, we have an isomorphism

C1 ×C̄1 S ' (C2 ×C̄2 C̄1) ×C̄1 S ' C2 ×C̄2 S .

Thus, GC̄1(S ) ' (GC̄2 ×C̄2 C̄1)(S ) for any scheme S over C̄1. �

For any C-algebra R, and any morphism p : Spec(R) → C, we denote by ∆p ⊆

C × Spec(R) the graph of p. Let CR := C × Spec(R). We denote by ∆̂p the formal
completion of CR along ∆p, and by ∆̂∗p the punctured formal completion along ∆p.

We recall the Beilinson-Drinfeld Grassmannians of general group schemes.

Definition 4.3. Let X be a smooth algebraic curve over C. Let G be a smooth affine
group scheme over X. The Beilinson-Drinfeld Grassmannian GrG,Cn and the jet group
scheme L+GXn over Xn are defined as follows: for any C-algebra R, define

GrG,Xn(R) :=
{
(p1, . . . , pn,F , β)

∣∣∣∣ pi ∈ X(R),F a G-torsor on XR, β : F |XR\∪∆pi
' F̊ |XR\∪∆pi

}
and

L+GXn(R) :=
{
(p1, . . . , pn, η)

∣∣∣∣ pi ∈ X(R), η : F̊ |
∪̂∆pi
' F̊ |

∪̂∆pi

}
,

where F̊ is the trivial G-torsor on XR, and ∪̂∆pi is the completion of XR along ∪∆pi .

There is a left L+GXn-action on GrG,Xn given by the following map

L+GXn × GrG,Xn → GrG,Xn(
(~p, η), (~p,F , β)

)
7→

(
~p,F ′, β′

)
,

where by Beauville-Laszlo’s Lemma, there exists a unique G-torsor F ′ (up to a unique
isomorphism) with isomorphisms δ : F ′|

∪̂∆pi
' F |

∪̂∆pi
and β′ : F ′|CR\∪∆pi

' F̊ |CR\∪∆pi

such that β′ ◦ δ−1|
∪̂∆pi

∗ = η ◦ β|
∪̂∆pi

∗ . Here ∪̂∆pi

∗

:=
(
∪̂∆pi

)
∩

(
XR \ ∪∆pi

)
.

Proposition 4.4. Let f : X → Y be an étale morphism of irreducible smooth curves.
Let GY be a smooth affine group scheme over Y, and let GX = GY ×Y X. Let Z =

{(x1, . . . , xn) ∈ Xn | xi , x j, f (xi) = f (x j) for some i , j}. We have an isomorphism

GrGX ,Xn\Z ' GrGY ,Yn ×Yn (Xn \ Z).

Proof. Let S be a scheme over C. When n = 2, an S -point (x1, x2) ∈ (X2 \Z)(S ) is a pair
of points x1, x2 ∈ X(S ) such that the equalizer Eq(x1, x2) of x1, x2 : S → X is naturally
isomorphic to the equalizer Eq(y1, y2) of y1, y2 : S → Y , where yi = f ◦ xi ∈ Y(S ).
We shall show fS = f × id : XS = X × S → Y × S = YS induces an isomorphism
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̂Γx1 ∪ Γx2 '
̂Γy1 ∪ Γy2 . Firstly, fS is étale and restricts to isomorphisms Γx1 ' Γy1 and

Γx2 ' Γy2 . Since Eq(x1, x2) ' Eq(y1, y2), we have an isomorphism

Γx1 ×XS Γx2 ' Eq(x1 × id, x2 × id) ' Eq(y1 × id, y2 × id) ' Γy1 ×YS Γy2 .

Thus, fS induces an isomorphism Γx1 ∪ Γx2 ' Γy1 ∪ Γy2 . Recall that ̂Γx1 ∪ Γx2(R) ' {φ :
R → X × S | φ ◦ α ∈ (Γx1 ∪ Γx2)(Rred)}, where α : Rred → R, cf. [SP, Tag 0GBA]. Thus,
we have a map ̂Γx1 ∪ Γx2(R) → ̂Γy1 ∪ Γy2(R) given by φ 7→ fS ◦ φ. Since fS is étale,
conversely, for any ψ ∈ ̂Γy1 ∪ Γy2(R), we have a unique lifting ψ̃ ∈ ̂Γx1 ∪ Γx2(R), i.e.

(39) Rred
//

α

��

X × S

f̃
��

R
ψ
//

∃ ψ̃
;;

Y × S

.

This gives rise to isomorphisms

(40) ̂Γx1 ∪ Γx2 '
̂Γy1 ∪ Γy2 , ̂Γx1 ∪ Γx2

∗
' ̂Γy1 ∪ Γy2

∗

where ∗ represents the punctured formal completion. Let F be a GX-torsor over XS with
a trivialization β : F |XS \(Γx1∪Γx2 ) ' F

0|XS \(Γx1∪Γx2 ). By Beaville-Laszlo lemma, this is
equivalent to the data consisting of a torsor F ′ over ̂Γx1 ∪ Γx2 and a trivialization β′ over
̂Γx1 ∪ Γx2

∗
. By isomorphisms in (40), we get a torsor P over ̂Γy1 ∪ Γy2 and a trivialization

η over ̂Γy1 ∪ Γy2

∗
. Again, this is equivalent to the data of a GY-torsor over YS with a

trivialization over YS \ (Γy1 ∪ Γy2), which will still be denoted by P and η. Thus, we get
an isomorphism

GrGX ,X2\Z → GrGY ,Y2 ×X2 (X2 \ Z),
given by (x1, x2,F , β) 7→

(
(y1, y2,P, η), (x1, x2)

)
.

When n ≥ 3, by induction on n, we assume that fS induces an isomorphism

Γx1 ∪ · · · ∪ Γxn−1 ' Γy1 ∪ · · · ∪ Γyn−1 .

Then, (
⋃n−1

i=1 Γxi) ×XS Γxn '
⋃n−1

i=1 (Γxi ×XS Γxn) '
⋃n−1

i=1 (Γyi ×YS Γyn) ' (
⋃n−1

i=1 Γyi) ×YS Γyn .
Thus, fS induces an isomorphism Γx1 ∪ · · · ∪Γxn ' Γy1 ∪ · · · ∪Γyn . By the same argument
as in the case when n = 2, we have isomorphisms

⋃̂
i Γxi '

⋃̂
i Γyi ,

⋃̂
i Γxi

∗
'

⋃̂
i Γyi

∗
, and

GrGX ,Xn\Z ' GrGY ,Yn ×Yn (Xn \ Z). �

Remark 4.5. When n = 1, Z is the empty set. In this case, Proposition 4.4 is exactly [Zh2,
Lemma 3.2]. When n ≥ 2, a statement was formulated incorrectly in [Zh3, Prop.3.1.20].

In the following sections, we will only consider the parahoric Bruhat-Tits group
scheme GC̄ = ResC/C̄

(
G ×C

)Γ over C̄.

Definition 4.6. We denote by GrGC̄ ,Cn := GrGC̄ ,C̄n ×C̄n Cn the base change of BD grass-
mannian of GC̄ to Cn. More precisely, for every C-algebra R, we define

GrGC̄ ,Cn(R) :=
{
(p1, . . . , pn,F , β)

∣∣∣∣ pi ∈ C(R),F a G-torsor on C̄R, β : F |C̄R\∪∆p̄i
' F̊ |C̄R\∪∆p̄i

}
If there is no confusion, we will simply use the notation GrG,Cn .
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The BD Grassmannian GrG,Cn is an ind-scheme, ind-of-finite type and ind-projective
over Cn, see [Zh3, Remark 3.1.4]. The following result is a consequence of Proposition
4.4.

Corollary 4.7. (1) Let X,Y be irreducible smooth curves with faithful Γ-actions.
Suppose f : X → Y is an Γ-equivariant étale morphism such that Γx = Γ f (x) for
any x ∈ X. Let Z = {(x1, . . . , xn) ∈ Xn | x̄i , x̄ j, f (xi) = f (x j) for some i , j}. We
have an isomorphism

GrGX̄ ,Xn\Z ' GrGȲ ,Yn ×Yn (Xn \ Z).

(2) Let C be an irreducible smooth curve with a faithful Γ-action such that all points
are unramified. Let Z = {(x1, . . . , xn) ∈ Cn | xi , x j, x̄i = x̄ j for some i , j}.
Then,

GrGC ,Cn\Z ' GrGC̄ ,C̄n ×C̄n (Cn \ Z) = GrGC̄ ,Cn\Z,

where GC is the constant group scheme over C.

Proof. For part (1), by Lemma 4.1 and Proposition 4.2, f induces an étale morphism
f̄ : X̄ → Ȳ and there is an isomorphism GX̄ ' GȲ ×Ȳ X̄. Let Z̄ = {(p1, . . . , pn) ∈ X̄n | pi ,
p j, f̄ (pi) = f̄ (p j) for some i , j}. Then (x1, . . . , xn) ∈ Z if and only if (x̄1, . . . , x̄n) ∈ Z̄.
By Proposition 4.4, we have an isomorphism

(41) GrGX̄ ,X̄n\Z̄ ' GrGȲ ,Ȳn ×Ȳn (X̄n \ Z̄).

Note that there are isomorphisms

GrGX̄ ,Xn\Z = GrGX̄ ,X̄n ×X̄n (Xn \ Z) ' GrGX̄ ,X̄n ×X̄n (X̄n \ Z̄) ×X̄n\Z̄ (Xn \ Z)

GrGȲ ,Yn ×Yn (Xn \ Z) = GrGȲ ,Ȳn ×Ȳn (Xn \ Z) ' GrGȲ ,Ȳn ×Ȳn (X̄n \ Z̄) ×X̄n\Z̄ (Xn \ Z).

By a base change to Xn \ Z, the isomophism (41) becomes

GrGX̄ ,Xn\Z ' GrGȲ ,Yn ×Yn (Xn \ Z).

For part (2), consider the étale morphism π : C → C̄. We have an isomorphism
GC ' GC̄ ×C̄ C. By Proposition 4.4, we get an isomorphism

GrGC ,Cn\Z ' GrGC̄ ,C̄n ×C̄n (Cn \ Z). �

Let ξ = (I1, . . . , Ik) be a partition of [n]. Similar to Definition 3.15, we define Cn
ξ to be

the following open subset in Cn,

Cn
ξ := {(p1, . . . , pn) ∈ Cn | p̄i , p̄ j, ∀i ∈ Iα, j ∈ Jβ, α , β}.

Then, GrG,Cn and L+GCn have a factorization property over Cn
ξ as follows

GrG,Cn
ξ

:= GrG,Cn ×Cn Cn
ξ '

( k∏
j=1

Gr
G,CI j

)
×Cn Cn

ξ ,(42)

L+GCn
ξ

:= L+GCn ×Cn Cn
ξ '

( k∏
j=1

L+GCI j

)
×Cn Cn

ξ .(43)
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4.2. Beilinson-Drinfeld Schubert varieties. With the same setup as in Section 4.1, we
define a Γ-action on Cn+1 = Cn×C by letting Γ act on the last copy of C. More precisely,
this action is given by

(44) γ(p1, . . . , pn, pn+1) := (p1, . . . , pn, γpn+1),

for any γ ∈ Γ, (p1, . . . , pn, pn+1) ∈ Cn+1.
Let T be a Γ-stable maximal torus in G. Given any ~λ = (λ1, λ2, . . . , λn) with λi ∈

X∗(T ), we shall construct a Γ-equivariant tensor functor F from the category Rep(T )
of finite dimensional representations of T to the category Cohlf(Cn+1) of locally free
sheaves of finite rank over Cn+1. For each character ν of T , we define

(45) F(Cν) := OCn+1

( n∑
i=1

∑
γ∈Γ

〈γ(λi), ν〉∆γ,i

)
,

where ∆γ,i := {(a1, a2, . . . , an, an+1) | an+1 = γai} is a divisor in Cn+1.

Lemma 4.8. This assignment (45) extends to a tensor functor F : Rep(G)→ Cohlf(Cn+1)
which is Γ-equivariant in the sense of Definition A.4. As a consequence, by Theorem
A.13, this functor F gives a (Γ,T )-torsor F over Cn+1.

Proof. For each η ∈ Γ, denote by ηT : T → T the map sending h to η(h). Let η∗T :
Rep(T ) → Rep(T ) be the pullback functor induced from ηT . Define the Γ-action on
X∗(T ) by

η(ν)(t) := ν(η−1(t)),
where η ∈ Γ, ν ∈ X∗(T ), and t ∈ T . Then, we have η∗T (Cν) = Cη−1(ν), and

(46) Fη∗T (Cν) = OCn+1

( n∑
i=1

∑
γ∈Γ

〈γ(λi), η−1(ν)〉∆γ,i

)
= OCn+1

( n∑
i=1

∑
γ∈Γ

〈ηγ(λi), ν〉∆γ,i

)
,

for any η ∈ Γ and ν ∈ X∗(T ).
Let Y := Cn+1 be the variety with the Γ-action given in (44). For each η ∈ Γ, denote

by ηY : Y → Y the map sending y to η(y). Let η∗Y : Cohlf(Y)→ Cohlf(Y) be the pullback
functor induced from ηY . Then, there is an isomorphism

(47) η∗Y F(Cν) →̃ OCn+1

( n∑
i=1

∑
γ∈Γ

〈γ(λi), ν〉∆η−1γ,i

)
= OCn+1

( n∑
i=1

∑
γ∈Γ

〈ηγ(λi), ν〉∆γ,i

)
.

Combining (46) and (47), for each η ∈ Γ, we have an isomorphism between tensor
functors θη : Fη∗T → η∗Y F. One can check that F together with the collection of iso-
morphisms {θη}η∈Γ satisfy the axioms of Definition A.4. This extends to a Γ-equivariant
functor from Rep(T ) to Cohlf(Cn+1). �

For any C-scheme X with a Γ-action, we denote by F̊X := X × G the trivial G-torsor
over X with a Γ-action acting diagonally on X × G, and call it the trivial (Γ,G)-torsor
over X. For the general definition of (Γ,G)-torsors, see Definition A.1.

Definition 4.9. A (Γ,G)-torsor P over a scheme X is called locally trivial if for any
x ∈ X, there exists an open neighborhood Ux of x such that
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(1) Ux is stable under the stabilizer Γx of x,
(2) P|Ux is isomorphic to the trivial (Γx,G)-torsor F̊Ux over Ux.

Note that not every (Γ,G)-torsor is locally trivial, and in fact this is determined by
local types of (Γ,G)-torsors at ramified points, see [DH].

Lemma 4.10. The (Γ,T )-torsor F constructed in Lemma 4.8 is locally trivial over Cn+1.

Proof. Let x be any point in Cn+1. We will find a Γ-stable neighborhood Ux of x in Cn

such that F is trivializable over Ux as (Γ,T )-torsors.
Let Γx be the stabilizer of x in Γ. Given 1 ≤ i ≤ n, suppose that x ∈ ∆ηi,i for some

ηi ∈ Γ. In this case, we observe that x ∈ ∆γ,i if and only if γ ∈ ηiΓx. Hence there exists
an open neighborhood Ui of x with a regular function fi over Ui such that fi defines
∆ηi,i ∩ Ui. Moreover, we can shrink Ui so that Ui ∩ ∆γ,i = ∅ for any γ < ηiΓx. For the
given i, if x < ∆η,i for any η ∈ Γ, by convention we take ηi = e, Ui = Cn+1 \

⋃
γ∈Γ ∆γ,i,

and fi = 1. Combining the above constructions, for any x ∈ Cn+1, we have the following
open neighborhood Ux of x in Cn+1,

Ux :=
n⋂

i=1

⋂
γ∈Γx

γUi,

and a collection of functions { fi}i=1,··· ,n defined over Ux. Clearly Ux is Γx-stable. More-
over, for any 1 ≤ i ≤ n and γ ∈ ηiΓx, the regular function γη−1

i fi defines the divisor
∆γ,i = γη−1

i ∆ηi,i over Ux.
Now, for each character ν of T , denote by Dν the divisor

∑n
i=1

∑
γ∈Γ〈γ(λi), ν〉∆γ,i. Set

fν =

n∏
i=1

∏
γ∈ηiΓx

(γη−1
i fi)〈γ(λi),ν〉.

Then fν defines the divisor Dν locally in Ux, since Ux ∩ ∆γ,i = ∅ for any γ < ηiΓx.
For any characters ν, ω ∈ X∗(T ), we have fν · fω = fν+ω. Consider the tensor functor
F0

x : Rep(T )→ Cohlf(Ux) sending Cν to OUx ⊗C Cν. It is easy to see F0
x is Γx-equivariant

and this gives a trivial (Γx,T )-torsor F̊Ux over Ux. Moreover, there is an isomorphism

φν : F|Ux(Cν) = OUx

( n∑
i=1

∑
γ∈Γ

〈γ(λi), ν〉∆γ,i

)
→̃ OUx ' F0

x(Cν),

where the first isomorphism is given by multiplying by fν. One can check that these
isomorphisms {φν}ν∈X∗(T ) respect the tensor structure since O(Dν) ⊗ O(Dω) ' O(Dν+ω).
Thus, there is an isomorphism φ : F|Ux → F0

x between tensor functors. By Theorem
A.13, φ induces an isomorphism φ̃ : F |Ux → F̊Ux between (Γx,T )-torsors over Ux.
Therefore, F is locally trivial following Definition 4.9. �

Set U = Cn+1 \
⋃

γ,i ∆γ,i. Let F0 : Rep(T ) → Cohlf(U) be the tensor functor sending
Cν to OU ⊗C Cν. Then, F0 is Γ-equivariant, and it gives a trivial (Γ,T )-torsor F̊U over U.
For each ν ∈ X∗(T ), there is a natural isomorphism

(48) ην : F|U(Cν) →̃ F0(Cν).
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Then, {ην}ν∈T ∗ defines an isomorphism η : F|U →̃ F0. By Theorem A.13, this is equiva-
lent to an isomorphism F |U →̃ F̊U , which will still be denoted by η.

Let FG := F ×T G be the (Γ,G)-torsor over Cn+1 induced from F . Then, η in-
duces a trivialization ηG of FG outside

⋃
γ,i ∆γ,i. By Lemma 4.10, FG is a locally triv-

ial (Γ,G)-torsor. We define a morphism π : Cn+1 → Cn × C̄ by (p1, . . . , pn, pn+1) 7→
(p1, . . . pn, p̄n+1). From the local triviality of FG, π∗(FG)Γ is a G-torsor over Cn × C̄, de-
noted by F̄ . Moreover, ηG induces a trivialization η̄ of F̄ outside π

(⋃
γ,i ∆γ,i

)
=

⋃
i ∆P̄i ,

where Pi : Cn → C is the projection map sending ~p to pi.
We construct a section s~λ : Cn → GrG,Cn as follows:

(49) s~λ =
(
P1, . . . , Pn, F̄ , η̄

)
,

Definition 4.11. The Beilinson-Drinfeld Schubert variety Gr
~λ

G,Cn of G over Cn is defined

to be the schematic image of s~λ : L+GCn → GrG,Cn . When n = 1, Gr
λ

G,C is also called a
global Schubert variety of G.

Proposition 4.12. Given any ~λ ∈ (X∗(T )+)n and any partition ξ = (I1, · · · , Ik) of [n], the

BD Schubert variety Gr
~λ

G,Cn has a factorization property over Cn
ξ , i.e.

(50) Gr
~λ

G,Cn
ξ
'

( k∏
j=1

Gr
~λI j

G,CI j

)
×Cn Cn

ξ ,

where ~λI j is defined in (31).

Proof. It suffices to prove the case when ξ = (I, J). The map (42) can be given explicitly
as follows:

Φ : GrG,Cn
ξ
'

(
GrG,CI × GrG,CJ

)
|Cn

ξ
,(51)

(~p,F , β) 7→
(
(~pI ,FI , βI), (~pJ,FJ, βJ)

)
where by Beauville-Laszlo’s Lemma, there exists a G-torsor FI with isomorphisms δI :
FI | ̂∪i∈I∆p̄i

' F ̂∪i∈I∆p̄i
and βI : FI |C̄R\∪i∈I∆p̄i

→ F̊ |C̄R\∪i∈I∆p̄i
such that βI ◦ δ

−1
I | ̂∪i∈I∆ p̄i

∗ = β| ̂∪i∈I∆p̄i
∗;

FJ, βJ are defined similarly.
Let s~λI

: CI → GrG,CI (resp. s~λJ
) be the section defined by (49). We shall show there

is an equality of sections over Cn
ξ

(52) Φ ◦ s~λ|Cn
ξ

= s~λI
× s~λJ

|Cn
ξ
.

Recall the definition (49) of F̄ := π∗(F ×T G)Γ and η̄, where F is a (Γ,T )-torsor defined
via the functor F in (45), and η is the map induced from the natural maps ην in (48).

Denote by DI,ν the divisor
(∑

i∈I
∑
γ∈Γ〈γ(λi), ν〉∆γ,i

)
∩

(
Cn
ξ × C

)
in Cn

ξ × C, and define
DJ,ν similarly. One may check that DI,ν ∩ DJ,ν = ∅ for any ν. Let UI ⊆ Cn

ξ × C be a
neighborhood of DI :=

(∑
i∈I

∑
γ∈Γ ∆γ,i

)
∩

(
Cn
ξ ×C

)
such that UI ∩ DJ,ν = ∅ for all ν, and

let prI : Cn
ξ ×C → CI ×C be the projection map, then

OCn+1

( n∑
i=1

∑
γ∈Γ

〈γ(λi), ν〉∆γ,i

)∣∣∣∣
UI
' OUI (DI,ν) ' pr∗I

(
OCI×C

(
prI(DI,ν)

))∣∣∣
UI
.
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By the definition of map (51), we have an equality of sections over Cn
ξ

Φ ◦ s~λ|Cn
ξ

=
(
({Pi}i∈I , F̄I , η̄I), ({P j} j∈J, F̄J, η̄J)

)
|Cn

ξ
,

where F̄I = π∗(FI ×
T G)Γ is a G-torsor, FI is the (Γ,T )-torsor constructed via the functor

FI : Rep(T ) → Cohlf(CI × C) given by FI(Cν) = OCI×C
(
prI(DI,ν)

)
, and ηI is the triv-

ialization induced from the natural maps ηI,ν : OCI×C\prI (DI )
(
prI(DI,ν)

)
→̃ OCI×C\prI (DI ),

ν ∈ X∗(T ). By definition (49), ({Pi} j∈I , F̄I , η̄I) is exactly the section s~λI
: CI → GrG,CI .

Similarly, ({P j}i∈J, F̄J, η̄J) = s~λJ
. This shows that Φ ◦ s~λ|Cn

ξ
= s~λI

× s~λJ
|Cn

ξ
. We also notice

that the map Φ is compatible with the factorization of L+GCn . It follows that the map

(51) gives an isomorphism Φ : Gr
~λ

G,Cn
ξ
'

(
Gr

~λI

G,CI × Gr
~λJ

G,CJ

)∣∣∣
Cn
ξ

. �

4.3. Convolution Grassmannian. With the same setup as in Section 4.2, we define the
convolution Grassmannian ConvG,Cn as follows: for each C-algebra R,

ConvG,Cn(R) :=


(
~p, (Fi, βi)n

i=1
) ∣∣∣∣∣∣∣∣∣∣
~p = (p1, . . . , pn) ∈ Cn(R),

F1, . . . ,Fn are G-torsors on C̄,

βi : Fi|C̄R\∆p̄i
' Fi−1|C̄R\∆p̄i

,F0 := F̊ .

 .
There is a left L+GCn-action on ConvG,Cn as follows. Given (~p, ζ) ∈ L+GCn(R) and(
~p, (Fi, βi)n

i=1
)
∈ ConvG,Cn(R), by Beauville-Laszlo’s Lemma, there exists a G-torsor F ′i

with isomorphisms δi : F ′i |D̂i
' Fi|D̂i

and αi : F ′i |C̄R\Di ' F̊ |C̄R\Di such that αi ◦ δ
−1
i |D̂∗i

=

ζ ◦β1 ◦ · · · ◦βi|D̂∗i
, where D̂i is the formal completion of C̄R along the divisor Di :=

⋃
1≤ j≤i

∆ p̄ j

and D̂∗i := D̂i \ Di. Thus, we get the following map

L+GCn × ConvG,Cn → ConvG,Cn(
(~p, ζ),

(
~p, (Fi, βi)n

i=1
))
7→

(
~p, (F ′i , β

′
i)

n
i=1

)
,

where β′i : F ′i |C̄R\∆p̄i
→ F ′i−1|C̄R\∆p̄i

is given by β′i =

δ−1
i−1 ◦ βi ◦ δi|D̂i−1

α−1
i−1 ◦ αi|C̄R\Di

.

Moreover, there is a convolution map

(53) m : ConvG,Cn → GrG,Cn ,

sending
(
~p, (Fi, βi)n

i=1
)

to
(
~p,Fn, β1 ◦ · · · ◦ βn

)
. One can check that this map is L+GCn-

equivariant. Let ξ0 = ({1}, {2}, . . . , {n}) be the finest partition of [n]. We have the follow-
ing isomorphism over Cn

ξ0
= {~p ∈ Cn | p̄i , p̄ j, ∀i , j},

(54) ϕn : ConvG,Cn |Cn
ξ0

m
−→ GrG,Cn

ξ0
→̃

(
GrG,C × · · · × GrG,C

)
|Cn

ξ0
,

sending
(
~p, (Fi, βi)n

i=1
)

to
(
(pi,Fi|∆̂p̄i

, β1 ◦ · · · ◦ βi|∆̂∗p̄i
)n
i=1

)
.
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Following [Zh3, (3.1.22)], we define an L+GC-torsor E over ConvG,Cn−1 ×C by

E(R) :=


(
~p, (Fi, βi)n−1

i=1 , α
)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

~p = (p1, . . . , pn) ∈ Cn(R),

F1, . . . ,Fn−1 are G-torsors on C̄,

βi : Fi|C̄R\∆p̄i
' Fi−1|C̄R\∆p̄i

,F0 := F̊ ,

α : Fn−1|∆̂p̄n
→ F̊ |∆̂p̄n

.


.

Then, there is an isomorphism

f : E ×L+GC GrG,C →̃ ConvG,Cn ,(55) ((
~p, (Fi, βi)n−1

i=1 , α
)
, (F , β)

)
7→

(
~p, (Fi, βi)n

i=1
)

where by Beauville-Laszlo’s Lemma, there exists a G-torsor Fn with isomorphisms βn :
Fn|C̄R\∆p̄n

' Fn−1|C̄R\∆p̄n
and δ : Fn|∆p̄n

' F |∆p̄n
such that βn ◦ δ

−1|∆̂∗p̄n
= α−1 ◦ β|∆̂∗p̄n

.
Composing f with the map (54), we get an isomorphism over Cn

ξ0

(ϕ ◦ f )|Cn
ξ0

:
(
E ×L+GC GrG,C

)
|Cn

ξ0
→̃

(
GrG,C × · · · × GrG,C

)
|Cn

ξ0
(56) ((

~p, (Fi, βi)n−1
i=1 , α

)
, (F , β)

)
7→

((
pi,Fi|∆̂p̄i

, β1 ◦ · · · ◦ βi|∆̂∗p̄i

)n
i=1

)
.

By the constructions of Fn and βn above, we have

(pn,Fn|∆̂p̄n
, β1 ◦ · · · ◦ βn|∆̂∗p̄n

) = (pn,F |∆̂p̄n
, β1 ◦ · · · ◦ βn−1 ◦ α

−1 ◦ β|∆̂∗p̄n
).

Combining (56) and (54), we get an isomorphism over Cn
ξ0

ψ :
(
E ×L+GC GrG,C

)
|Cn

ξ0
→̃

(
ConvG,Cn−1 × GrG,C

)
|Cn

ξ0
(57) ((

~p, (Fi, βi)n−1
i=1 , α

)
, (F , β)

)
7→

((
(pi,Fi, βi)n−1

i=1
)
, (pn,F |∆̂p̄n

, ζ ◦ β|∆̂∗p̄n
)
)
,

where ζ = (β1 ◦ · · · ◦ βn−1)|∆̂p̄n
◦ α−1 ∈ L+Gpn .

In summary, we have the following commutative diagram

(58)
(
E ×L+GC GrG,C

)
|Cn

ξ0

ψ ∼

��

∼

f |Cn
ξ0

// ConvG,Cn
ξ0

∼ ϕn

��(
ConvG,Cn−1 × GrG,C

)
|Cn

ξ0

∼

ϕn−1×id
//
(
GrG,C × · · · × GrG,C × GrG,C

)
|Cn

ξ0

.

Definition 4.13. The convolution Schubert variety Conv
~λ

G,Cn is defined inductively as

follows: when n = 1, set Conv
λ

G,C := Gr
λ

G,C; when n ≥ 2, define

Conv
~λ

G,Cn := E|
Conv

(λ1 ,...,λn−1)

G,Cn−1 ×C
×L+GC Gr

λn

G,C.

Now we would like to give another construction of the convolution Schubert variety.
For each character ν of T , we define

Fi(Cν) := OCn+1

( i∑
k=1

∑
γ∈Γ

〈γ(λk), ν〉∆γ,k

)
.
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This assignment extends to a C-linear tensor functor Fi : Rep(G) → Cohlf(Cn+1). By
the same argument as in Section 4.2, Fi gives a locally trivial (Γ,T )-torsor Fi over Cn+1.
Moreover, the natural maps βν,i : Fi(Cν)|Cn×C̄−∆P̄i

→̃ Fi−1(Cν)|Cn×C̄−∆P̄i
for all ν ∈ X∗(T )

induce an isomorhism βi : Fi|Cn×C̄−∆P̄i
→ Fi−1|Cn×C̄−∆P̄i

.
Set Fi,G = Fi ×

T G. Then F̄i := π∗(Fi,G)Γ is a G-torsor over Cn × C̄, and βi induces an
isomorohism β̄i : F̄i|Cn×C̄−∆P̄i

' F̄i−1|Cn×C̄−∆P̄i
, where by convention F̄0 is the trivial torsor.

We construct a section s̃~λ : Cn → ConvG,Cn as follows:

(59) s̃~λ =
(
P1, . . . , Pn, (F̄i, β̄i)n

i=1
)
.

Denote by ˜Conv
~λ

Cn the schematic image of s̃~λ : L+GCn → ConvG,Cn .

Lemma 4.14. For any partition ξ = (I1, . . . , Ik) of [n], there is an isomorphism Φ :
ConvG,Cn

ξ
→

(∏k
i=1 ConvG,CIi

)
|Cn

ξ
satisfying the following commutative diagram

(60) ConvG,Cn
ξ

Φ

∼

��

m
// GrG,Cn

ξ

∼ (42)
��(∏k

i=1 ConvG,CIi

)
|Cn

ξ

∏
m
//
(∏k

i=1 GrG,CIi

)
|Cn

ξ

.

Moreover, we have Φ ◦ s̃~λ|Cn
ξ

=
∏

s̃~λIi
|Cn

ξ
. It follows that Φ induces an isomorphism

˜Conv
~λ

G,Cn
ξ
'

( k∏
i=1

˜Conv
~λIi

G,CIi

)∣∣∣
Cn
ξ

.

Proof. We first define the map Φ as follows,

Φ : ConvG,Cn
ξ
→

( k∏
i=1

ConvG,CIi

)∣∣∣
Cn
ξ

(61) (
~p, (Fi, βi)n

i=1
)
7→

∏(
~pIi , (F

′
j , β
′
j) j∈Ii

)
where by Beauville-Laszlo’s Lemma, for any j ∈ Ii and the index j′ right before j in the
ordered set Ii, there exists a G-torsor F ′j with isomorphisms α j : F ′j |∆̂p̄ j

→ F j|∆̂p̄ j
and

β′j : F ′j |C̄R\∆p̄ j
→ F ′j′ |C̄R\∆p̄ j

such that β′j ◦ α
−1
j |∆̂∗p̄ j

= β′−1
j′ ◦ β1 ◦ · · · ◦ β j|∆̂∗p̄ j

. One may check
this is an isomorphism and satisfies the commutative diagram (60).

Let s̃~λI
: CI → ConvG,CI be the section defined by (59), we shall show Φ ◦ s̃~λ|Cn

ξ
=∏

s̃~λIi
|Cn

ξ
over Cn

ξ for any partition ξ. For the simplicity of illustration, we will only prove
a special case for n = 4 and ξ = (I, J) = ({1, 3}, {2, 4}), which indicates the argument in
general. Recall the definition (59) of F̄i := π∗(Fi×

T G)Γ and η̄i, whereFi is a (Γ,T )-torsor
defined via the functor Fi : Rep(T )→ Cohlf(Cn+1) given by

Fi(Cν) = OCn+1

( i∑
j=1

∑
γ∈Γ

〈γ(λ j), ν〉∆γ, j

)
,

and ηi is the map induced from the natural isomorphisms ην,i : F(Cν)|Cn×C\
⋃

j≤i ∆γ, j →̃

F0(Cν)|Cn×C\
⋃

j≤i ∆γ, j , ν ∈ X∗(T ). Denote by Di,ν the divisor
(∑

γ∈Γ〈γ(λi), ν〉∆γ,i
)
∩

(
Cn
ξ ×C

)
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in Cn
ξ ×C. One may check that Di,ν ∩D j,ν = ∅ for any i = 1, 3, j = 2, 4. Let UI ⊆ Cn

ξ ×C
be a neighborhood of

(⋃
i∈I,γ∈Γ ∆γ,i

)
∩

(
Cn
ξ ×C

)
such that UI ∩ (D2,ν ∪D4,ν) = ∅ for any ν,

and let prI : Cn
ξ ×C → CI ×C be the projection map. Define UJ and prJ similarly. Then

OCn+1

(∑
γ∈Γ

〈γ(λ1), ν〉∆γ,1

)∣∣∣∣
UI
' OUI (D1,ν) ' pr∗I

(
OCI×C

(
prI(D1,ν)

))∣∣∣
UI
,

OCn+1

( 3∑
i=1

∑
γ∈Γ

〈γ(λi), ν〉∆γ,i

)∣∣∣∣
UI
' OUI (D1,ν ∪ D3,ν) ' pr∗I

(
OCI×C

(
prI(D1,ν ∪ D3,ν)

))∣∣∣
UI
.

By the definition of the map (61), we have an equality of sections over Cn
ξ

Φ ◦ s̃~λ|Cn
ξ

=
(
(P1, P3, F̄1, F̄

′
3 , η̄1, η̄

′
3), (P2, P4, F̄

′
2 , F̄

′
4 , η̄

′
2, η̄

′
4)
)
|Cn

ξ
,

where F̄ ′3 = π∗(F ′3 ×
T G)Γ, and F ′3 is the (Γ,T )-torsor constructed via the following

functor F′3 : Rep(T )→ Cohlf(CI ×C)

F′3 : Cν 7→ OCI×C
(
prI(D1,ν ∪ D3,ν)

)
,

η′3 is the map induced form the natural maps

η′3,ν : OCI×C\prI (D3,ν)
(
prI(D1,ν ∪ D3,ν)

)
→ OCI×C\prI (D3)(prI(D1,ν)),

for all ν ∈ X∗(T ). By definition (59), (P1, P3, F̄1, F̄
′

3 , η̄1, η̄
′
3) is exactly the section

s̃~λI
: CI → ConvG,CI . Similarly, (P2, P4, F̄

′
2 , F̄

′
4 , η̄

′
2, η̄

′
4) = s̃~λJ

. This shows that Φ◦ s̃~λ|Cn
ξ

=

s̃~λI
× s̃~λJ

|Cn
ξ
. Since Φ is L+GCn

ξ
-equivariant, it follows that the map (61) induces an iso-

morphism Φ : ˜Conv
~λ

G,Cn
ξ
'

( ˜Conv
~λI
G,CI × ˜Conv

~λJ

G,CJ

)
|Cn

ξ
. �

Recall that there is an isomorphism (54) over Cn
ξ0

:

ϕn : ConvG,Cn |Cn
ξ0
→

(
GrG,C × · · · × GrG,C

)
|Cn

ξ0
.

By Lemma 4.14, this map ϕ induces an isomorphism

(62) ˜Conv
~λ

G,Cn
ξ0
'

(
Gr

λ1

G,C × · · · × Gr
λn

G,C
)
|Cn

ξ0
.

Proposition 4.15. The morphism f defined in (55) induces an isomorphism

(63) Conv
~λ

G,Cn ' ˜Conv
~λ

Cn .

Proof. We prove it by induction on n. When n = 1, by definition s̃λ = sλ. Hence,
˜ConvλG,C = Gr

λ

G,C = Conv
λ

G,C. When n ≥ 2, by induction we have Conv
λ1,...,λn−1

G,Cn−1 '

˜Convλ1,...,λn−1
G,Cn . Then, the map ψ in (57) induces an isomorphism

(64) Conv
~λ

G,Cn
ξ0
'

( ˜Convλ1,...,λn−1
G,Cn × Gr

λn

G,C
)
|Cn

ξ0
.
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Combining with the isomorphism (62), we get the following diagram

Conv
~λ

G,Cn
ξ0

(64) ∼

��

˜Conv
~λ

G,Cn
ξ0

∼ (62)
��( ˜Convλ1,...,λn−1

G,Cn × Gr
λn

G,C
)
|Cn

ξ0

∼

(62)×id
//
(
Gr

λ1

G,C × · · · × Gr
λn

G,C
)
|Cn

ξ0

.

This gives an isomorphism Conv
~λ

G,Cn
ξ0
' ˜Conv

~λ

G,Cn
ξ0

. By the commutativity of the diagram
(58), this isomorphism is exactly the restriction of the map f defined in (55). Since

both of them are reduced and irreducible, we must have an isomorphism Conv
~λ

G,Cn '

˜Conv
~λ

G,Cn . �

4.4. Flatness of BD Schubert varieties. Let G be a simple algebraic group of adjoint
type over C, and let σ be the standard automorphism defined in Section 2.2. Let K =

C((t)) and O = C[[t]]. We define the action of σ on K and O by σ(t) = ε−1t, where ε is
a fixed primitive m-th root of unity. Denote by K̄ = Kσ and Ō = Oσ the σ-fixed points
in K and O respectively.

Let G be the σ-fixed point subgroup scheme ResO/Ō(GO)σ of the Weil restriction
ResO/Ō(GO). Then G is a special parahoric group scheme over Ō in the sense of Bruhat-
Tits, see [BH, Section 2.2]. Let LG be the loop group scheme and L+G be the jet group
scheme with LG (R) = G (R((t))) and L+G (R) = G (R[[t]]), for any C-algebra R. We
define the affine grassmannian GrG to be the fppf quotient LG /L+G , and call it a twisted
affine Grassmannian of G . In particular, GrG (C) = G(K)σ/G(O)σ. We denote by e0 the
base point in GrG (C).

For any coweight λ ∈ X∗(T ), we are associated to an element tλ ∈ T (K). Let nλ be the
norm of tλ, i.e. nλ :=

∏m−1
i=0 σi(tλ) ∈ T (K)σ. Let λ̄ ∈ X∗(T )σ be the image of λ under the

projection map X∗(T ) → X∗(T )σ, and denote by eλ̄ the point nλe0 ∈ GrG (C). One can

define a Schubert cell Grλ̄G := G(O)σeλ̄. We define the Schubert variety Gr
λ̄

G to be the
reduced closure of Grλ̄G in GrG . There is a level one line bundle L on GrG such that

(65) H0(Gr
λ̄

G ,L
c)∨ ' Dσ(c, λ̄),

as g[t]σ-modules, where Dσ(c, λ̄) is the twisted affine Demazure module defined in Sec-
tion 2.4, cf. [BH, Theorem 3.11]).

Let Γ be the cyclic group generated by σ, and let C be an irreducible smooth curve
with a faithful Γ-action. From now on, we assume that the ramified points of C are
totally ramified, i.e. the stabilizer Γp is equal to Γ for any ramified point p. Moreover,
when C is the affine line A1, we require the Γ-action to be the ‘standard’ one given by

(66) σ(p) = εp, for any p ∈ A1.
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Theorem 4.16. With the assumptions above, the global Schubert variety Gr
λ

G,C is flat

over C, and for any p ∈ C the fiber Gr
λ

G,p is reduced. Moreover,

(67) Gr
λ

G,p '

Gr
λ̄

G for p ∈ R;

Gr
λ

G for p < R,

where R denotes the ramification locus of the action of Γ on C.

Proof. When C = A1, the theorem was proven in [Zh2, Theorem 3]. Now, let C be
a general curve whose points are either unramified or totally ramified. Note that the
theorem is local, we shall reduce it to the affine case. For any ramified point x ∈ C, there
exists an open neighborhood U of x with a Γ-equivariant étale map U → A1 sending x
to 0. By Corollary 4.7, we have a base change isomorphism

GrGŪ ,U ' GrGĀ1 ,A1 ×A1 U,

and the left L+GU-action on GrGŪ ,U commutes with the base change. Thus,

Gr
λ

GŪ ,U
' Gr

λ

GĀ1 ,A1 ×A1 U.

Hence, the theorem holds over U. Similarly, one can show that the theorem also holds
over C\R. This competes the proof of the theorem. �

Lemma 4.17. The convolution variety Conv
~λ

G,Cn is flat over Cn. Moreover, the convolu-

tion morphism m induces a surjective morphism m : Conv
~λ

G,Cn → Gr
~λ

G,Cn .

Proof. Recall the Definition 4.13 that Conv
~λ

G,Cn is a global Schubert variety when n = 1
and is a sequence of fibrations of global Schubert varieties when n ≥ 2. By Theorem

4.16, Conv
~λ

G,Cn must be flat over Cn.

By Proposition 4.15, Conv
~λ

G,Cn can be identified with the schematic image of the map
s̃~λ : L+GCn → ConvG,Cn . By the definition (53) of convolution map m and the L+GCn-
equivariance of m, we have a commutative diagram

(68) L+GCn

s~λ %%

s̃~λ
// ConvG,Cn

m

��

GrG,Cn

.

Since m is proper, it gives a surjective map m : Conv
~λ

G,Cn � Gr
~λ

G,Cn . �

We define the following subset in Cn:

(69) ∆[n] = {~p ∈ Cn | p̄i = p̄ j, ∀1 ≤ i, j ≤ n}.

Proposition 4.18. With the same assumptions in Theorem 4.16, we have
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(1) For any point ~p = (p, γ2(p), . . . , γn(p)) ∈ ∆[n], we have(
Gr

~λ

G,~p

)
red
' Gr

λ~p
G,p,

where λ~p := λ1 + γ−1
2 (λ2) + · · · + γ−1

n (λn).
(2) For any point ~p ∈ Cn, we have

Ri(m~p)∗
(
OConv~λ

G,~p

)
=

O(
Gr

~λ
G,~p

)
red

, i = 0;

0, ∀i ≥ 1.

Proof. (1) Taking the reduced fibers of both sides of the morphism m : Conv
~λ

G,Cn �

Gr
~λ

G,Cn in Lemma 4.17, we get a surjective map for any ~p ∈ Cn,

m~p : Conv
~λ

G,~p =
(
Conv

~λ

G,~p

)
red
�

(
Gr

~λ

G,~p

)
red
.

Now, let ~p = (p, γ2(p), . . . , γn(p)) be any point in ∆[n]. To prove part (1), it suffices

to show the image of Conv
~λ

G,~p under the convolution map m : ConvG,Cn → GrG,Cn is

Gr
λ~p
G,p. When p ∈ C is unramified, the composition of morphisms (53) (55) restricts to

the following map:

E|~p ×
L+Gγn(p) GrG,γn(p)

∼
−−−→ ConvG,~p

m
−−−→ GrG,~p(70) ((

~p, (Fi, βi)n−1
i=1 , α

)
, (F , β)

)
7→

(
~p, (Fi, βi)n

i=1
)
7→ (~p,F |∆̂p̄n

, ζ ◦ β|∆̂∗p̄n
)

where pn := γn(p), ζ = (β1 ◦ · · · ◦ βn−1 ◦ α
−1)|∆̂∗p̄n

∈ G(Kpn). It factors through the usual
convolution map

G(Kpn) ×
G(Opn ) GrG,pn → GrG,pn ' GrG,~p.

By induction on n, for ~q := (p, γ2(p), · · · , γn−1(p)) ∈ Cn−1, the image of Conv
λ1,...,λn−1

G,~q

under the convolution map is Gr
λ~q
G,p. Thus for any (~q, (Fi, βi)i) ∈ Conv

λ1,...,λn−1

G,~q , we have

(p,Fn−1, β1 ◦ · · · ◦ βn−1) ∈ Gr
λ~q
G,p ' Gr

γn(λ~q)
G,pn

. Therefore, the following restriction of (70)

E|
Conv

λ1 ,...,λn−1
G,~q ,pn

×L+Gpn Gr
λn

G,pn
→ Gr

γn(λ~q)+λn

G,pn
,

factors through mpn : G̃r
γn(λ~q)
G,pn

×L+Gpn Gr
λn

G,pn
→ Gr

γn(λ~q)+λn

G,pn
, where G̃r

γn(λ~q)
G,pn

is the L+Gp-

torsor over Gr
γn(λ~q)
G,pn

. This implies that the image of Conv
~λ

G,~p under the convolution map

is Gr
γn(λ~q)+λn

G,pn
' Gr

λ~p
G,p ' Gr

λ~p
G,p. The case when p ∈ C is totally ramified can be proved

similarly.
For part (2), by Lemma 4.14 it suffices to consider the case when ~p ∈ ∆[n]. We now

the consider the morphism m~p : Conv
~λ

G,~p → Gr
~λ

G,~p. From part (1) and [PR, Proposition
9.7], we know (m~p)∗

(
OConv~λ

G,~p

)
= O

Gr
λ~p
G,p

= O(
Gr

~λ
G,~p

)
red

.
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For i ≥ 1, we shall show Ri(m~p)∗
(
OConv~λ

G,~p

)
= 0 by induction on n. Clearly, this holds

when n = 1. Now, assume n ≥ 2, and let ~q = (p, γ2(p), . . . , γn−1(p)) ∈ Cn−1. By
induction, Ri(m~q)∗

(
OConv~λ

G,~q

)
= 0. Consider the following diagram

E′ := E|
Conv

λ1 ,...,λn−1
G,~q ×{pn}

m̃~q
��

pr
// Conv

λ1,...,λn−1

G,~q

m~q

��

G̃r
λ~q
G,p

pr
// Gr

λ~q
G,p

.

By flat base change [Ha, Proposition 9.3], we have Ri(m̃~q)∗
(
OE′

)
= 0 for i ≥ 1. From

part (1), there is a commutative diagram

Conv
~λ

G,~p ' E|Conv
λ1 ,...,λn−1
G,~q ×{pn}

×L+Gpn Gr
λn

G,pn

f
��

m~p

))

W := G̃r
γn(λ~q)
G,pn

×L+Gpn Gr
λn

G,pn mpn

// Gr
γn(λ~q)+λn

G,pn
.

Thus, Ri f∗
(
O

Conv
~λ
G,~p

)
= 0. Recall that mpn is a partial Bott-Samelson resolution and we

have Ri(mpn)∗(OW) = 0, cf.[PR, Proposition 9.7]. Thus, Ri(m~p)∗
(
O

Conv
~λ
G,~p

)
= 0. �

Theorem 4.19. With the same assumptions as in Theorem 4.16, the BD Schubert variety

Gr
~λ

G,Cn is flat over Cn. Moreover, Gr
~λ

G,~p is reduced.

Proof. Let X = Conv
~λ

G,Cn and Y = Gr
~λ

G,Cn . By Lemma 4.17 and Proposition 4.18, we can
apply Corollary B.4 to the morphism m : X → Y and we get m∗(OX) is flat over Cn. To
prove the first part of the theorem, it suffices to showm∗(OX) ' OY . Consider the natural
map OY → m∗(OX). At every point s = ~p ∈ Cn, the composition of the following maps

(71) OYs → m∗(OX)|Ys

∼
−−−−−−−−−−−−−−−−→
part (1) of Corollary B.4

(ms)∗(OXs)
∼

−−−−−−−−−−→
Proposition 4.18

O(Ys)red

is surjective. Thus, the morphism OY → m∗(OX) is surjective.
Recall that Y is the schematic image of s~λ : L+GCn → GrG,Cn . By Proposition 4.15,

X is the schematic image of s̃~λ : L+GCn → ConvG,Cn . Thus, we have an inclusion
OX ↪→ (s̃~λ)∗

(
OL+GCn

)
. By Proposition 4.18, we have R1m∗(OX) = 0. It follows that we

have the following inclusion

m∗OX ↪→
(
m∗ ◦ (s̃~λ)∗

)(
OL+GCn

)
= (s~λ)∗

(
OL+GCn

)
.

From the commutativity of the following diagram

m∗OX
� � // (s~λ)∗

(
OL+GCn

)
OY

OOOO

+ �

88
,
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we must have m∗OX ' OY . Thus, OY is flat over Cn. On the other hand, this also implies

that the composition map (71) is an isomorphism. In particular, it follows that Ys = Gr
~λ

G,~p
is reduced. �

Corollary 4.20. With the same assumptions in Theorem 4.16, we have
(1) Let ξ = (I1, . . . , Ik) be a partition of [n]. For any ~p ∈ Cn

ξ , we have

Gr
~λ

G,~p ' Gr
~λI1
G,~pI1
× · · · × Gr

~λIk
G,~pIk

,

where ~pI j ∈ CI j and ~λI j are defined in (30) and (31).

(2) For any ~p = (p, γ2(p), . . . , γn(p)) ∈ ∆[n], we have Gr
~λ

G,~p ' Gr
λ~p
G,p, where λ~p :=

λ1 + γ−1
2 (λ2) + · · · + γ−1

n (λn).

Proof. Part (1) directly follows from Proposition 4.12. Part (2) follows from Proposition
4.18 and Theorem 4.19. �

Lemma 4.21. The orbit Gr~λG,Cn := L+GCn · s~λ is smooth over Cn.

Proof. Observe that Gr~λG,Cn is open in Gr
~λ

G,Cn . By Theorem 4.19, Gr~λG,Cn is also flat over Cn.

Since every fiber Gr~λ
G,~p is smooth, Gr~λG,Cn is smooth over Cn, cf. [Ha, Theorem 10.2]. �

Theorem 4.22. The BD Schubert variety Gr
~λ

G,Cn is normal.

Proof. When n = 1, the theorem was proved in [Zh2, Section 3.3]. For n ≥ 2, we prove
it by induction on n. Given a non-trivial partition ξ = (I, J) of [n], by Proposition 4.12
there is a factorization over Cn

ξ

Gr
~λ

G,Cn
ξ
'

(
Gr

~λI

G,CI × Gr
~λJ

G,CJ

)∣∣∣
Cn
ξ

.

By induction, Gr
~λI

G,CI and Gr
~λJ

G,CJ are normal, hence Gr
~λ

G,Cn
ξ

is normal. Note that the com-
plement of the union of Cn

ξ for all non-trivial partition (I, J) in Cn is ∆[n]. To show the
normality around ∆[n], in view of Corollary 4.7 we can assume C = A1. For the rest of
proof, we adapt an argument in [Zh2, Proposition 6.4].

Let X = Gr
~λ

G,An . For any i ∈ I, j ∈ J and 0 ≤ k ≤ m − 1, we regard t := zi − σ
k(z j)

as a regular function on X. We shall show the local ring OX,x is normal for any x ∈ X
such that t(x) = 0. Denote by (X0)red the reduced fiber of t : X → A1 at 0 ∈ A1. By
Corollary 4.20, (X0)red is isomorphic to a BD Schubert variety Gr

~µ

G,An−1 , where ~µ consists
of λa, 1 ≤ a ≤ n with a , i, j, and λi + σk(λ j). Thus, tOX,x has a unique minimal
associated prime ideal p. By induction, (X0)red is normal, hence OX,x/p is normal. By
Lemma 4.21, Gr~λG,An is regular in codimension one, which implies that the localization
(OX,x)p at the minimal ideal p is regular. Thus, OX,x is normal, since the three conditions
of [Ha, Lemma 9.12] are satisfied. Since i ∈ I, j ∈ J and 0 ≤ k ≤ m− 1 are arbitrary, we

conclude that Gr
~λ

G,An = X is normal. �
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We conclude this subsection by showing that GrG,Cn is a direct limit of Gr
~λ

G,Cn with
respect to the standard partial order � on (X∗(T )+)n. The following Theorem is due to
Wyatt Reeves [Re].

Theorem 4.23. Let S be a Noetherian scheme. Let X → Y be an ind-closed embedding
of ind-schemes over S . Suppose X/S is ind-flat and Y/S is ind-finite-type. Suppose
S admits a decomposition into a closed subscheme Z and its open complement U =

S \ Z such that X|Z → Y |Z and X|U → Y |U are isomorphisms. Then X → Y is an
isomorphism. �

The following result was proved in [Re] in the untwisted case as a consequence of
Theorem 4.23. The same method can be adapted in our twisted setting.

Proposition 4.24. The BD Grassmannian GrG,Cn is a direct limit of Gr
~λ

G,Cn with respect
to the standard partial order � on (X∗(T )+)n.

Proof. We prove by induction on n. When n = 1, consider the ind-closed embedding

(72) lim
−−→
λ

Gr
λ

G,C → GrG,C.

Let R be the set of ramified points in C. Set C̊ = C\R. By Corollary 4.7 (2), we
have an isomorphism GrG,C̊ ' GrG,C̊. This isomorphism restricts to an isomorphism

Gr
λ

G,C̊ ' Gr
λ

G,C̊. By [Re], lim
−−→

Gr
λ

G,C̊ → GrG,C̊ is an isomorphism. Thus, lim
−−→

Gr
λ

G,C̊ → GrG,C̊
is also an isomorphism. For each p ∈ R, lim

−−→
Gr

λ

G,p → GrG,p is an isomorphism, cf. [PR,
Proposition 9.9]. Repeatedly applying Theorem 4.23 at ramified points, we conclude
that (72) is an isomorphism.

When n ≥ 2, consider the following ind-closed embedding

(73) lim
−−→

Gr
~λ

G,Cn → GrG,Cn .

For any nontrivial partition ξ = (I, J) of [n], by induction and the factorization maps
(42) (50), the restriction of (73) to Cn

ξ is an isomorphism. Note that
⋃

ξ Cn
ξ = Cn \ Γn · ∆,

where Γn acts on the diagonal ∆ via the obvious action. We get an isomorphism

lim
−−→

Gr
~λ

G,Cn\Γn·∆ → GrG,Cn\Γn·∆.

Note that GrG,~γ(∆) ' GrG,C. Moreover, by Corollary 4.20, Gr
~λ

G,~γ(∆) ' Gr
λ

G,C for any
~γ = (γ1, . . . , γn), ~λ = (λ1, . . . , λn), and λ =

∑
γ−1

i (λi). By the case when n = 1, (72)

induces an isomorphism lim
−−→

Gr
~λ

G,~γ(∆) → GrG,~γ(∆) for any ~γ ∈ Γn. Repeatedly applying
Theorem 4.23 at ~γ(∆), we conclude that (73) is an isomorphism. �

Remark 4.25. All results in this subsection remain true for any algebraically closed field
k of characteristic p, if p - m. Moreover, if Γ is trivial or generated by a diagram
automorphism, all results still hold.
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5. Line bundles on Beilinson-Drinfeld Grassmannian of G

In this section, we determine the rigidified Picard group of the BD Grassamnnian
GrG,Cn of G when G is generically simply-connected, along the way we construct the
level one line bundle LCn on GrG,Cn . We also establish the factorizable and L+GCn-
equivariant structure on LCn . This allow us to construct factorizable and equivariant
level one line bundles on BD Schubert varieties of G when C = A1 and G is of adjoint
type generically.

5.1. Picard group of rigidified line bundles on BD Grassmannian of G. We first
make a digression to prove a relative version of seesaw principal, which is originally
due to Mumford [Mu, Corollary 6].

Lemma 5.1 (Seesaw Theorem). Let φ : X → S and ψ : Y → S ′ be projective and flat
morphisms of varieties over C such that, for any s ∈ S and s′ ∈ S ′, the schematic fibers
Xs and Ys′ are integral. Given an open subset U ⊂ S × S ′, let L be a line bundle on
(X × Y)|U such that the restriction L|Xs×q and L|p×Ys′ are trivial for any (s, q) ∈ (S × Y)|U ,
(p, s′) ∈ (X × S ′)|U . Then there is a line bundle M on U such that L ' π∗M, where
π = (φ × ψ)|U : (X × Y)|U → U.

Proof. Consider the morphism π2 = (φ× id)|U : (X × Y)|U → (S × Y)|U . By assumption,
for any (s, q) ∈ (S × Y)|U , the line bundle L|Xs×q is trivial. Since X is projective over S ,
we have dim

(
H0(Xs × q, L|Xs×q)

)
= 1 for any (s, q) ∈ (S × Y)|U . It follows that (π2)∗L is

a locally free sheaf of rank 1 over (S × Y)|U . Let L′ = (π2)∗L. By adjunction, we have a
morphism (π2)∗L′ → L. This is an isomorphism since the map H0(Xs × q, L)→ L(p,q) is
an isomorphism for any (p, q) ∈ (X × Y)|U .

Similarly, consider the morphism π1 = (id × ψ)|U : (S × Y)|U → U and note that
L′|s×Ys′ is trivial for any (s, s′) ∈ U. By the same argument as above, (π1)∗L′ is a locally
free sheaf of rank 1 over U, and L′ ' (π1)∗M where M = (π1)∗L′. Therefore,

L ' (π2)∗L′ ' (π2)∗(π1)∗M ' π∗M. �

Let π : X → S be a projective and flat morphism of varieties such that every fiber is
integral. Given a section e : S → X, let (L, α) denote a rigidified line bundle on X, that
is, a line bundle L with an isomorphism α : OS ' e∗L. We denote by Pice(X) the Picard
groupoid of these rigidified line bundles on X with respect to e.

Lemma 5.2. Let π : X → S be a morphism as above. Let (L, α), (L′, α′) be rigidified
line bundles in Pice(X). If ψ : L ' L′ is an isomorphism of line bundles on X, then
there exists a unique isomorphism φ : (L, α) ' (L′, α′) in Pice(X), i.e. there is a unique
isomorphism φ : L ' L′ such that the following diagram commutes

(74) e∗L
e∗(φ)

// e∗L′

OS

α

aa

α′

<<
.

37



Proof. By a similar argument as in the proof of Lemma 5.1, there exists an isomorphism
π∗π∗L ' L. Applying e∗, we get π∗L ' e∗L. Thus,

(75) Hom(L, L) ' Hom(π∗π∗L, L) ' Hom(π∗L, π∗L) ' Hom(e∗L, e∗L).

If there are two isomorphisms φ1, φ2 : (L, α) ' (L′, α′), then φ−1
2 ◦φ1 is an automorphism

of (L, α) ∈ Pice(X). In view of the isomorphism (75), this must be an identity. This
proves the uniqueness.

Given an isomorphism ψ : L ' L′, set β = e∗(ψ) ◦ α : OS ' e∗L′, which gives another
rigidification of L′. By the isomorphism (75), there exists a unique η ∈ Aut(L′) such that
e∗(η) = α′ ◦ β−1. Then, the isomorphism φ := η ◦ ψ : L → L′ satisfies the commutative
diagram (74). Hence, it gives an isomorphism (L, α) ' (L′, α′) in Pice(X). �

By Lemma 5.2, the groupoid Pice(X) is discrete. Thus, we can identify it with the
group of isomorphism classes in Pice(X), and call it the rigidified Picard group of X
along e. Given an isomorphism class [(L, α)] ∈ Pice(X), by abuse of notation, we simply
denote it by L.

From now on, we are in the setup of Section 4.4. We further assume that the simple
algebraic group G is simply-connected.

Let Pice(GrG,Cn) be the rigidified Picard group of GrG,Cn along the section e : Cn →

GrG,Cn . Here, we abuse the notation e for the section e~0 over Cn. Given a rigidified line
bundle L ∈ GrG,Cn , we denote by L|∆Cn the restriction of L to the BD Grassmannian
GrG,∆Cn over the diagonal. By [Zh2, Proposition 4.1], the central charge of L|~p for any
~p ∈ ∆Cn is constant. This gives a well-defined central charge map

(76) c : Pice(GrG,Cn)→ Z.

We shall show the map c is an isomorphism.
We first deal with the case when C = A1 with the standard Γ-action in (66). Recall

that when C = P1, Pic(BunG) ' Z, where the positive generator will be denoted by L.
Consider the projection pr : GrG,(P1)n → BunG. Let

(77) LAn := (pr∗L)|GrG,An

denote the restriction of the line bundle pr∗L to GrG,An . Clearly,LAn belongs to Pice(GrG,An)
since e∗(LAn) is a trivial bundle overAn. Note that the restrictionLAn |∆An to the diagonal,
regarded as a line bundle over GrG,A1 , is isomorphic to LA1 . Moreover, the restriction of
the line bundle LA1 to each fiber is the ample generator in Pic(GrG,p) for any p ∈ A1,
cf. [BH, Corollary 3.14]. Hence c(LAn) = 1, which implies that c is a surjection. From
now on, we call LAn the level one line bundle over GrG,An .

Theorem 5.3. Let C be an irreducible smooth curve with a faithful Γ-action and assume
that all ramified points in C are totally ramified.Then the central charge map (76) is an
isomorphism

c : Pice(GrG,C) ' Z.

Proof. Let R := {p1, . . . , pk} be the set of ramified points in C. Set C̊ = C\R. By
Corollary 4.7, GrG,C̊ ' GrG,C̊. Then, by [Zh3, Lemma 3.4.2], the following central
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charge map is an isomorphism

(78) Pice(GrG,C̊) ' Z.

We consider the following restriction map

(79) Pice(GrG,C)→ Pice(GrG,C̊).

Then, the composition of (79) and (78) is the central charge map

(80) c : Pice(GrG,C)→ Z.

We first show the restriction map (79) is injective. Let L ∈ Pice(GrG,C) such that
the restriction L|Gr

G,C̊
is trivial. We shall show L is also trivial. By Proposition 4.24, it

suffices to show the restriction of L to Gr
λ

G,C is trivial for all dominant coweight λ. We
still denote the restriction by L. By assumption, there is an isomorphism θ : OC ' e∗L,
and L|Gr

G,C̊
is trivial. By Lemma 5.2, there is a unique isomorphism

s : O
Gr

λ

G,C̊
' L|

Gr
λ

G,C̊

such that e∗(s) = θ|C̊. Let Di denote the divisor Gr
λ

G,pi
. By Theorem 4.22, there is a

unique integer n such that

s ∈ Γ(Gr
λ

G,C\{p1,...,pk−1}
,L(nDk)) \ Γ(Gr

λ

G,C\{p1,...,pk−1}
,L((n − 1)Dk)).

Now, we regard s as a regular section of L(nDk). Then e∗(s) = θ|C̊ can be regarded a
section of (e∗L)|C̊ with pole order n at pk ∈ C. Since θ is regular at pk, we must have
n = 0, and hence s induces an isomorphism

s : O
Gr

λ
G,C\{p1 ,...,pk−1}

' L|
Gr

λ
G,C\{p1 ,...,pk−1}

.

Repeating this process, we get a trivialization of L. It follows that the restriction map
(79) is injective. Hence, the central charge map (80) is injective.

We now prove the surjectivity. For each pi ∈ R, there exists a Γ-stable open neigh-
borhood Ui of p with a Γ-equivariant étale map Ui → A

1, where A1 carries the standard
Γ-action as in (66). Observe that pi is the only ramified point in Ui. By Corollary 4.7 (1),
there is a natural morphism πi : GrGŪi

,Ui → GrGĀ1 ,A1 . LetLUi be the pull-back of the level
one line bundle LA1 via the map πi. By the injectivity of (80), the central charge map
c : Pice(GrG,Ui) → Z is injective. As LUi is mapped to 1, we have c : Pice(GrG,Ui) ' Z.
Note that {C̊,U1, . . . ,Ur} forms an open covering of C. Moreover, by Lemma 5.2 there
are unique isomorphisms between the restrictions of LC̊ and LUi on their intersections,
since their restrictions are the level one generator in Pice(GrG,Ui\{pi}) or Pice(GrG,Ui∩U j)
for any i, j. Therefore, we can glue them together to get a line bundle in Pice(GrG,C),
which will be denoted by LC. From this construction, we have c(LC) = 1. It follows
that the central charge map c : Pice(GrG,C)→ Z is an isomorphism. �

In the proof of the injectivity of the map (79), we used a similar argument as in
[Zh3][Lemma 4.3.3]. In fact, using the same argument we have the following more
general result, which will be used later.
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Proposition 5.4. Let C be an irreducible smooth curve with a faithful Γ-action and
assume that all ramified points in C are totally ramified. Let Z be a closed subvariety
in Cn. Let D be an irreducible closed subvariety of codimension one in Cn\Z. Then, the
following restriction map is an embedding

Pice(GrG,Cn\Z)→ Pice(GrG,Cn\(Z∪D)). �

We define the action of the symmetric group S n and Γn on Cn by s · (p1, . . . , pn) :=
(ps(1), . . . , ps(n)) and (γ1, . . . , γn) · (p1, . . . , pn) := (γ1 p1, . . . , γn pn), where s ∈ S n, γi ∈ Γ.
Let Z be a closed subvariety in Cn which is stable under the actions of S n and Γn. Recall
that for the finest partition ξ = ({1}, . . . , {n}) of [n], there is a factorization

(81) GrG,Cn
ξ\Z ' (GrG,C × · · · × GrG,C)|Cn

ξ\Z.

Let L1, . . . ,Ln ∈ Pice(GrG,C). We define a map

(82) Pice(GrG,C) × · · · × Pice(GrG,C)→ Pice(GrG,Cn
ξ\Z)

by (L1, . . . ,Ln) 7→ (L1 � . . . �Ln)|GrG,Cn
ξ
\Z

.

Proposition 5.5. Let C be an irreducible smooth curve with a faithful Γ-action and
assume that all ramified points in C are totally ramified. Let n ≥ 2 and Z be a closed
subvariety in Cn which is stable under the actions of S n and Γn. We further assume that
the diagonal ∆Cn is contained in Cn \ Z. Let ξ be the finest partition of [n]. Then,

(1) The map (82) is an isomorphism and the inverse map gives rise to the following
isomorphism

(83) cξ : Pice(GrG,Cn
ξ\Z) ' Zn

given by L 7→ (c1, . . . , cn), where ci = c
(
L|(e1,...,ei−1)×GrG,qi×(ei+1,...,en)

)
and e j is the

base point in GrG,q j for any (q1, . . . , qn) ∈ Cn
ξ \Z. We will call cξ the multi-central

charge map.
(2) The restriction map Pice(GrG,Cn\Z) ↪→ Pice(GrG,Cn

ξ\Z) is an embedding. Moreover,
for any L ∈ Pice(GrG,Cn\Z), if c(L|GrG,∆Cn

) = a, then cξ(L|GrG,Cn
ξ
\Z

) = (a, a, . . . , a).
As a consequence, the central charge map (76) is injective.

Proof. When n=2, ξ = ({1}, {2}) is the finest partition. We fix an arbitrary point (q1, q2) ∈
C2
ξ \ Z and denote Cq1 := {p ∈ C | (q1, p) ∈ C2

ξ \ Z}, Cq2 := {p ∈ C | (p, q2) ∈ C2
ξ \ Z}.

Clearly, Cqi is open in C. We show that Cqi is non-empty as follows. If Cq1 is empty,
then (q1, p) < C2

ξ \ Z for all p ∈ C. It follows that (q1, p) ∈ Z for all p ∈ C \ Γ · {p}. Since
Z is closed, we conclude that {q1}×C ⊆ Z. Hence, (q1, q2) ∈ Z, which is a contradiction.
Therefore, Cq1 is non-empty. Similarly, Cq2 is also non-empty. Let π1 : C2 \ Z → C
given by (p1, p2) 7→ p1. Then π1 must be surjective. Otherwise, there is a point p ∈ C
such that π−1

1 (p) =
(
{p} ×C

)
\ Z is empty. Then, p ×C ⊆ Z contradicts with ∆C2 ⊆ Z.

Let eqi ∈ GrG,qi be the base point. Consider the following map

(84) Pice((GrG,C × GrG,C)|C2
ξ\Z

)→ Pice(GrG,Cq2
) × Pice(GrG,Cq1

)

given by L 7→ (L1,L2), where L1 := L|GrG,Cq2
×eq2

and L2 := L|eq1×GrG,Cq1
are regarded as

line bundles on GrG,Cqi
respectively. We claim (84) is an isomorphism.
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We first prove the injectivity. By Theorem 5.3, we have isomorphisms

(85) Pice(GrG,C) ' Pice(GrG,Cqi
) ' Z.

For any L ∈ Pice((GrG,C × GrG,C)|C2
ξ\Z

)), by the isomorphism (85), L1 and L2 uniquely
extend to rigidified line bundles on GrG,C, which will be still denoted by L1 and L2. Set

L′ := L−1 ⊗ (L1 �L2)|C2
ξ\Z
.

By Lemma 5.1, L′ is the pullback of some line bundle M on C2
ξ \ Z via the projection

π : (GrG,C × GrG,C)|C2
ξ\Z
→ C2

ξ \ Z. Note that M ' e∗π∗M ' e∗L′ is trivial. Then,
L′ ' π∗M is trivial. Thus, L ' (L1 �L2)|C2

ξ\Z
. This proves the injectivity of (84).

Given any (L1,L2) ∈ Pice(GrG,Cq2
) × Pice(GrG,Cq1

), we still denote their extensions to
GrG,C by (L1,L2). Clearly, the line bundle (L1 � L2)|C2

ξ\Z
∈ Pice((GrG,C × GrG,C)|C2

ξ\Z
) is

mapping to (L1,L2) via the map (84). This shows that (84) is also surjective.
In summary, we have an isomorphism

(86) Pice(GrG,C2
ξ\Z

) ' Pice(GrG,C) × Pice(GrG,C).

From construction, this map is exactly the inverse map of (82), and it gives rise to the
multi-central charge map (83). This completes the proof of part (1) for n = 2.

By Proposition 5.4, the following composition map is injective,

ι : Pice(GrG,C2\Z)→ Pice(GrG,C2
ξ\Z

)
cξ
−→ Z × Z.

LetL ∈ Pice(GrG,C2\Z). Suppose ι(L) = (a, b), i.e. c(L|GrG,Cq2
×eq2

) = a and c(L|eq1×GrG,Cq1
) =

b. Suppose that the central charge of L|GrG,(q1 ,q1) is d. We follow an argument in [Zh3,
Lemma 3.4.3] to show b = d = a. Consider the following convolution and projection
morphisms

m : ConvG,C2\Z → GrG,C2\Z, pr : ConvG,C2\Z → GrG,C.

Note that pr−1(eq1) ' GrG,C1 , where C1 := Cq1 ∪ Γ · q1. We regard L′ := (m∗L)|pr−1(eq) as
a line bundle on GrG,C1 . We denote by φ the composition map pr−1(eq1) ∩ ConvG,(q1,q1) '

GrG,q1 ' GrG,(q1,q1). Then, φ is exactly the restriction of the local convolution map
m(q1,q1) : ConvG,(q1,q1) → GrG,(q1,q1). Thus, the central charge of L′|q1 ' φ∗(L|(q1,q1)) is
equal to the central charge of L(q1,q1) which is d.

On the other hand, for any p ∈ Cq1 , we have an isomorphism ConvG,(q1,p)
m(q1 ,p)
−−−−→

GrG,(q1,p) ' GrG,q1 × GrG,p. This isomorphism restricts to an isomorphism ψ : pr−1(eq1) ∩
ConvG,(q1,p) ' eq1 ×GrG,p. Thus, the central charge ofL′|p ' ψ∗(L|eq1×GrG,p) is b. SinceL′

is a line bundle on GrG,C1 , the central charge of L′|x is constant along x ∈ C1. It follows
that b = d. Since, GrG,C2\Z is S 2-symmetric, we also have a = d. This completes the
proof for n = 2.

When n ≥ 3, let ξ be the finest partition of [n]. Fix an arbitrary point (q1, . . . , qn) ∈
Cξ \ Z. Denote by ei the base point in GrG,qi . By induction on n and using the same
argument as in showing the isomorphism (86), one can prove that (82) is an isomorphism
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and its inverse map gives rise to the multi-central charge map (83). Moreover, there is a
commutative diagram
(87)

Pice(GrG,Cn
ξ\Z) //

��

cξ

,,

Pice(GrG,Cn−1
ξ′
\Zn
× en) × Pice(x × GrG,C\Zx)

cξ′×c

��

Pice(GrG,C\Zy × y) × Pice(e1 × GrG,Cn−1
ξ′
\Z1

) c×cξ′
// Zn

.

where ξ′ is the minimal partition of [n − 1], x = (e1, . . . , en−1), y = (e2, . . . , en), Zx =

{ p ∈ C | (q1, . . . , qn−1, p) < Cn
ξ \ Z }, Zy = { p ∈ C | (p, q2, . . . , qn) < Cn

ξ \ Z }, Zn = {~p ∈
Cn−1 | (~p, qn) < Cn

ξ \ Z}, and Z1 = {~p ∈ Cn−1 | (q1, ~p) < Cn
ξ \ Z}. By Proposition 5.4, the

following composition map is injective,

ι : Pice(GrG,Cn\Z)→ Pice(GrG,Cn
ξ\Z)

cξ
−→ Zn.

Let L ∈ Pice(GrG,C2\Z). Suppose ι(L) = (a1, . . . , an). By induction on n and the commu-
tativity of (87), we have a1 = a2 = · · · = an = c(L). �

Lemma 5.6. Let X be an irreducible smooth Γ-curve consisting of exactly one ramified
point p. Suppose f : X → A1 is a Γ-equivariant étale morphism sending p to 0, where
the Γ-action on A1 is defined by (66). Let n ≥ 2 and Z = {(x1, . . . , xn) ∈ Xn | x̄i ,

x̄ j, f (xi) = f (x j) for some i, j}. We have an isomorphism

c : Pice(GrGX̄ ,Xn\Z) ' Z.

Proof. We first show that Z is a closed subvariety in Xn. When n = 2, Z = {(x1, x2) ∈
X2 | x̄1 , x̄2, f (x1) = f (x2)}. Note that Z = (X ×A1 X)\∆X. Since f is étale, the diagonal
morphism ∆ : X → X ×A1 X is an open embedding, cf. [SP, Tag 06CR] and [SP, Tag
05W1]. Thus, Z is a closed subvariety of X × X. When n ≥ 3, let Zi, j = {(x1, . . . , xn) ∈
Xn | x̄i , x̄ j, f (xi) = f (x j)}. Then, Zi, j ' Xn−2 × Z′ is closed in Xn, where Z′ := {(x1, x2) ∈
X2 | x̄1 , x̄2, f (x1) = f (x2)}. Thus, Z =

⋃
i, j Zi, j is closed in Xn.

Given any x ∈ X, in view of Proposition 5.5, the map Pice(GrXn\Z) ↪→ Z sending
L to the central charge of L|(x,...,x) is an embedding. On the other hand, by part (1) of
Corollary 4.7, we have an isomorphism

GrGX̄ ,Xn\Z ' GrGĀ1 ,An ×An (Xn \ Z).

Consider the natural morphism φ : GrGX̄ ,Xn\Z → GrGĀ1 ,An . Pulling back LAn via φ, we get
a line bundle φ∗LAn on GrGX̄ ,Xn\Z. Note that (φ∗LAn)|(x,...,x) has the same central charge as
(LAn)|( f (x),..., f (x)), which is 1. It follows that Pice(GrGX̄ ,Xn\Z) ↪→ Z is also surjective. �

Proposition 5.7. (1) Let X be an irreducible smooth curve. Let G be a simply-
connected simple algebraic group. Then, the central charge map c : Pice(GrG,Xn)→
Z is an isomorphism.

(2) Let X be an irreducible smooth curve with a faithful Γ-action and assume that
all ramified points in C are unramified. Then, the central charge map c :
Pice(GrG,Xn)→ Z is an isomorphism.
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Proof. Part (1) follows from [Zh3, Corollary 3.4.4.]. It can also be shown by applying
Proposition 5.5 to the case when Γ = {e}.

For part (2), by Corollary 4.7 (2), we have an isomorphism α : GrG,Xn\Z ' GrG,Xn\Z for
Z = {~p ∈ Cn | pi = γ·p j for some 1 ≤ i, j ≤ n, γ , e}. By part (1), the central charge map
c : Pice(GrG,Xn) ↪→ Pice(GrG,Xn\Z) → Z is an isomorphism. Let LXn\Z ∈ Pice(GrG,Xn\Z)
denote the restriction of the level one line bundle LXn constructed in part (1). Pulling
back LXn\Z along α, we get a rigidified line bundle on GrG,Xn\Z, denoted byLXn\Z. Let ~γ ∈
Γn. Consider the isomorphism ~γ : Xn → Xn given by (p1, . . . , pn) 7→ (γ1 p1, . . . , γn pn). It
induces an isomorphism ~γ : GrG,Xn\Z → GrG,Xn\~γ(Z). Pushing forward LXn\Z along ~γ, we
get a rigidified line bundle LXn\~γ(Z) ∈ Pice(GrG,Xn\~γ(Z)).

Note that ~γ(Z) = {~p ∈ Cn | there exist 1 ≤ i, j ≤ n such that pi = γ · p j for some γ ,
γiγ
−1
j }. We have

⋂
~γ ~γ(Z) = ∅. Hence, {Xn \~γ(Z)}~γ is a open cover of Xn. By Propostition

5.4, the restiction map Pice(GrG,Xn\(~γ(Z)∪~γ′(Z))) → Pice(GrG,Xn
ξ
) is injective, where ξ is the

finest partition of [n]. By Proposition 5.5, this induces an embedding

(88) Pice(GrG,Xn\(~γ(Z)∪~γ′(Z))) ↪→ Zn

for any ~γ, ~γ′ ∈ Γn. From construction, the images of the restrictions of the line bun-
dles LXn\~γ(Z) and LXn\~γ(Z) to GrG,Xn\(~γ(Z)∪~γ′(Z)) under the map (88) are (1, 1, . . . , 1). By
Lemma 5.2, we conclude that the restrictions of LXn\~γ(Z) and LXn\~γ′(Z) to the intersec-
tion GrG,Xn\(~γ(Z)∪~γ′(Z)) are isomorphic. Hence, we can glue these line bundles {LXn\~γ(Z)}~γ.
This produce a line bundle on GrG,Xn , denoted by LXn . From construction, c(LXn) = 1.
Therefore, c is an isomorphism. �

Theorem 5.8. Let C be an irreducible smooth curve with a faithful Γ-action and assume
that all ramified points in C are totally ramified.

(1) For n ≥ 1, the central charge map (76) is an isomorphism

c : Pice(GrG,Cn) ' Z.

(2) For n ≥ 2, let ξ = (I, J) be a partition of [n]. Let L, LI , LJ be the regidified
line bundles over GrG,Cn , GrG,CI , GrG,CJ respectively. Suppose they have the same
central charge. Then, we have an isomorphism of the line bundles on GrG,Cn

ξ

L|Cn
ξ
' (LI �LJ)|Cn

ξ
.

Proof. The case when n = 1 has been proved in Theorem 5.3.
For n ≥ 2, the central charge map c is injective by Proposition 5.5. Let ξ = (I1, . . . , Ik)

be a nontrivial partition. Since |I j| < n, by induction on n, we have an isomorphism
c : Pice(Gr

G,CI j ) ' Z. Let LCI j be the rigidified line bundle on Gr
G,CI j such that c(LCI j ) =

1. Recall that we have a factorization GrG,Cn
ξ\Z ' (GrG,CI1 × · · · × GrG,CIk )|Cn

ξ\Z. Set
LCn

ξ
:= (LCI1 � · · · �LCIk )|GrG,Cn

ξ
.

Let R := {p1, . . . , pk} be the set of ramified points in C. Set C̊ = C\R. By Proposition
5.7, Pice(GrG,(C̊)n) ' Z. Let LC̊n denote the level one line bundle on GrG,(C̊)n constructed
in Proposition 5.7. On the other hand, for each pi, there is a neighborhood Ui of pi with
a Γ-equivariant étale morphism fi : Ui → A

n. Let

(89) Zi := {(x1, . . . , xn) ∈ Un
i | x̄a , x̄b, fi(xa) = fi(xb) for some 1 ≤ a < b ≤ n}

43



be a closed subvariety in Un
i . By Lemma 5.6, pulling back LAn via the natural map

GrGŪi
,(Ui)n\Zi → GrGĀ1 ,An , we get a line bundle L(Ui)n\Zi ∈ Pice(Gr(Ui)n\Zi) whose central

charge is 1. Note that
{
Cn
ξ , (Ui)n \ Zi, (C̊)n}

ξ,i is an open covering of Cn, and pairwise
intersections are of the form Xn

ξ , Xn
ξ \ ZX, or Xn \ ZX for some open subset X in C and

some closed subset ZX in Xn. In view of Proposition 5.5 and Lemma 5.6, the restrictions
of rigidified line bundles {LCn

ξ
,L(Ui)n\Zi ,LC̊n}ξ,i, are isomorphic on the pairwise intersec-

tions. Thus, we can glue these line bundles and get a factorizable rigidified line bundle
LCn whose central charge is 1. Hence, c is also surjective. Part (2) follows from the fact
that LCn |GrG,Cn

ξ
' (LCI1 � · · · �LCIk )|GrG,Cn

ξ
. �

We remark that the proof of Theorem 5.8 also works when Γ is a trivial group. We
call the line bundle LCn constructed in Theorem 5.8 the level one line bundle on GrG,Cn .

5.2. L+GCn-equivariant structure on the line bundleLCn . Recall the jet group scheme
L+GCn in Definition 4.3. In this subsection, we will show that when G is simply-
connected, there is a unique L+GCn-equivariant structure on the level one line bundle
LCn .

Let L be a line bundle on GrG,Cn (here we think of line bundles from the point of view
as in Appendix C). An L+GCn-equivariant structure onL is a collection of isomorphisms
{φg,x : Lx ' Lgx | g ∈ L+GCn(S ), x ∈ GrG,Cn(S )} for any C-scheme S , satisfying the
cocycle conditions φg′,gx ◦ φg,x = φg′g,x. We define a group scheme

(90) L̂+GCn(S ) :=
{(

g, {φg,x}
) ∣∣∣ g ∈ L+GCn , φg,x : Lx ' Lgx, x ∈ GrG,Cn(S )

}
,

where the multiplication is defined by (g′, {φg′,x}) · (g, {ψg,x}) = (g′g, {φg′,gx ◦ ψg,x}). One
can easily check the associativity. By definition, L has an L+GCn-equivariant structure
implies that the following central extension has a splitting β : L+GCn → L̂+GCn

(91) K → L̂+GCn
pr
−→ L+GCn ,

where K = {φ | φ : L ' L} is a group scheme over Cn, and pr : L̂+GCn → L+GCn

is the projection map. Conversely, if the extension (91) has a splitting β : L+GCn →

L̂+GCn , say β(g) = (g, {φg,x}), then it gives a collection of isomorphisms {φg,x : Lx '

Lgx | g ∈ L+GCn(S ), x ∈ GrG,Cn(S )}. Since β is a group homomorphism, we have
(g′, {φg′,x}) · (g, {φg,x}) = (g′g, {φg′g,x}). Hence φg′,gx ◦ φg,x = φg′g,x, which implies that L
is L+GCn-equivariant. Therefore, the extension (91) has a splitting if and only if L is
L+GCn-equivariant.

Lemma 5.9. If the extension (91) has a splitting β : L+GCn → L̂+GCn , then it is unique.

Proof. Let β1, β2 be two splittings, which give a group homomorphism φ : L+GCn →

K sending g ∈ L+GCn to β1(g) · β2(g)−1. For any ~p ∈ Cn, we have an isomorphism
L+G~p '

∏k
j=1 L+Gq j , where

⊔
j Γ · q j =

⋃
i Γ · pi. Over the fiber at ~p, the morphism

φ~p : L+G~p → K~p is trivial since the character of each L+Gq j is trivial, (when q j is
unramified, the character of L+Gq j ' G(O) is trivial, cf. [So, Corollary 9.1.3]; when q j is
ramified, there is a quotient map L+Gq j → Gσ whose kernel is pro-unipotent, hence the
character of L+Gq j is trivial since Gσ is simple, cf. [BH, Table 2.3].) Thus φ is trivial. �
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From now on, we take C to be A1 with the standard Γ-action as in (66) and prove the
following Theorem.

Proposition 5.10. Let L be a line bundle over GrG,An . Given an integer l > 0, if the l-th
power Ll of the line bundle L has an L+GAn-equivariant structure, then L also has an
L+GAn-equivariant structure.

Before proving this proposition, we first make some preparations. By Proposition
4.24, to show a line bundle L on GrG,An has an L+GAn-equivariant structure, it suffices to

consider the restriction of L to each BD Schubert variety Gr
~λ

G,An .
For any integer k, we define a group scheme L+

kGĀn which is of finite type as follows,
for each C-algebra R,

(92) L+
kGĀn(R) := G

( R[t, z1, . . . , zn](∏n
i=1

∏
γ∈Γ(t − γ · zi)k))Γ

.

Set, L+
kGAn = L+

kGĀn ×Ān An. Clearly, L+GAn = lim
←−−

L+
kGAn . When ξ is the finest partition

of [n], we have a factorization

L+
kGAn

ξ
'

(
L+

kGA1 × · · · × L+
kGA1

)
|An

ξ
.

Lemma 5.11. The action of L+GAn on Gr
~λ

G,An factors through the action of L+
kGAn for

sufficiently large integer k.

Proof. Let Å = A1 \ {0}. When n = 1, we have Gr
λ

G,Å1 ' Gr
λ

G × Å
1 and L+GÅ1 '

GO × Å1, cf. [Zh3, Lemma 3.4.2]. For any integer k, we have L+
kGÅ1 ' GOk × Å

1, where

Ok := C[t]/(tk). It is well-known that the GO-action on Gr
λ

G factors through GOk for some
k > 0. Thus, the L+GÅ1-action on the Schubert variety Gr

λ

G,Å1 factors through the action
of L+

kGÅ1 for this k. Denote by KA1 the kernel of the morphism L+GA1 → L+
kGA1 . Then

it suffices to show KA1 acts trivially on the Schubert variety Gr
λ

G,A1 . This is equivalent

to that the composition of morphisms KA1 ' KA1 ×A1 A1 sλ
−→ KA1 ×A1 GrG,A1

act
−−→ GrG,A1

agrees with the constant morphism KA1 → A1 sλ
−→ GrG,A1 . This is true over Å1. Hence

they must agree over A1, since KA1 is irreducible.
When n ≥ 2, let ξ = ({1}, . . . , {n}) be the finest partition of [n]. We have

Gr
~λ

G,An
ξ
'

(
Gr

λ1

G,A1 × · · · × Gr
λn

G,A1

)∣∣∣
An
ξ

.

Thus, the L+GAn
ξ
-action on the Schubert variety Gr

λ

G,An
ξ

factors through the action of
L+

kGAn
ξ

for some k > 0. By the same argument as before, for this k, the L+GAn-action on

the Schubert variety Gr
λ

G,An factors through the action of L+
kGAn . �

Lemma 5.12. Let p : X → S and q : Y → S be smooth schemes over S of finite type.
Suppose that f : X → Y is a morphism such that fs : Xs → Ys is an isomorphism on the
fiber for each s ∈ S , then f : X → Y is an isomorphism.
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Proof. The proof is taken from Mathematics Stack Exchange [Dr]. By assumption X
and Y are flat over S and fs is an isomorphism for each s ∈ S , then f is a bijective,
unramified, flat morphism. Thus, f is étale and injective on the C points of X and Y . It
follows that f is an open immersion. Hence f is an isomorphism. �

Lemma 5.13. Let φ : G → H be a morphism of connected affine algebraic groups over
C, such that the induced morphism dφ : Lie (G) → Lie (H) of their Lie algebras is an
isomorphism. If H is simply-connected, then φ is an isomorphism.

Proof. cf. [Sp1, Exercise 5.3.5] �

Proof of Proposition 5.10. It suffices to prove this proposition for each variety Gr
~λ

G,An .
By Lemma 5.11, the L+GAn-action factors through the action of the group scheme L+

kGAn

for some k (depending on ~λ). We still denote by L its restriction to Gr
~λ

G,An .

By assumption, Ll has an L+
kGAn-equivariant structure on Gr

~λ

G,An , i.e. there are isomor-

phisms Φg,x : Ll
x ' L

l
gx such that Φg′,gx ◦ Φg,x = Φg′g,x for any g, g′ ∈ L+

kGAn , x ∈ Gr
~λ

G,An .
We define a groups scheme L+

kGAn as follows, for each C-algebra R,

(93) L+
kGAn(R) :=

(g, {φg,x}
) ∣∣∣∣∣∣∣∣

g ∈ L+
kGAn(R), φg,x : Lx ' Lgx such that

φl
g,x = Φg,x for x ∈ Gr

~λ

G,An(R)

 .
There is a central extension

(94) 1An → Zl → L+
kGAn

p
−→ L+

kGAn → 1An ,

where Zl = {φ : L → L | φl = id : Ll → Ll} is a finite group scheme over An. To prove
our proposition, it suffices to show that this central extension splits.

When n = 1, set Å1 = A1 \ {0}. There is a splitting over Å1

1 // Zl|Å1
// L+

kGÅ1 p
// L+

kGÅ1

β
tt

// 1 ,

since Gr
λ

G,Å1 ' Gr
λ

G × Å
1 and L+GÅ1 ' GO × Å1. Let L+

kG
†

A1 be the schematic image
of β : L+

kGÅ1 → L+
kGA1 (we remove the non-identity components over 0 if they occur).

By [Ha, Proposition 9.8], L+
kG
†

A1 is a flat group scheme over A1. By Cartier’s Theorem
and [Ha, Theorem 10.2], L+

kG
†

A1 is smooth over A1. We claim that the natural morphism
p : L+

kG
†

A1 → L+
kGA1 is an isomorphism. By Lemma 5.12, it suffices to check the fibers

L+
kG
†
x ' L+

kGx are isomorphic at any x ∈ A1. It is true over Å1, since there is splitting β
over Å1. When x = 0, we have

(95) 1→ µl → L+
kG0 → L+

kG0 → 1,
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where µ` denote the group of `-th root of unity. Since L+
kG
†

A1 and L+
kGA1 are both smooth

group schemes over A1 and isomorphic over Å1, their fibers at 0 have the same dimen-
sion. By (95), Lie(L+

kG0) ' Lie(L+
kG0). By dimension consideration, the injective map

Lie(L+
kG
†

0) ↪→ Lie(L+
kG0) ' Lie(L+

kG0)

must be an isomorphism. Moreover, the kernel of the quotient map L+
kG0 → Gσ is

unipotent. By [HK2, Lemma 6.1], Gσ is simply-connected. Thus, L+
kG0 is also simply-

connected. In view of Lemma 5.13, the morphism L+
kG
†

0 → L+
kG0 is an isomorphism.

Finally, by Lemma 5.12, the morphism p : L+
kG
†

A1 → L+
kGA1 is also an isomorphism.

This gives a splitting of the central extension (94).

When n = 2, there exists an isomorphism

(96) GrG,A1×Å1 ' GrG,A1×{1} × Å
1

given by (a, b,F , β) 7→
(
(b−1a, 1, (ρ̄b−1)∗F , (ρ̄b−1)∗β), b

)
, where ρ̄b−1 : Ā1 → Ā1 is given

by c̄ 7→ b−1c. This isomorphism isGm-equivariant, where on the left the action is induced
from the simultaneous dilation on A1 × Å1 and on the right the action is induced from
the dilation on Å1.

Let U = A1\{1, σ(1), . . . , σm−1(1)}. By the factorization property, we have Gr
λ1,λ2

G,U×{1} '

Gr
λ1

G,U × Gr
λ2

G . Thus, we have a splitting over U × {1},

(97) 1 // Zl|U // L+
kGU×{1} p

// L+
kGU×{1}

β
ss

// 1 .

By the same argument as in the case when n = 1, we can extend the splitting β to a
splitting α over A1 × {1}. Via the isomorphism (96), the Gm-dilation produces a splitting
α1 : L+

kGA1×Å1 → L+
kGA1×Å1 from α. By a similar argument, there exists a splitting

α2 : L+
kGÅ1×A1 → L+

kGÅ1×A1 . By the uniqueness of the splitting, α1 and α2 agree on
Å1 × Å1. Thus, we get a splitting over (A1 × Å1) ∪ (Å1 ×A1). By Hartogs’ Lemma, this
splitting extends to A1 × A1.

When n > 2, we prove it by induction on n. For any nontrivial partition ξ = (I1, . . . , I j)
of [n], we have factorizations GrG,An

ξ
' (GrG,AI1 ×· · ·×Gr

G,AI j )|An
ξ

and L+
kGAn

ξ
' (L+

kGAI1 ×

· · · × L+
kGAI j )|An

ξ
. By induction, there is a splitting

1 // Zl|An
ξ

// L+
kGAn

ξ
p
// L+

kGAn
ξ

βξ
tt

// 1 .

Moreover, βξ and βξ′ agree on An
ξ ∩ A

n
ξ′ by the uniqueness of splitting. Hence, we can

glue these morphisms {βξ}ξ to get a splitting β : L+
kG

⋃
An
ξ
→ L+

kG
⋃
An
ξ

over
⋃

ξ A
n
ξ . Note

that the complement of
⋃

ξ A
n
ξ is ∆[n], which has codimension greater than or equal to 2.

By Hartogs’ Lemma, β extends to a unique morphism L+GAn → L+GAn . �

Remark 5.14. When Γ is taken to be the trivial group, we have GrG,Cn = GrG,Cn . Clearly
the proofs of Lemma 5.9 and Proposition 5.10 are still valid.
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Following [Fa], we construct a determinant line bundle Ldet on GrG,Cn , which has a
natural L+GCn-action. Consider the adjoint representation Ad : G → GL(V0). It induces
a morphism φ : GrG,Cn → GrGL(V0),Cn . For each morphism Spec(R) → GrGL(V0),Cn , i.e. a
triple

(
~p = (p1, . . . , pn),V, β : V|C̄R\∪Γ p̄i

' V|C̄R\∪Γp̄i

)
, where pi ∈ CR, and V is a vector

bundle on C̄R, there exists N > 0 such that V0(−N(
∑

Γ p̄i)) ⊆ V ⊆ V0(N(
∑

Γ p̄i)). We
associate a line bundle

(98)
∧top(V0(N(

∑
Γ p̄i)/V) ⊗

∧top(V0(N(
∑

Γ p̄i)/V0)−1

on Spec(R). This assignment gives a line bundle Ldet on GrGL(V0),Cn . Then the pullback
φ∗Ldet is a line bundle on GrG,Cn with a natural L+GCn-action, we still denote it by Ldet.

Theorem 5.15. Let Γ be either trivial or generated by σ. Let C be an irreducible smooth
curve with a faithful Γ-action such that all ramified points in C are totally ramified.
There is an L+GCn-equivariant structure on the level one line bundle LCn over GrG,Cn .

Proof. We first prove the case when Γ is trivial and G is the constant group scheme. Let
{Ui} be a cover of C with étale morphisms Ui → A

1. By Proposition 4.4, we have the
following isomorphism for some Zi closed in Un

i ,

(99) GrG,Un
i \Zi ' GrG,An ×An (Un

i \ Zi).

Note that the determinant line bundle Ldet on GrG,An automatically has a trivializa-
tion along the section e. By Theorem 5.7(1), we have Ldet ' Ll

An for some l > 0,
where LAn denotes the level one line bundle on GrG,An . Applying Proposition 5.10
to the case when Γ is trivial, we get an L+GAn-equivariant structure on LAn . Since
the isomorphism (99) commutes with the L+GUn

i \Zi action, the level one line bundle
LUn

i \Zi := φ∗(LAn) on GrG,Un
i \Zi is equipped with an L+GUn

i \Zi-equivariant structure, where
φ : GrG,Un

i \Zi → GrG,An is the natural morphism induced from (99). When n = 1, Zi is
empty, the level one line bundle LC on GrG,C can be recovered by gluing these rigidified
line bundles LUi . Hence, LC also has an L+GC-equivariant structure by the uniqueness
of a splitting, cf. Lemma 5.9. When n ≥ 2, for any non-trivial partition ξ = (I1, . . . , Ik) of
[n], the restriction of the line bundleLCn

ξ
' (LCI1�· · ·�LCIk )|Cn

ξ
has an L+GCn

ξ
-equivariant

structure by induction. Note that {Un
i \Zi,Cn

ξ }i,ξ is a cover of Cn and the level one line bun-
dle LCn can be recovered by gluing the rigidified line bundles {L(Ui)n\Zi ,LCn

ξ
}i,ξ. Again,

by the uniqueness of a splitting, LCn is equipped with an L+GCn-equivariant structure.

When Γ is the cyclic group generated by the standard automorphism σ, let {C̊,Ui}
r
i=1

be the covering of C constructed in Theorem 5.8. Recall Proposition 5.7 for the con-
struction of the level one line bundle L(C̊)n on GrG,(C̊)n . By the case when Γ is trivial and
the uniqueness of a splitting, L(C̊)n has an L+G(C̊)n-equivariant structure. For each i, by
Corollary 4.7, we have a base change map

(100) GrG,Un
i \Zi ' GrG,An ×An (Un

i \ Zi),

where Zi is define in (89). By the same argument as in the case when Γ is trivial, the level
one line bundleL(Ui)n\Zi on GrG,Un

i \Zi has an L+G(Ui)n\Zi-equivariant structure for 1 ≤ i ≤ r.
We prove the theorem by induction on n. When n = 1, the level one line bundle LC is
constructed by gluing the rigidified line bundles {LC̊,LUi}

r
i=1. Thus, LC is equipped with
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an L+GC-equivariant structure naturally by the uniqueness of a splitting, cf. Lemma 5.9.
When n ≥ 2, for any non-trivial partition ξ = (I1, . . . , Ik) of [n], the restriction of the
line bundle LCn

ξ
' (LCI1 � · · ·�LCIk )|Cn

ξ
has an L+GCn

ξ
-equivariant structure by induction.

From the proof of Theorem 5.8, the level one line bundleLCn can be recovered by gluing
the rigidified line bundles {L(C̊)n ,L(Ui)n\Zi ,LCn

ξ
}i,ξ. Again, by the uniqueness of a splitting,

LCn is equipped with an L+GCn-equivariant structure. �

5.3. Level one line bundle on BG Grassmannians of adjoint type. In this subsection,
we assume that G is of adjoint type. Let G′ be the simply-connected cover of G. Let T ′

be the maximal torus of G′ which is the preimage of T via the projection G′ → G. We
have the natural embedding X∗(T ′) ⊆ X∗(T ).

Recall that the components of affine Grassmannian GrG can be parameterized by the
set X∗(T )/Q̌. Let A1 be the affine line with a coordinate z and the standard Γ-action as
in (66). Set Å1 = A1 − 0. Then, GrG,Å1 ' GrG × Å

1, cf. [Zh3, Lemma 3.4.2]. Thus,
the components of GrG,Å1 can be parameterized by the elements of X∗(T )/Q̌. For any
κ ∈ X∗(T )/Q̌, denote by GrG,Å1[κ] the component corresponding to κ. Let GrG,A1[κ]
denote the closure of GrG,Å1[κ] in GrG,A1 , and we call it the κ-component of GrG,A1 .

More generally, for n ≥ 2, let ξ be the finest partition of [n], then there is a factoriza-
tion over the open subset Ån

ξ := {~p ∈ (Å1)n | p̄i , p̄ j ∀i , j} of An

GrG,Ån
ξ
' (GrG,Å1 × · · · × GrG,Å1)|Ån

ξ
.

For any ~κ = (κ1, . . . , κn) ∈
(
X∗(T )/Q̌

)n, let GrG,Ån
ξ
[~κ] := (

∏
GrG,Å1[κi])|Ån

ξ
. Define

GrG,An[~κ] to be the closure of GrG,Ån
ξ
[~κ] in GrG,An , and again call it the ~κ-component

of GrG,An . When ~κ = ~0, we denote it by GrG,An[~o].
Let G′ be the group scheme ResC/C̄(G′C)Γ. There is a natural morphism G′ → G. Let

ι : GrG′,An → GrG,An be the morphism given by (~p,F , β) 7→ (~p, F̄ , β̄), where F̄ = F ×G
′

G

and β̄ is the trivialization induced from β.

Lemma 5.16. The morphism ι : GrG′,An → GrG,An is a closed embedding.

Proof. From ι, we naturally get a morphism ι~λ : Gr
~λ

G′,An → Gr
~λ

G,An for any ~λ ∈ (X∗(T ′)+)n.

Over each point ~p ∈ An, the morphism ι~λ,~p : Gr
~λ

G′,~p → Gr
~λ

G,~p is an isomorphism,
cf. Corollary 4.20. By Lemma 5.12, ι~λ must be an isomorphism. Taking the direct limit
of ι~λ with respect to the standard partial order �, by Proposition 4.24 we recover the map
ι. Thus, ι is a closed embedding. �

From Lemma 5.16, the morphism ι restricts to an isomorphism GrG′,Ån
ξ
' GrG,Ån

ξ
[~o].

Thus, we get an isomorphism

GrG′,An ' GrG,An[~o].

For each 1 ≤ i ≤ n, let zi be the i-th coordinates of An. For any ~µ = (µ1, . . . , µn) ∈
(X∗(T ))n, we define

n~µ :=
n∏

i=1

∏
γ∈Γ

(t − γ−1 · zi)γ(µi)
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to be a section An → LGAn , where t is the standard coordinate of C. Point-wisely,
it sends ~p to

∏
i,γ(t − γ(pi))γ(µi) ∈ LG~p. Let κi be the image of µi in X∗(T )/Q̌, then

Gr
~µ

G,An ⊆ GrG,An[~κ], and the translation by n~µ gives an isomorphism

(101) T~µ : GrG,An[~o] ' GrG,An[~κ].

Let L′An be the level one line bundle over GrG′,An , which is constructed in Section 5.1. It
gives rise to a line bundle LAn over GrG,An[~o] via the isomorphism GrG′,An ' GrG,An[~o].
Denote by LAn,~µ := (T~µ)∗LAn the push forward of LAn via T~µ.

Lemma 5.17. Given any ~µ,~ν ∈
(
X+
∗ (T )

)n whose images in
(
X∗(T )/Q̌

)n are ~κ, there is an
isomorphism LAn,~ν ' LAn,~µ of line bundles over GrG,An,~κ.

Proof. Consider the isomorphism T~ν−~µ : GrG,An[~o] → GrG,An[~o]. Regard (T~ν−~µ)∗LAn and
LAn as line bundles over GrG′,An . Then they have rigidified structures automatically since
any line bundle over An is trivializable. Moreover, they have the same central charge at
any point. By Theorem 5.8, (T~ν−~µ)∗LAn ' LAn . Pushing forward via T~µ, we get an
isomorphism LAn,~ν ' LAn,~µ. �

From this lemma, the line bundle (T~µ)∗LAn over GrG,An[~κ] only depends on ~κ, we shall
denote it by LAn,~κ.

Proposition 5.18. Let ~κ = (κ1, . . . , κn) ∈
(
X∗(T )/Q̌

)n, set κ :=
∑
κi, then

(1) There is an isomorphism of line bundles over GrG,∆An [~κ]

LAn,~κ|∆An ' LA1,κ.

(2) Given a partition ξ = (I, J) of [n], then there is an isomorphism of line bundles
over GrG,Cn

ξ
[~κ]

LAn,~κ|An
ξ
'

(
LAI ,~κI �LAJ ,~κJ

)
|An

ξ
.

Proof. (1) By Theorem 5.8, the restriction ofL′An |∆An to the diagonal GrG′,∆An ' GrG′,A1 is
isomorphic toL′

A1 . Thus,LAn |∆An ' LA1 as line bundles over GrG,∆An [~o] ' GrG,A1[o]. For
each i, choose µi ∈ X∗(T ) such that its image in X∗(T )/Q̌ is κi. Set ~µ = (µ1, . . . , µn) and

µ =
∑
µi. Restricting the section n~µ to the diagonal, we get a map A1 ' ∆An

n~µ
−→ LG∆An '

LGA1 sending p to
∏

γ(t − γ(p))γ(
∑
µi). Let µ =

∑
µi ∈ X∗(T ), then this composition map

coincides with the section nµ : A1 → LGA1 . Therefore,

LAn,~κ|∆An '
(
(T~µ)∗LAn

)
|∆An ' (Tµ)∗LA1 ' LA1,κ

as line bundles over GrG,∆An [~κ].
(2) It follows from the factorization properties of L′An and n~µ. �

Proposition 5.19. For any ~κ ∈
(
X∗(T )/Q̌

)n, there is a unique L+G′An-equivariant struc-
ture on LAn,~κ.

Proof. In view of Lemma 5.9, the uniqueness is clear. We now prove the existence.
Choose ~µ ∈ (X∗(T ))n such that its image in (X∗(T )/Q̌)n is ~κ. Recall that LAn,~κ is the push
forward of LAn via T~µ : GrG,An[~o] ' GrG,An[~κ]. Thus, an L+G′An-equivariant structure on
LAn,~κ is equivalent to an Adn−~µ(L

+G′An)-equivariant structure on the line bundle LAn over
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GrG,An[~o]. By the definition of LAn , this is equivalent to an Adn−~µ(L
+G′An)-equivariant

structure on the level one line bundle L′An over GrG′,An .
Consider the morphism φ : GrG,An → GrGL(V0) induced from the adjoint represen-

tation G → GL(V0). One can define a determinant line bundle Ldet over GrGL(V0)

by (98). Then the pullback φ∗Ldet is a line bundle over GrG,An with a natural L+GAn-
equivariant structure, which will still be denoted byLdet. Restricting to the~κ-component,
we get an L+G′An-equivariant structure on Ldet|GrG,An [~κ]. This implies that Ldet|GrG,An [~o] has
an Adn−~µ(L

+G′An)-equivariant structure. Via the identification GrG′,An ' GrG,An[~o], by
Theorem 5.8 we have Ldet|GrG,An [~o] ' (L′An)l for some l. Thus (L′An)l is Adn−~µ(L

+G′An)-
equivariant.

For any ~λ ∈ (X∗(T ))n whose image in (X∗(T )/Q̌)n is ~κ, by the same proof of Lemma

5.11, one can show the L+G′An-action on Gr
~λ

G,An ⊆ GrG,An[~κ] factors through a finite

type group scheme L+
kG
′
An . Let ~µL+G′An denote Adn−~µ(L

+G′An), and regard ~µGr
~λ

G′,An :=

T−1
~µ

(
Gr

~λ

G,An
)

as a subscheme of GrG′,An . Then the ~µL+G′An-action on ~µGr
~λ

G′,An factors

through a finite type group scheme ~µL+
kG
′
An . Define ~µL+

kG
′
An similarly as in (93), by

the same argument as in Proposition 5.10, one can show the following central extension
splits

(102) 1→ Zl →~µ L+
kG
′
An

p
−→~µ L+

kG
′
An → 1.

It follows that the line bundle L′An over GrG′,An is Adn−~µ(L
+G′An)-equivariant. Equiva-

lently, the line bundle LAn,~κ is L+G′An-equivariant. �

Definition 5.20. For any BD Schubert variety Gr
~λ

G,An , it is contained in a unique ~κ-
component GrG,An[~κ]. With no confusion, we will denote by LAn the restriction of LAn,~κ

on Gr
~λ

G,An , and call it the level one line bundle over Gr
~λ

G,An .

Corollary 5.21. The space H0(Gr
~λ

G,An ,LAn
)

is a g[t]σ-module.

Proof. By Proposition 5.19, the group scheme L+G′An acts on H0(Gr
~λ

G,An ,LAn
)
. This

induces an action of Lie(L+G′An) on H0(Gr
~λ

G,An ,LAn
)
. Note that L+G′An ' lim

←−−
L+

kG
′
An ,

where L+
kG
′
An is defined in (92). Thus,

Lie(L+G′An) ' lim
←−−

k

g

(
C[t, z1, · · · , zn]/

n∏
i=1

∏
γ∈Γ

(t − γ · zi)k
)Γ

⊗C[Ān] C[An].

There is a natural morphism g[t]σ → Lie(L+G′An) induced from the natural inclusion

C[t]→ C[t, z1, · · · , zn]. Therefore, H0(Gr
~λ

G,An ,LAn
)

is a g[t]σ-module. �

6. Global Demazure modules and BD Schubert varieties

In this section, we first equip a Gm-equivariant structure on level one line bundles on
GrG,An . Then, we prove a Borel-Weil type theorem on BD Schubert varieties for twisted
global Demazure modules.
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6.1. Gm-equivariance on the level one line bundle LAn . Let σ be a standard automor-
phism G of order m as in Section 2.2, and let Γ be the cyclic group generated by σ.
Denote by C[t] the coordinate ring of the affine space A1. Recall the standard Γ-action
on A1 given by σ(t) = ε−1t. Let π : A1 → Ā1 denote the quotient map sending a to
ā. We can identify Ā1 with A1. Under this identification, π can be regarded as the map
A1 → A1 given by a 7→ am. Similarly, we can define the Γ-action on Gm and the quotient
space Ḡm.

Let G = ResA1/Ā1
(
G × A1)Γ be the parahoric Bruhat-Tits group scheme over Ā1 as

defined in Section 4.1. For any scheme S over A1, let π∗S be the Weil restriction of
scalars from A1 to Ā1. Set A1

S = A1 × S and Ā1
S := Ā1 × π∗S . We denote by GS the

group scheme G × π∗S = G ×Ā1 Ā1
S over Ā1

S .
For any h ∈ Gm(S ), let ρh : A1

S → A
1
S be the map sending (a, s) to (h(s)a, s). It

induces a map ρ̄h : Ā1
S → Ā

1
S sending (ā, s) to (h̄(s)ā, s), where h̄ is image of h via

Gm(S )→ Ḡm(S ).

Proposition 6.1. Let S be a scheme over A1. For any h ∈ Gm(S ), there is an isomor-
phism of group schemes over Ā1

S

ρ̄∗h(GS ) ' GS .

As a consequence, the pullback (ρ̄h)∗F of a GS -torsor F over Ā1
S via ρ̄h is also a GS -

torsor.

Proof. For any scheme T over Ā1
S , denote by (ρ̄h)∗T its pull-forward via ρ̄h, i.e. (ρ̄h)∗T

is regarded as the scheme over Ā1
S via the composition T → Ā1

S

ρ̄h
−→ Ā1

S . There is
a Γ-equivariant isomorphism f : T ×Ā1

S
A1

S ' ((ρ̄h)∗T ) ×Ā1
S
A1

S of schemes, given by
(t, a) 7→ (t, hm(a)). This induces an isomorphism of groups

(ρ̄∗hGS )(T ) = GS
(
(ρ̄h)∗T

)
= G

((
(ρ̄h)∗T

)
×Ā1

S
A1

S

)Γ f
−→ G

(
T ×Ā1

S
A1

S
)Γ

= GS (T ).

Thus ρ̄∗h(GS ) ' GS .
For any GS -torsor F over Ā1

S , the pull-back ρ̄∗hF is an ρ̄∗hGS -torsor, and hence is a
GS -torsor via isomorphism ρ̄∗hGS ' GS . �

From the proof, one can see that this proposition also holds for P1. Let BunG be the
moduli stack of G-torsors on P1. For any scheme S over P1 and h ∈ Gm(S ), we define a
map

φh : BunG(S )→ BunG(S ),
sending F to ρ̄∗hF . This gives an Gm-action on BunG.

By Proposition 6.1, for any h ∈ Gm(S ), one can define the following map

ψh : GrG,A1(S )→ GrG,A1(S )(103)
(p,F , β) 7→ ( h · p, ρ̄∗hF , ρ̄

∗
hβ ).

Recall that GrG,0 = GrG , the restriction of ψh to the 0-fiber induces a map GrG (S ) →
GrG (S ), which will still be denoted by ψh. This gives a Gm-action on GrG . In fact,
one can check this action agrees with the action induced from the natural Gm-action on
O = C[[t]] sending t to a−1t for any a ∈ Gm(C).
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Now, we assume G is simply connected. By the uniformization theorem [He], we have
BunG ' G[t−1]σ\GrG as algebraic stacks. Then, we have the following commutative
diagram

GrG (S )

��

ψh
// GrG (S )

��

BunG(S )
φh
// BunG(S )

.

Let L be the level one line bundle on GrG . From [BH, Theorem 3.13], the line bundle
has a natural G[t−1]σ o Gm-equivariant structure. The G[t−1]σ-equivariant structure on
the line bundle L descends to the ample generator L of Pic(BunG). Moreover, Lemma
C.1 implies that Gm-action on L also descends to a Gm-action on L.

Let GrG,An be the Beilinson-Drinfeld Grassmannian over An. For h ∈ Gm, we define
a map GrG,An → GrG,An sending (a1, . . . , an,F , β) to (ha1, . . . , han, (hm)∗F , (hm)∗β). It
gives a Gm-action on GrG,An . Recall that the level one line bundle LAn on GrG,An is the
pull-back of L via the projection GrG,An → BunG. Then the Gm-action on L induces a
Gm-action onLAn . One can check this action is compatible with theGm-action on GrG,An .
In summary, we have the following result.

Lemma 6.2. When G is simply connected, there is a Gm-equivariant structure on the
level one line bundle LAn over GrG,An . Moreover, this Gm-equivariant structure restricts

to the natural Gm-equivariant structure on the line bundle L~p over Gr
~λ

G,~p for any ~p ∈
An. �

Let G be adjoint, and let G′ be its simply connected cover. With the same setup as in

Section 5.3, for any BD Schubert variety Gr
~λ

G,An , it is contained in a unique ~κ-component

GrG,An[~κ]. Recall Definition 5.20, the level one line bundle LAn over Gr
~λ

G,An is defined to

be the restriction of LAn,~κ to Gr
~λ

G,An .

Proposition 6.3. When G is adjoint, there is a Gm-equivariant structure on the level

one line bundle LAn over Gr
~λ

G,An . Moreover, this Gm-equivariant structure restricts to the

natural Gm-equivariant structure on the line bundle L~p over Gr
~λ

G,~p for any ~p ∈ An.

Proof. For any h ∈ Gm, we define ψh : GrG,An → GrG,An and ψ′h : GrG′,An → GrG′,An

similarly as in (103). Clearly, ψh preserves the κ-component. Hence, it restricts to an
morphism ψh : GrG,An[~κ] → GrG,An[~κ]. One can easily check that the following diagram
commutes,

GrG′,An

ψ′h
��

T~λ
// GrG,An[~κ]

ψh

��

GrG′,An

T~λ
// GrG,An[~κ]

,

where T~λ is defined in (101). LetL′An be the level one line bundle over GrG′,An . Then, the
Gm-equivariant structure on L′An induces a Gm-equivariant structure on the line bundle

53



LAn,~κ := (T~λ)∗L
′
An over GrG,An[~κ]. Restricting to Gr

~λ

G,An , we get aGm-equivariant structure
on the line bundle LAn . The second statement of the proposition directly follows from
Lemma 6.2. �

Theorem 6.4. With the same setup as in Proposition 6.3, the space H0(Gr~λG,An ,LAn) is a
graded free C[An]-module.

Proof. By Theorem 3.9, Corollary 4.20 and the isomorphism (65), the function ϕ(~p) :=
dimC H0(Gr~λ

G,~p,L~p
)

is a constant function over ~p ∈ An. Thus, H0(Gr~λG,An ,LAn) is a pro-
jective C[An]-module.

Moreover, the Gm-equivariant structure on LAn gives H0(GrG,An ,LAn) a graded struc-
ture, which is compatible with the natural grading of the polynomial ring C[An]. Using
the graded Nakayama lemma (cf. [SP, Tag 0EKB]), H0(GrG,An ,LAn) is a graded free
C[An]-module. �

6.2. Borel-Weil type theorem for twisted global Demazure modules. With the same
setup as in Proposition 6.3, by Theorem 6.4, the space H0(Gr~λG,An ,LAn) is a graded

free C[An]-module. Denote by H0(Gr~λG,An ,LAn)∨ its dual as a C[An]-module. Then,

H0(Gr~λG,An ,LAn)∨ is still a graded free C[An]-module, and is a g[t]σ-module by Corollary
5.21.

In the following context, we will simply denote by L the level one line bundle LAn

over Gr
~λ

G,An . By the factorization of Schubert varieties in Theorem 4.12 and the factor-
ization of line bundles in Proposition 5.18, we have an isomorphism

fξ : H0(Gr
~λ

G,An
ξ
,Lc)∨ ' (

H0(Gr
~λI1

G,AI1 ,L
c
AI1

)∨
⊗ · · · ⊗ H0(Gr

~λIk

G,AIk ,L
c
AIk

)∨)
⊗C[An] C[An

ξ],

By Theorem 3.13, the following g[t]σ-module

(104) Dσ(c, ~λ)An := Dσ(c, ~λ) ⊗
Aσ(c,~λ) C[An]

is a graded and free over C[An]. Finally, we have the following theorem.

Theorem 6.5. For any n > 0, there exists an isomorphism of (g[t]σ,C[An])-bimodules:

(105) ΦAn : Dσ(c, ~λ)An ' H0(Gr
~λ

G,An ,Lc)∨.
Moreover, for any nontrivial partition ξ = (I1, . . . , Ik) of [n], the following diagram
commutes
(106)

Dσ(c, ~λ)An ⊗C[An] C[An
ξ]� _

ψξ

��

ΦAn |An
ξ

// H0(Gr
~λ

G,An
ξ
,Lc)∨

∼ fξ
��(⊗

jD
σ(c, ~λI j)AI j

)
⊗C[An] C[An

ξ]
∼

(
∏

Φ j)|An
ξ

//
(⊗

j H0
(
Gr

~λI j

G,AI j
,Lc
AI j

)∨)
⊗C[An] C[An

ξ]

,

where ~λI j is defined in (31), Φ j := ΦAI j , and the map ψξ is defined in (32) in Proposition
3.17. As a consequence, ψξ is an isomorphism.
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Proof. When n = 1, set Å1 = A1 \ {0}. We have an isomorphism Gr
λ

G,Å1 ' Gr
λ

G × Å
1,

cf. [Zh3, Lemma 3.4.2]. Thus, there is an isomorphism

H0(Gr
λ

G,Å1 ,Lc)∨ ' D(c, λ) ⊗C C[Å1].

Composing with the map H0(Gr
λ

G,A1 ,Lc)∨ ↪→ H0(Gr
λ

G,Å1 ,Lc)∨, we get an embedding

(107) H0(Gr
λ

G,A1 ,Lc)∨ ↪→ D(c, λ) ⊗C C[Å1].

Recall Proposition 3.17 that there is an embedding

(108) Dσ(c, λ)A1 ↪→ D(c, λ) ⊗C C[Å1].

Taking the lowest weight parts of these modules in (107) and (108) with respect to the
hσ-action, we get the following embeddings:

φ : H0(Gr
λ

G,A1 ,Lc)∨
−cι(λ) ↪→ D(c, λ)−cι(λ) ⊗C C[Å1],

ψ : (Dσ(c, λ)A1)−cι(λ) ↪→ D(c, λ)−cι(λ) ⊗C C[Å1].

We shall show Im(φ) = Im(ψ). Note that Im(φ) and Im(ψ) are free rank one C[z]-
modules, and D(c, λ)cι(λ) ⊗ C[Å1] is a free rank one C[z, z−1]-module. We must have

Im(φ) = zaIm(ψ).

We claim a = 0. By Theorem 6.4 and Theorem 3.13, H0(Gr
λ

G,A1 ,Lc)∨ and Dσ(c, λ)A1

are graded free C[A1]-modules. By Theorem 3.12 and Corollary 4.20, we can compute
their characters via the fibers at 0 ∈ A1:

(109) ch
(
H0(Gr

λ

G,A1 ,Lc)∨) = ch
(
Dσ(c, λ)

)
· (1 − q)−1 = ch

(
Dσ(c, λ)A1

)
.

In particular, on the lowest weight part, we have

ch
(
H0(Gr

λ

G,A1 ,Lc)∨
−cι(λ)

)
= ch

(
(Dσ(c, λ)A1)−cι(λ)

)
.

Hence ch
(
Im(φ)

)
= ch

(
Im(ψ)

)
. It follows that a = 0. In other words, Im(φ) = Im(ψ),

and furthermore
H0(Gr

λ

G,A1 ,Lc)∨
−cι(λ) ' (Dσ(c, λ)A1)−cι(λ).

Consider the following embedding of g[t]σ-modules

Dσ(c, λ)A1 = U(g[t]σ) • (Dσ(c, λ)A1)−cι(λ) ' U(g[t]σ) · H0(Gr
λ

G,A1 ,Lc)∨
−cι(λ)

↪→ H0(Gr
λ

G,A1 ,Lc)∨.
By the equality (109) of characters, this embedding must be an isomorphism, which will
be denoted by ΦA1 .

When n = 2, let ξ = ({1}, {2}) be the nontrivial partition. From the case when n = 1,
we have an isomorphism ( fξ)−1 ◦ (ΦA1 × ΦA1)|A2

ξ
of C[A2

ξ]-modules

(110)
(
Dσ(c, λ1)A1 ⊗ Dσ(c, λ2)A1

)
⊗C[A2] C[A2

ξ] ' H0(Gr
~λ

G,A2
ξ
,Lc)∨.
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Combining with Proposition 3.17, we get an embedding

(111) Dσ(c, ~λ)A2 ↪→ H0(Gr
~λ

G,A2
ξ
,Lc)∨.

Consider the restriction map

(112) H0(Gr
~λ

G,A2 ,Lc)∨ ↪→ H0(Gr
~λ

G,A2
ξ
,Lc)∨.

Taking the lowest weight parts of these modules in (112) and (111) with respect to the
gσ-action, we get the following embeddings:

φ : H0(Gr
~λ

G,A2 ,Lc)∨
−cι(λ) ↪→ H0(Gr

~λ

G,A2
ξ
,Lc)∨

−cι(λ),

ψ : (Dσ(c, ~λ)A2)−cι(λ) ↪→ H0(Gr
~λ

G,A2
ξ
,Lc)∨

−cι(λ).

We shall show Im(φ) = Im(ψ). Note that Im(φ) and Im(ψ) are free rank one C[z1, z2]-

modules, and H0(Gr
~λ

G,A2
ξ
,Lc)∨

−cι(λ) is a free rank one C[z1, z2]a-modules, where a is the
ideal generated by z1 − ε

iz2, with i = 0, · · · ,m − 1. We must have

(113) Im(φ) =

m−1∏
i=0

(z1 − ε
iz2)aiIm(ψ).

We claim ai = 0 for any i. Consider the Γ-action on A2 defined by σ ∗ (x, y) := (x, ε(y)).
This action extends to an action on GrG,A2 . From the construction of L (cf. (77) and
Section 5.3), there is a natural Γ-equivariant structure on L. When n = 1, it is clear that
ΦA1 is equivariant under the standard action of Γ defined in (66). Hence, the morphism
(110) is Γ-equivariant. Then the induced map (111) and hence ψ is Γ-equivariant. From
(113), the Γ-equivariance of φ and ψ imply that∏

i(z1 − ε
i−1z2)ai =

∏
i(z1 − ε

iz2)ai .

It follows that ai = ai−1 for any i. Since ch
(
Im(φ)

)
= ch

(
Im(ψ)

)
, we must have

∑
ai = 0.

Therefore, ai = 0 and Im(φ) = Im(ψ). By the same argument as in the case n = 1, this

leads to an isomorphism ΦA2 : Dσ(c, ~λ)A2 ' H0(Gr
~λ

G,A2 ,Lc)∨. From the construction,
ΦA2 satisfies diagram (106).

When n > 2, we prove it by induction. Let ξ = (I1, I2, . . . , Ik) be any nontrivial
partition, i.e. ξ , ([n]). By induction, we get an embedding

Φξ := f −1
ξ ◦ (

∏
Φα)|An

ξ
◦ ψξ : Dσ(c, ~λ)An

ξ
↪→ H0(Gr

~λ

G,An
ξ
,Lc)∨.

Let ξ′ = (I′1, . . . , I
′
k′) be another nontrivial partition. Consider a new partition as follows

(with the lexicographical order),

ξ′′ := (Iα ∩ I′β | 1 ≤ α ≤ k, 1 ≤ β ≤ k′).

It is easy to check An
ξ′′ = An

ξ ∩ A
n
ξ′ . For any 1 ≤ α ≤ k, we denote by ξ′′α the partition

(Iα∩ I′β | 1 ≤ β ≤ k′) of Iα. By induction, we have Φα|AIα
ξ′′α

= f −1
ξα
◦ (

∏
β Φα,β)|AIα

ξ′′α

◦ψξα over
56



AIα
ξ′′α

for any 1 ≤ α ≤ k. It follows that

Φξ |An
ξ′′

= f −1
ξ ◦ (

∏
α Φα)|An

ξ′′
◦ ψξ

= f −1
ξ ◦ (

∏
α f −1

ξ′′α
)|An

ξ′′
◦ (

∏
α,β Φα,β)|An

ξ′′
◦ (

∏
α ψξ′′α )|An

ξ′′
◦ ψξ

= f −1
ξ′′ ◦ (

∏
α,β Φα,β)|An

ξ′′
◦ ψξ′′

= Φξ′′ .

Similarly Φξ′ |An
ξ′′

= Φξ′′ . Thus, Φξ and Φξ′ agree on An
ξ ∩ A

n
ξ′ . Hence, we can glue these

{Φξ}ξ together to get an embedding over
⋃

ξ A
n
ξ = An − ∆[n], i.e.

Φ : Dσ(c, ~λ)An ⊗C[An] C[An − ∆[n]] ↪→ H0(Gr
~λ

G,An−∆[n]
,Lc)∨,

where ∆[n] is defined in (69). Since ∆[n] has dimension 1, by Hartogs’ Lemma, Φ extends
to an embedding over An,

ΦAn : Dσ(c, ~λ)An ↪→ H0(Gr
~λ

G,An ,Lc)∨.
Note that both sides are graded free C[An]-modules, and have the same graded Tσ-
character as the same argument as in the cases for n = 1, 2. Thus, ΦAn must be an
isomorphism. �

Remark 6.6. (1) The proof of this theorem is similar to the method used in [DFF,
Section 5.1]. It is worth noting that, in the twisted case, it is already nontrivial
when n = 1, and when n = 2 the argument is more subtle. Moreover, in our
argument, in order to prove the isomorphism (105), the commutativity of the
diagram (106) needs to be involved in the induction.

(2) In [DFF], a version of Theorem 6.5 is proved for symmetric BD Schubert va-
rieties in the untwisted case. In our paper, we only work with the twisted BD
Schubert varieties over An, where the coordinates of points are ordered. The
main reason is that the algebraAσ(c, ~λ) is more complicated than the untwisted
case, see Remark 3.22. In particular, when n = 1, H0(Gr

λ

G,A1 ,Lc)) is naturally an
C[z]-module, while Dσ(c, λ) is a C[zr]-module for some integer r ≥ 1, where r
depends on whether λ is σ-invariant, see Example 3.3.

The following corollary immediately follows from Theorem 6.5.

Corollary 6.7. Let ~λ = (λ1, . . . , λn) ∈ (X∗(T )+)n.
(1) Let ξ = (I1, . . . , Ik) be a partition on [n]. For any point ~p ∈ An

ξ , there is an
isomorphism of g[t]σ-modules as follows,

Dσ(c, ~λ)~p =

k⊗
j=1

Dσ(c, ~λI j)~pI j
,

where ~pI j and ~λI j are defined in (30) and (31).
(2) For any ~p = (p, γ2(p), . . . , γn(p)) ∈ An such that p , 0, there is an isomorphism

of g[t]σ-modules
Dσ(c, ~λ)~p = D(c, λ~p)p,
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where λ~p := λ1+γ−1
2 (λ2)+· · ·+γ−1

n (λn) and D(c, λ~p)p denotes the module D(c, λ~p)
with a new g[t]σ-action given by (17).

Proof. Part (1) follows from the fact that the g[t]σ-morphism ψξ defined in Proposition
3.17 is an isomorphism. Part (2) follows from Corollary 4.20 and Theorem 6.5. �

Remark 6.8. Note that when ~p = (0, · · · , 0) ∈ An, the fiber Dσ(c, ~λ)~p is already deter-
mined in Theorem 3.12, and this fact is used in the proof of Theorem 6.5. This fact
together with Corollary 6.7 determines the fiber Dσ(c, ~λ)~p at any point ~p ∈ An.

Appendix A. Tannakian interpretation for (Γ,G)-torsors

Let G be an affine algebraic group over an algebraically closed field k. Recall a clas-
sical result that a G-torsors is equivalent to a faithful exact tensor functor from Rep(G)
to the category of locally free sheaves, cf. [No, Br]. In this appendix, we generalize this
equivalence to an equivariant setting. Let Γ be a finite group acting on a k-scheme Y and
acting on an affine algebraic group G over k.

Definition A.1. A (Γ,G)-torsor is a scheme F faithfully flat and affine over Y with a
Γ-action and a right G-action such that

(1) The map F → Y is both Γ-equivariant and G-equivariant.
(2) The G-action on F is compatible with the Γ-action, i.e. the G-action map F ×

G → F is Γ-equivariant, where Γ-action on F ×G is given by γ(p, g) = (γp, γg)
for γ ∈ Γ.

(3) The map F ×G → F ×Y F sending (p, g) to (p, pg) is an isomorphism.
Given (Γ,G)-torsors F and F ′, a (Γ,G)-equivariant map f : F → F ′ is a morphism of
G-torsors which is also Γ-equivariant.

We denote by BunΓ,G(Y) the category of (Γ,G)-torsors over Y in which the morphisms
are (Γ,G)-equivariant maps.

Definition A.2. Let C, D be two tensor categories, and let F, F′ : C → D be two tensor
functors. A morphism f : F → F′ of tensor functors is a natural transformation from F
to F′ such that, for any finite families (Vi)i∈I of objects in C, the diagram

(114)
⊗

i∈I F(Vi)⊗
i∈I fVi

∼

��

∼
// F

(⊗
i∈I Vi

)

∼ f⊗
i∈I Vi

��⊗
i∈I F′(Vi)

∼
// F′

(⊗
i∈I Vi

)
commutes. (See [DM, Definition 1.12])

Remark A.3. This definition is equivalent to the commutativity of the diagram (114) for
I = {1, 2} and I = ∅.

Denote by Rep(G) the category of finite dimensional algebraic representations of G
over k, and by Cohlf(Y) the category of locally free sheaves of finite rank on Y . For
each γ ∈ Γ, denote by γG (resp. γY) the automorphism on G (resp. Y) associated to γ.
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Let γ∗Y : Cohlf(Y) → Cohlf(Y) be the pullback functors induced from γY . We define a
functor γ∗G : Rep(G)→ Rep(G) as follows, for any (V, ρ) ∈ Rep(G),

γ∗G(V, ρ) := (V, ρ ◦ γG).

The natural tensor structure on the category Rep(G) (resp. Cohlf(Y)) is preserved by γ∗G
(resp. γ∗Y).

Definition A.4. We say a tensor functor F : Rep(G) → Cohlf(Y) is Γ-equivariant if it
is equipped with a collection of isomorphisms between tensor functors {θγ : Fγ∗G →
γ∗Y F}γ∈Γ such that, for any η, γ ∈ Γ, the following diagram

(115) Fη∗Gγ
∗
G

Fδ ∼

��

∼

θη

// η∗Y Fγ∗G
∼

η∗θγ

// η∗Yγ
∗
Y F

∼ ξ

��

F(γη)∗G
∼

θγη

// (γη)∗Y F

commutes, where δ : η∗Gγ
∗
G ' (γη)∗G and ξ : η∗Yγ

∗
Y ' (γη)∗Y are natural isomorphisms

between these functors. In fact, the commutativity of this diagram implies that θe = id :
F = Fe∗ → e∗F = F.

Let F be a G-torsor over Y . For each object V in Rep(G), we denote by FV the
sheaf sections of the vector bundle F ×G V over Y . Then, FV is locally free and it is
well-known that

Spec S (F̌V) ' F ×G V,
where S (F̌V) denotes the symmetric algebra on the dual sheaf F̌V , cf. [Ha, Exercise
5.18]. There is a natural functor Φ(F ) : Rep(G) → Cohlf(Y) associated to F , which
sends any representation V to the locally free sheaf FV on Y .

Lemma A.5. Let F be a (Γ,G)-torsor over Y. The functor Φ(F ) : Rep(G) → Cohlf(Y)
is a faithful exact tensor functor and it is Γ-equivariant.

Proof. By [Br, Lemma 4.1], F is a faithful exact tensor functor. Thus, it suffices to
show F satisfies Definition A.4. Let θγ be the natural isomorphism between the vector
bundles F ×G γ∗GV and γ∗Y(F ×G V) over Y sending (p, v) to (γp, v). It is easy to check
the collection of isomorphisms {θγ}γ∈Γ satisfies A.4. �

Definition A.6. Let F, F′ be two Γ-equivariant tensor functors from Rep(G) to Cohlf(Y).
A morphism from F to F′ as Γ-equivariant tensor functors is a morphism f : F → F′ of
tensor functors such that for any γ ∈ Γ, the following diagram commutes

(116) Fγ∗G
θγ

∼

��

f◦id
// F′γ∗G

∼ θ′γ
��

γ∗Y F
id◦ f
// γ∗Y F′

Denote by TFΓ(G,Y) the category of tensor functors from Rep(G) to Cohlf(Y) that are
faithful, exact and Γ-equivariant. The morphisms between these objects are defined to
be morphisms between Γ-equivariant tensor functors.
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Recall that given a (Γ,G)-torsor F over Y , for each object V in Rep(G), one can
associate a locally free sheaf FV . By Lemma A.5, the functor Φ(F ) : Rep(G) →
Cohlf(Y) is an object in TFΓ(G,Y). Let f : F → F ′ be a morphism of (Γ,G)-torsors.
We naturally get a morphism Φ( f ) : Φ(F ) → Φ(F ′) of Γ-equivariant tensor functors.
As a summary, we have the following result.

Proposition A.7. Φ is a functor from BunΓ,G(Y) to TFΓ(G,Y). �

Conversely, for any object F in TFΓ(G,Y), we would like to construct a (Γ,G)-torsor
corresponding to F.

Definition A.8. An affine G-scheme over Y is a scheme which is affine and flat over Y
with a left G-action. Moreover, an affine (Γ,G)-scheme over Y is an affine G-scheme
f : X → Y over Y equipped with a Γ-action such that

(1) f : X → Y is Γ-equivariant.
(2) The G-action map G × X → X is Γ-equivariant.

Denote by Rep∞(G) the category of locally finite dimensional representations of G,
and by QCoh(Y) the category of quasi-coherent sheaves on Y . Let F : Rep(G) →
Cohlf(Y) be a faithful exact tensor functor. One can extend it uniquely to a faithful exact
tensor functor Rep∞(G) → QCoh(Y) which will still be denoted by F, see [Br, Lemma
4.4]. For an affine G-scheme X over k, we define a scheme over Y

F̃(X) := Spec F(k[X]),

where k[X] denotes the coordinate ring of X. It was shown in [Br, Lemma 4.5] that F̃(X)
is flat and affine over Y . Thus, F̃ gives to a functor from the category of affine G-schemes
over k to the category of schemes affine and flat over Y . Given any representation V in
Rep(G), it can be regarded as a G-scheme. Then F̃(V) = ˜F(V), where ˜F(V) represents
the affine bundle associated to the locally free sheaf F(V).

Let X be an affine G-scheme over k and for any γ ∈ Γ, we define γ∗GX to be the
scheme X with a left G-action twisted by the morphism γG : G → G, and define γ∗Y F̃X
to be the pullback of the scheme F̃X via the morphism γY : Y → Y . Then we have
γ∗GX = Spec(γ∗G(k[X])) and γ∗Y F̃X = Spec(γ∗Y F(k[X])). If F : Rep(G) → Cohlf(Y) is
Γ-equivariant, then the extended functor F : Rep∞(G)→ QCoh(Y) is also Γ-equivariant,
i.e. there is a collection of natural isomorphisms between tensor functors {θγ : Fγ∗G →
γ∗Y F}γ∈Γ satisfying the diagram (115) in Definition A.4. For each γ ∈ Γ, θγ induces an
isomorphism θ̃γ,X : F̃γ∗GX ' γ∗Y F̃X of schemes which is functorial in X.

Lemma A.9. Let F : Rep(G) → Cohlf(Y) be a Γ-equivariant faithful and exact tensor
functor. The induced functor F̃ satisfies the following properties:

(1) F̃ respects products and if X has a trivial G-action then F̃(X) = Y × X with the
obvious G-action.

60



(2) For any γ ∈ Γ and any two affine G-schemes X1, X2 over k, the following diagram
commutes

F̃γ∗G(X1 × X2)

θ̃γ,X1×X2

∼

��

∼
// F̃γ∗G(X1) ×Y F̃γ∗G(X2)

∼ (θ̃γ,X1 ,θ̃γ,X2 )
��

γ∗Y F̃(X1 × X2) ∼
// γ∗Y F̃(X1) ×Y γ

∗
Y F̃(X2)

.

(3) For any η, γ ∈ Γ, the following diagram

F̃η∗Gγ
∗
G

F̃δ ∼

��

∼

θ̃η

// η∗Y F̃γ∗G
∼

η∗θ̃γ

// η∗Yγ
∗
Y F̃

∼ ξ

��

F̃(γη)∗G
∼

θ̃γη

// (γη)∗Y F̃

commutes, where δ : η∗Gγ
∗
G ' (γη)∗G and ξ : η∗Yγ

∗
Y ' (γη)∗Y are the natural

isomorphisms between functors.

Proof. Part (1) was established in [Br, Lemma 4.5]. Part (2) follows from that fact that
θγ is a morphism of tensor functors. Part (3) follows from the commutativity (115) for
{θγ}γ∈Γ. �

Definition A.10. An affine Γ-scheme X over Y is a scheme affine and flat over Y with a
Γ-action such that the map X → Y is Γ-equivariant.

Corollary A.11. With the same assumption as in Lemma A.9, F induces a functor F̃
from the category of affine (Γ,G)-schemes over k to the category of affine Γ-schemes
over Y.

Proof. Let X be any (Γ,G)-scheme over k. For any γ ∈ Γ, the map X →̃ γ∗GX sending x
to γ(x) is an isomorphism of G-schemes. Applying the functor F̃, we get the following
isomorphism of G-schemes over Y

ϕγ : F̃X →̃ F̃γ∗GX
θ̃γ,X
−−→ γ∗Y F̃X.

Moreover, for any η, γ ∈ Γ, the following diagram commutes

X

∼

��

∼
// η∗GX

∼

��

(γη)∗GX ∼
// η∗Gγ

∗
GX

.

Applying F̃, we have the commutative diagram

F̃X

ϕγη

∼

��

∼

ϕη
// η∗Y F̃X

∼ η∗Gϕγ
��

(γη)∗Y F̃X ∼

ξ−1
// η∗Yγ

∗
Y F̃X

,
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where ξ : η∗Yγ
∗
Y →̃ (γη)∗Y is the natural isomorphism between functors. This amounts to

a Γ-action on F̃X. �

Denote by G0 the algebraic group G with the trivial right G-action. Let a : G×G0 → G
be the map sending (g1, g2) to g1g2. Applying F̃ and by part (1) of Lemma A.9, it gives
rise to a map

ã : F̃G ×G = F̃G ×Y F̃G0 → F̃G.
It was shown in [Br, Lemma 4.7] that ã gives a right G-action on F̃G, and furthermore
F̃G is a G-torsor over Y . In fact, we have more.

Proposition A.12. F̃G is a (Γ,G)-torsor over Y.

Proof. By Corollary A.11, F̃G is a Γ-scheme over Y . Also, as discussed above, F̃G is a
right G-torsor. Thus, it suffices to show that ã : F̃G ×G → F̃G is Γ-equivariant. Since
G is a (Γ,G)-scheme, we have the following commutative diagram of G-schemes over k

G ×G0

∼

��

a
// G

∼

��

γ∗GG ×G0
a
// γ∗GG

,

where the left vertical map is given by (g1, g2) 7→ (γg1, γg2), the right vertical map is
given by g 7→ γg. Applying F̃, by Lemma A.9 the following diagram commutes

F̃G ×G

ϕγ×γ

∼

��

ã
// F̃G

∼ ϕγ
��

γ∗Y F̃G ×G ã
// γ∗Y F̃G

.

This implies that the map ã : F̃G ×G → F̃G is Γ-equivariant. �

Given a morphism β : F1 → F2 in TFΓ(G,Y), one can further show there is a mor-
phism β̃G : F̃1G → F̃2G between two (Γ,G)-torsors over Y . Define Ψ(F) := F̃G and
Ψ(β) := β̃G. This gives a functor

Ψ : TFΓ(G,Y)→ BunΓ,G(Y).

Theorem A.13. The functor Ψ : TFΓ(G,Y)→ BunΓ,G(Y) is an equivalence.

Proof. We will show Ψ is inverse to the functor Φ, which is well-defined by Proposition
A.7. Let π : F → Y be a (Γ,G)-torsor over Y , we have ΨΦ(F ) = Spec (Fk[G]), where
Fk[G] denotes the sheaf of sections of F ×G k[G] over Y . We would like to show Fk[G] '

π∗OF , where OF denotes the structure sheaf of F . For any open subset U of Y , let
FU denote the G-torsor π−1(U) over U. Each section s : U → FU ×

G k[G] uniquely
corresponds to a section:

FU ' FU ×U U
id×s
−−−→ FU ×U FU ×

G k[G] ' (FU ×G) ×G k[G] ' FU × k[G].

This is equivalent to a G-equivariant map φs : FU → k[G]. Composing with eve :
k[G] → k, we get an morphism eve ◦ φs : FU → k. Conversely, for any morphism
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f : FU → k, there is a G-equivariant map f̃ : FU → k[G] defined by f̃ (p) : g 7→ f (pg).
By the arguement above, this uniquely corresponds a section U → FU×

G k[G]. Thus, we
have a 1-1 correspondence between the sections U → FU ×

G k[G] and the morphisms
FU → k. Thus, Fk[G] ' π∗OF . One may further check this natural isomorphism is
(Γ,G)-equivariant. It follows that ΨΦ(F ) = Spec (Fk[G]) ' Spec (OF ) = F .

Conversely, given any object F ∈ TFΓ(G,Y), we will show there is an isomorphism
ΦΨ(F) → F between Γ-equivariant tensor functors. For each object V in Rep(G), by
definition ΦΨ(F)(V) is the sheaf of sections of F̃G ×G V over Y . Observe that F(V) is
the sheaf of sections of F̃(V) over Y . Thus, it suffices to show there are Γ-equivariant
maps {F̃G ×G V → F̃(V) | V ∈ Rep(G)} functorial in V . Denote by V0 (resp. G0) the
scheme V (resp. G) with a trivial G-action. Consider the diagram

G ×G0 × V0

m×id
��

id×a
// G × V0

a
��

G × V0
a

// V

,

where a : G × V0 → V sends (g, v) to gv, and m : G × G0 → G sends (g1, g2) to g1g2.
Applying F̃, it induces an isomorphism ã : F̃G ×G V → F̃V , cf. [Br, Theorem 4.8].
From the construction of ã, one may check ã is Γ-equivariant and functorial in V . �

Appendix B. A generalization of cohomology and base change theorem

Definition B.1. An additive functor T : C→ D between two additive abelian categories
is called half-exact if for any short exact sequence 0 → M → N → L → 0 in C the
sequence T (M)→ T (N)→ T (L)→ 0 is exact.

Let f : A → B be a local homomorphism of Noetherian local rings. Let m be the
maximal ideal of A, and k = A/m. Let Modfg(A) (resp. Modfg(B)) denote the cat-
egory of finitely generated A-modules (resp. B-modules). Given an A-linear functor
T : Modfg(A)→ Modfg(B), one can attach a natural transformation

T (A) ⊗A · → T.

This is constructed as follows. For any A-module M and any element m ∈ M, it gives rise
to an A-morphism φm : A→ M, given by a 7→ am. Applying T , we get T (φm) : T (A)→
T (M). This induces an A-bilinear map T (A) × M → T (M) given by (t,m) 7→ T (φm)(t).
Thus, this gives T (A) ⊗A M → T (M). One may check this is functorial in M.

Proposition B.2. Let T be a half-exact A-linear functor from Modfg(A) to Modfg(B).
Assume that T commutes with direct limits. Then,

(1) If T (k) = 0, then T (M) = 0 for any M ∈ Modfg(A).
(2) The following conditions are equivalent:

(a) T (A)→ T (k) is surjective.
(b) The functor T is right exact.
(c) T (A) ⊗A · → T is an isomorphism.

Proof. cf. [OB, Theorem 2.2, Theorem 4.1]. �
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The following theorem is a generalization of cohomology and base change theorem,
cf. [Ha, Theorem 12.11].

Theorem B.3. Let π : X → Y be a proper morphism of schemes over a Noetherian
scheme S . Let s ∈ S , and let Xs (resp. Ys) be the schematic fiber X×S Spec k(s) (resp. Y×S

Spec k(s)), where k(s) is the residue field of s; let πs : Xs → Ys be the induced morphism
from π. Let F be the coherent sheaf, which is flat over S . Then,

(1) If Riπ∗F |Xs

ϕi(s)
−−−→ Ri(πs)∗F |Xs is surjective, then ϕi(s) is an isomorphism and it is

true in a neighborhood of s in S .
(2) Assume that ϕi(s) is surjective. Then the following are equivalant:

(a) ϕi−1(s) is surjective.
(b) Riπ∗(F ) is flat in a neighborhood of s in S .

Proof. Since the statements of the theorem are local, we may assume that Y = SpecB,
S = SpecA, and the morphism Y → S is given by a local homomorphism A → B of
local rings, where A is Noetherian. We consider the functor

T i(M) := Riπ∗(X,F ⊗A M).

Then T i is a half-exact A-linear functor from Modfg(A) to Modfg(B), as π : X → Y is
proper. Part (1) immediately follows from part (2) of Proposition B.2.

We now prove part (2). By part (1), T i(A) is flat if and only if T i is exact. Then part
(2) follows from Proposition B.2 and the following basic fact: T i is exact if and only if
T i−1 and T i are both right exact. �

Corollary B.4. Let π : X → Y be a proper morphism of schemes over a Noetherian
scheme S . Suppose that X is flat over S . Given a point s ∈ S , if R1(πs)∗(OXs) = 0, then

(1) π∗(OX)|Ys ' (πs)∗(OXs)
(2) π∗(OX) is flat over a neighborhood of s ∈ S .

Proof. By part (1) of Theorem B.3, R1π∗(OX) is 0 in a neighborhood of s ∈ S . In
particular, R1π∗(OX) is flat over a neighborhood of s ∈ S . By part (2) of Theorem B.3,
π∗(OX)|Ys → (πs)∗(OXs) is surjective. Then part (1) follows from part (1) of Theorem
B.3.

For part (2), by part (2) of Theorem B.3 again, π∗(OX) is flat over a neighborhood of
s ∈ S (note that condition (2a) in Proposition B.2 holds automatically when i = 0). �

Appendix C. Equivariant line bundles on stacks

In this appendix, we collect some basics of line bundles over k-stacks, where k is an
algebraically closed field. We also prove that for any semi-direct k-group G o H, any
GoH-equivariant line bundle on a k-space X can descend to a H-equivariant line bundle
on the quotient stack [G\X].

Denote by Affk the category of affine k-schemes. A k-space (resp. k-group) is a
functor from Aff

op
k to the category of sets (resp. groups) which is a sheaf with respect to

the fppf topology, cf. [BL, Zh3].
Let X be a k-space. Following [BL, (3.7)], a line bundle L over X consists of fol-

lowing data: a line bundle Lη over S for each scheme S with a morphism η : S → X,
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a collection of isomorphisms {φη, f : f ∗Lη ' Lη◦ f } for each morphism f : S ′ → S of
schemes, subject to obvious compatibility conditions. In fact, this definition coincides
with the usual definition of line bundles when X is either a scheme or an ind-scheme.

More generally, a line bundleL on a stack Y is defined to be the following data: a line
bundle Lη over S for each scheme S and η ∈ Y(S ), an isomorphism φθ : f ∗Lη ' Lη′ for
each morphism f : S ′ → S of schemes and each arrow θ : f ∗η→ η′ in Y(S ′), subject to
obvious compatibility conditions, cf. [BL, (3.7)].

Let G be a k-group, and let X be a k-space with a left G-action. Denote by a : G×X →
X the action map, and by pr : G×X → X the projection map. A line bundle L over X is
called G-equivariant if there is an isomorphism u : a∗L ' pr∗L , satisfying the cocycle
condition. Let [G\X] be the quotient stack. By descent theory, a line bundle over [G\X]
is the same as a G-equivariant line bundle over X, cf. [BL, Section 7].

Suppose there is a k-group H acting on the k-group G preserving the group structure,
and there is a (G o H)-action on the k-space X. Then there is an H-action on [G\X]
defined as follows. For any scheme S , an S -point η of [G\X] is equivalent to a G-torsor
π : P → S together with a G-equivariant morphism α : P → X. This produces a
G-equivariant morphism

η̃ : P → X × S .

For any h ∈ H(S ), there is a G-equivariant map

(117) h : X × S → X × S ,

sending (x, s) to (h(s)−1x, s). Here the domain X ×S is equipped with a new G-action by
g • (x, s) := (h(s)gh−1(s)x, s). Let Ph denote the G-torsor P with a new G-action given
by g • p := h(π(p))gh−1(π(p))p. Then, the following composition map is G-equivariant

αh : Ph
η̃
−→ X × S

h
−→ X × S

prX
−−→ X,

which sends p to h(π(p))−1α(p). Hence, the G-torsor Ph over S together with the G-
equivariant morphism αh : Ph → X defines an S -point of [G\X], which will be denoted
by h · η. This gives us an H-action on [G\X]. In this case, a line bundle L over [G\X]
is called H-equivariant if there are isomorphisms φh,η : Lη ' Lh·η satisfying the cocycle
condition.

Lemma C.1. Let H be a k-group, and let G be a k-group with an H-action preserving
the group structure. Suppose (G o H) acts on a k-space X, and let L be a (G o H)-
equivariant line bundle over X. Denote by L the line bundle over the quotient stack
[G\X] descending from L . Then there is an H-equivariant structure on L.

Proof. For any η ∈ [G\X](S ), we have an morphism η̃ : P → X × S . Let LS be the
pull-back of L via the projection X × S → X. As a G-equivariant line bundle, η̃∗(LS )
exactly descends to the line bundle Lη over S , where Lη is obtained from L via η.

Since L is G o H-equivariant, its pull-back LS is also G o H-equivariant, i.e. given
any scheme T , for any h′ ∈ H(T ), g ∈ G(T ) and x ∈ (X × S )(T ), there are isomorphisms
φh′,x : (LS )x ' (LS )h′x and ψg,x : (LS )x ' (LS )gx such that the following diagram
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commutes

(118) (LS )x
φh′ ,x

//

ψg,x

��

(LS )h′x

ψh′gh′−1 ,h′ x
��

(LS )gx
φh′ ,gx

// (LS )h′gx

.

For any h ∈ H(S ), let h : X × S → X × S be the G-equivariant morphism as in (117).
Take h′ to be the morphism h ◦ prS ◦ x : T → H. Then h′ · x = h ◦ x. Hence

(h∗LS )x = (LS )h◦x = (LS )h′·x.

Similarly, (h∗LX)gx = (LS )h′·gx. Set ξh,x = ψh′gh′−1,h′x : (h∗LS )x ' (h∗LX)gx, and ζh,x =

φh′,x : (LS )x → (h∗LS )x. Then diagram (118) becomes

(119) (LS )x
ζh,x
//

ψg,x

��

(h∗LS )x

ξh,x

��

(LS )gx
ζh,gx
// (h∗LS )gx

.

Note that the data of isomorphisms ξh,x : (h∗LS )x → (h∗LS )gx of line bundles over S
defines a G-equivariant structure on the line bundle h∗LS over X × S . Moreover, the
data of isomorphism ζh,x : (LS )x → (h∗LS )x amounts to an isomorphism

ζh : LS → h∗LS .

Then, the commutativity of the diagram (119) implies that ζh is G-equivariant.
Pulling back ζh via η̃ : P → X × S , we get a G-equivariant isomorphism

η̃∗LS → η̃∗h∗LS = (h ◦ η̃)∗LS .

Note that prX ◦ h ◦ η̃ = αh. This implies h̃ · η = h ◦ η̃. Hence, there is an G-equivariant
isomorphism

η̃∗LS ' (h̃ · η)∗LS ,

and it descends to an isomorphism Lη ' Lh·η of line bundles over S . One may check
this isomorphism satisfies the standard cocycle condition. �
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